gstreamer/subprojects/gst-plugins-bad/ext/onnx/gstonnxinference.cpp

603 lines
19 KiB
C++
Raw Normal View History

/*
* GStreamer gstreamer-onnxinference
* Copyright (C) 2023 Collabora Ltd.
*
* gstonnxinference.cpp
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:element-onnxinference
* @short_description: Run ONNX inference model on video buffers
*
* This element can apply an ONNX model to video buffers. It attaches
* the tensor output to the buffer as a @ref GstTensorMeta.
*
* To install ONNX on your system, follow the instructions in the
* README.md in with this plugin.
*
* ## Example launch command:
*
* Test image file, model file (SSD) and label file can be found here :
* https://gitlab.collabora.com/gstreamer/onnx-models
*
* GST_DEBUG=ssdobjectdetector:5 \
* gst-launch-1.0 filesrc location=onnx-models/images/bus.jpg ! \
* jpegdec ! videoconvert ! onnxinference execution-provider=cpu model-file=onnx-models/models/ssd_mobilenet_v1_coco.onnx ! \
* ssdobjectdetector label-file=onnx-models/labels/COCO_classes.txt ! videoconvert ! imagefreeze ! autovideosink
*
*
* Note: in order for downstream tensor decoders to correctly parse the tensor
* data in the GstTensorMeta, meta data must be attached to the ONNX model
* assigning a unique string id to each output layer. These unique string ids
* and corresponding GQuark ids are currently stored in the tensor decoder's
* header file, in this case gstssdobjectdetector.h. If the meta data is absent,
* the pipeline will fail.
*
* As a convenience, there is a python script
* currently stored at
* https://gitlab.collabora.com/gstreamer/onnx-models/-/blob/master/scripts/modify_onnx_metadata.py
* to enable users to easily add and remove meta data from json files. It can also dump
* the names of all output layers, which can then be used to craft the json meta data file.
*
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gst/gst.h>
#include "gstonnxinference.h"
#include "gstonnxclient.h"
/*
* GstOnnxInference:
*
* @model_file model file
* @optimization_level: ONNX session optimization level
* @execution_provider: ONNX execution provider
* @onnx_client opaque pointer to ONNX client
* @onnx_disabled true if inference is disabled
* @video_info @ref GstVideoInfo of sink caps
*/
struct _GstOnnxInference
{
GstBaseTransform basetransform;
gchar *model_file;
GstOnnxOptimizationLevel optimization_level;
GstOnnxExecutionProvider execution_provider;
gpointer onnx_client;
gboolean onnx_disabled;
GstVideoInfo video_info;
};
GST_DEBUG_CATEGORY (onnx_inference_debug);
#define GST_CAT_DEFAULT onnx_inference_debug
#define GST_ONNX_CLIENT_MEMBER( self ) ((GstOnnxNamespace::GstOnnxClient *) (self->onnx_client))
GST_ELEMENT_REGISTER_DEFINE (onnx_inference, "onnxinference",
GST_RANK_PRIMARY, GST_TYPE_ONNX_INFERENCE);
/* GstOnnxInference properties */
enum
{
PROP_0,
PROP_MODEL_FILE,
PROP_INPUT_IMAGE_FORMAT,
PROP_OPTIMIZATION_LEVEL,
PROP_EXECUTION_PROVIDER,
PROP_INPUT_OFFSET,
PROP_INPUT_SCALE
};
#define GST_ONNX_INFERENCE_DEFAULT_EXECUTION_PROVIDER GST_ONNX_EXECUTION_PROVIDER_CPU
#define GST_ONNX_INFERENCE_DEFAULT_OPTIMIZATION_LEVEL GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED
static GstStaticPadTemplate gst_onnx_inference_src_template =
GST_STATIC_PAD_TEMPLATE ("src",
GST_PAD_SRC,
GST_PAD_ALWAYS,
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("{ RGB,RGBA,BGR,BGRA }"))
);
static GstStaticPadTemplate gst_onnx_inference_sink_template =
GST_STATIC_PAD_TEMPLATE ("sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("{ RGB,RGBA,BGR,BGRA }"))
);
static void gst_onnx_inference_set_property (GObject * object,
guint prop_id, const GValue * value, GParamSpec * pspec);
static void gst_onnx_inference_get_property (GObject * object,
guint prop_id, GValue * value, GParamSpec * pspec);
static void gst_onnx_inference_finalize (GObject * object);
static GstFlowReturn gst_onnx_inference_transform_ip (GstBaseTransform *
trans, GstBuffer * buf);
static gboolean gst_onnx_inference_process (GstBaseTransform * trans,
GstBuffer * buf);
static gboolean gst_onnx_inference_create_session (GstBaseTransform * trans);
static GstCaps *gst_onnx_inference_transform_caps (GstBaseTransform *
trans, GstPadDirection direction, GstCaps * caps, GstCaps * filter_caps);
static gboolean
gst_onnx_inference_set_caps (GstBaseTransform * trans, GstCaps * incaps,
GstCaps * outcaps);
G_DEFINE_TYPE (GstOnnxInference, gst_onnx_inference, GST_TYPE_BASE_TRANSFORM);
GType gst_onnx_optimization_level_get_type (void);
#define GST_TYPE_ONNX_OPTIMIZATION_LEVEL (gst_onnx_optimization_level_get_type ())
GType gst_onnx_execution_provider_get_type (void);
#define GST_TYPE_ONNX_EXECUTION_PROVIDER (gst_onnx_execution_provider_get_type ())
GType gst_ml_model_input_image_format_get_type (void);
#define GST_TYPE_ML_MODEL_INPUT_IMAGE_FORMAT (gst_ml_model_input_image_format_get_type ())
GType
gst_onnx_optimization_level_get_type (void)
{
static GType onnx_optimization_type = 0;
if (g_once_init_enter (&onnx_optimization_type)) {
static GEnumValue optimization_level_types[] = {
{GST_ONNX_OPTIMIZATION_LEVEL_DISABLE_ALL, "Disable all optimization",
"disable-all"},
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_BASIC,
"Enable basic optimizations (redundant node removals))",
"enable-basic"},
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED,
"Enable extended optimizations (redundant node removals + node fusions)",
"enable-extended"},
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_ALL,
"Enable all possible optimizations", "enable-all"},
{0, NULL, NULL},
};
GType temp = g_enum_register_static ("GstOnnxOptimizationLevel",
optimization_level_types);
g_once_init_leave (&onnx_optimization_type, temp);
}
return onnx_optimization_type;
}
GType
gst_onnx_execution_provider_get_type (void)
{
static GType onnx_execution_type = 0;
if (g_once_init_enter (&onnx_execution_type)) {
static GEnumValue execution_provider_types[] = {
{GST_ONNX_EXECUTION_PROVIDER_CPU, "CPU execution provider",
"cpu"},
{GST_ONNX_EXECUTION_PROVIDER_CUDA,
"CUDA execution provider",
"cuda"},
{0, NULL, NULL},
};
GType temp = g_enum_register_static ("GstOnnxExecutionProvider",
execution_provider_types);
g_once_init_leave (&onnx_execution_type, temp);
}
return onnx_execution_type;
}
GType
gst_ml_model_input_image_format_get_type (void)
{
static GType ml_model_input_image_format = 0;
if (g_once_init_enter (&ml_model_input_image_format)) {
static GEnumValue ml_model_input_image_format_types[] = {
{GST_ML_INPUT_IMAGE_FORMAT_HWC,
"Height Width Channel (HWC) a.k.a. interleaved image data format",
"hwc"},
{GST_ML_INPUT_IMAGE_FORMAT_CHW,
"Channel Height Width (CHW) a.k.a. planar image data format",
"chw"},
{0, NULL, NULL},
};
GType temp = g_enum_register_static ("GstMlInputImageFormat",
ml_model_input_image_format_types);
g_once_init_leave (&ml_model_input_image_format, temp);
}
return ml_model_input_image_format;
}
static void
gst_onnx_inference_class_init (GstOnnxInferenceClass * klass)
{
GObjectClass *gobject_class = (GObjectClass *) klass;
GstElementClass *element_class = (GstElementClass *) klass;
GstBaseTransformClass *basetransform_class = (GstBaseTransformClass *) klass;
GST_DEBUG_CATEGORY_INIT (onnx_inference_debug, "onnxinference",
0, "onnx_inference");
gobject_class->set_property = gst_onnx_inference_set_property;
gobject_class->get_property = gst_onnx_inference_get_property;
gobject_class->finalize = gst_onnx_inference_finalize;
/**
* GstOnnxInference:model-file
*
* ONNX model file
*
* Since: 1.24
*/
g_object_class_install_property (G_OBJECT_CLASS (klass), PROP_MODEL_FILE,
g_param_spec_string ("model-file",
"ONNX model file", "ONNX model file", NULL, (GParamFlags)
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
/**
* GstOnnxInference:input-image-format
*
* Model input image format
*
* Since: 1.24
*/
g_object_class_install_property (G_OBJECT_CLASS (klass),
PROP_INPUT_IMAGE_FORMAT,
g_param_spec_enum ("input-image-format",
"Input image format",
"Input image format",
GST_TYPE_ML_MODEL_INPUT_IMAGE_FORMAT,
GST_ML_INPUT_IMAGE_FORMAT_HWC, (GParamFlags)
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
/**
* GstOnnxInference:optimization-level
*
* ONNX optimization level
*
* Since: 1.24
*/
g_object_class_install_property (G_OBJECT_CLASS (klass),
PROP_OPTIMIZATION_LEVEL,
g_param_spec_enum ("optimization-level",
"Optimization level",
"ONNX optimization level",
GST_TYPE_ONNX_OPTIMIZATION_LEVEL,
GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED, (GParamFlags)
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
/**
* GstOnnxInference:execution-provider
*
* ONNX execution provider
*
* Since: 1.24
*/
g_object_class_install_property (G_OBJECT_CLASS (klass),
PROP_EXECUTION_PROVIDER,
g_param_spec_enum ("execution-provider",
"Execution provider",
"ONNX execution provider",
GST_TYPE_ONNX_EXECUTION_PROVIDER,
GST_ONNX_EXECUTION_PROVIDER_CPU, (GParamFlags)
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
g_object_class_install_property (G_OBJECT_CLASS (klass),
PROP_INPUT_OFFSET,
g_param_spec_float ("input-tensor-offset",
"Input tensor offset",
"offset each tensor value by this value",
-G_MAXFLOAT, G_MAXFLOAT, 0.0,
(GParamFlags)(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
g_object_class_install_property (G_OBJECT_CLASS (klass),
PROP_INPUT_SCALE,
g_param_spec_float ("input-tensor-scale",
"Input tensor scale",
"Divide each tensor value by this value",
G_MINFLOAT, G_MAXFLOAT, 1.0,
(GParamFlags)(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
gst_element_class_set_static_metadata (element_class, "onnxinference",
"Filter/Effect/Video",
"Apply neural network to video frames and create tensor output",
"Aaron Boxer <aaron.boxer@collabora.com>");
gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&gst_onnx_inference_sink_template));
gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&gst_onnx_inference_src_template));
basetransform_class->transform_ip =
GST_DEBUG_FUNCPTR (gst_onnx_inference_transform_ip);
basetransform_class->transform_caps =
GST_DEBUG_FUNCPTR (gst_onnx_inference_transform_caps);
basetransform_class->set_caps =
GST_DEBUG_FUNCPTR (gst_onnx_inference_set_caps);
}
static void
gst_onnx_inference_init (GstOnnxInference * self)
{
self->onnx_client = new GstOnnxNamespace::GstOnnxClient (GST_ELEMENT(self));
self->onnx_disabled = TRUE;
}
static void
gst_onnx_inference_finalize (GObject * object)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
g_free (self->model_file);
delete GST_ONNX_CLIENT_MEMBER (self);
G_OBJECT_CLASS (gst_onnx_inference_parent_class)->finalize (object);
}
static void
gst_onnx_inference_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
const gchar *filename;
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
switch (prop_id) {
case PROP_MODEL_FILE:
filename = g_value_get_string (value);
if (filename
&& g_file_test (filename,
(GFileTest) (G_FILE_TEST_EXISTS | G_FILE_TEST_IS_REGULAR))) {
if (self->model_file)
g_free (self->model_file);
self->model_file = g_strdup (filename);
self->onnx_disabled = FALSE;
} else {
GST_WARNING_OBJECT (self, "Model file '%s' not found!", filename);
}
break;
case PROP_OPTIMIZATION_LEVEL:
self->optimization_level =
(GstOnnxOptimizationLevel) g_value_get_enum (value);
break;
case PROP_EXECUTION_PROVIDER:
self->execution_provider =
(GstOnnxExecutionProvider) g_value_get_enum (value);
break;
case PROP_INPUT_IMAGE_FORMAT:
onnxClient->setInputImageFormat ((GstMlInputImageFormat)
g_value_get_enum (value));
break;
case PROP_INPUT_OFFSET:
onnxClient->setInputImageOffset (g_value_get_float (value));
break;
case PROP_INPUT_SCALE:
onnxClient->setInputImageScale (g_value_get_float (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_onnx_inference_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
switch (prop_id) {
case PROP_MODEL_FILE:
g_value_set_string (value, self->model_file);
break;
case PROP_OPTIMIZATION_LEVEL:
g_value_set_enum (value, self->optimization_level);
break;
case PROP_EXECUTION_PROVIDER:
g_value_set_enum (value, self->execution_provider);
break;
case PROP_INPUT_IMAGE_FORMAT:
g_value_set_enum (value, onnxClient->getInputImageFormat ());
break;
case PROP_INPUT_OFFSET:
g_value_set_float (value, onnxClient->getInputImageOffset ());
break;
case PROP_INPUT_SCALE:
g_value_set_float (value, onnxClient->getInputImageScale ());
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static gboolean
gst_onnx_inference_create_session (GstBaseTransform * trans)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
GST_OBJECT_LOCK (self);
if (self->onnx_disabled) {
GST_OBJECT_UNLOCK (self);
return FALSE;
}
if (onnxClient->hasSession ()) {
GST_OBJECT_UNLOCK (self);
return TRUE;
}
if (self->model_file) {
gboolean ret =
GST_ONNX_CLIENT_MEMBER (self)->createSession (self->model_file,
self->optimization_level,
self->execution_provider);
if (!ret) {
GST_ERROR_OBJECT (self,
"Unable to create ONNX session. Model is disabled.");
self->onnx_disabled = TRUE;
}
} else {
self->onnx_disabled = TRUE;
GST_ELEMENT_ERROR (self, STREAM, FAILED, (NULL), ("Model file not found"));
}
GST_OBJECT_UNLOCK (self);
if (self->onnx_disabled) {
gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (self), TRUE);
}
return TRUE;
}
static GstCaps *
gst_onnx_inference_transform_caps (GstBaseTransform *
trans, GstPadDirection direction, GstCaps * caps, GstCaps * filter_caps)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
GstCaps *other_caps;
GstCaps *restrictions;
if (!gst_onnx_inference_create_session (trans))
return NULL;
GST_LOG_OBJECT (self, "transforming caps %" GST_PTR_FORMAT, caps);
if (gst_base_transform_is_passthrough (trans))
return gst_caps_ref (caps);
restrictions = gst_caps_new_empty_simple ("video/x-raw");
if (onnxClient->isFixedInputImageSize ())
gst_caps_set_simple (restrictions, "width", G_TYPE_INT,
onnxClient->getWidth (), "height", G_TYPE_INT,
onnxClient->getHeight (), NULL);
if (onnxClient->getInputImageDatatype() == GST_TENSOR_TYPE_UINT8 &&
onnxClient->getInputImageScale() == 1.0 &&
onnxClient->getInputImageOffset() == 0.0) {
switch (onnxClient->getChannels()) {
case 1:
gst_caps_set_simple (restrictions, "format", G_TYPE_STRING, "GRAY8",
NULL);
break;
case 3:
switch (onnxClient->getInputImageFormat ()) {
case GST_ML_INPUT_IMAGE_FORMAT_HWC:
gst_caps_set_simple (restrictions, "format", G_TYPE_STRING, "RGB",
NULL);
break;
case GST_ML_INPUT_IMAGE_FORMAT_CHW:
gst_caps_set_simple (restrictions, "format", G_TYPE_STRING, "RGBP",
NULL);
break;
}
break;
case 4:
switch (onnxClient->getInputImageFormat ()) {
case GST_ML_INPUT_IMAGE_FORMAT_HWC:
gst_caps_set_simple (restrictions, "format", G_TYPE_STRING, "RGBA",
NULL);
break;
case GST_ML_INPUT_IMAGE_FORMAT_CHW:
gst_caps_set_simple (restrictions, "format", G_TYPE_STRING, "RGBAP",
NULL);
break;
}
break;
default:
GST_ERROR_OBJECT (self, "Invalid number of channels %d",
onnxClient->getChannels());
return NULL;
}
}
GST_DEBUG_OBJECT(self, "Applying caps restrictions: %" GST_PTR_FORMAT,
restrictions);
other_caps = gst_caps_intersect_full (caps, restrictions,
GST_CAPS_INTERSECT_FIRST);
gst_caps_unref (restrictions);
if (filter_caps) {
GstCaps *tmp = gst_caps_intersect_full (
other_caps, filter_caps, GST_CAPS_INTERSECT_FIRST);
gst_caps_replace (&other_caps, tmp);
gst_caps_unref (tmp);
}
return other_caps;
}
static gboolean
gst_onnx_inference_set_caps (GstBaseTransform * trans, GstCaps * incaps,
GstCaps * outcaps)
{
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
if (!gst_video_info_from_caps (&self->video_info, incaps)) {
GST_ERROR_OBJECT (self, "Failed to parse caps");
return FALSE;
}
onnxClient->parseDimensions (self->video_info);
return TRUE;
}
static GstFlowReturn
gst_onnx_inference_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
{
if (!gst_base_transform_is_passthrough (trans)
&& !gst_onnx_inference_process (trans, buf)) {
GST_ELEMENT_ERROR (trans, STREAM, FAILED,
(NULL), ("ONNX inference failed"));
return GST_FLOW_ERROR;
}
return GST_FLOW_OK;
}
static gboolean
gst_onnx_inference_process (GstBaseTransform * trans, GstBuffer * buf)
{
GstMapInfo info;
if (gst_buffer_map (buf, &info, GST_MAP_READ)) {
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
try {
auto client = GST_ONNX_CLIENT_MEMBER (self);
auto outputs = client->run (info.data, self->video_info);
auto meta = client->copy_tensors_to_meta (outputs, buf);
if (!meta)
return FALSE;
GST_TRACE_OBJECT (trans, "Num tensors:%d", meta->num_tensors);
meta->batch_size = 1;
}
catch (Ort::Exception & ortex) {
GST_ERROR_OBJECT (self, "%s", ortex.what ());
gst_buffer_unmap (buf, &info);
return FALSE;
}
gst_buffer_unmap (buf, &info);
}
return TRUE;
}