gstreamer/subprojects/gst-plugins-bad/sys/amfcodec/gstamfh264enc.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2170 lines
71 KiB
C++
Raw Normal View History

/* GStreamer
* Copyright (C) 2022 Seungha Yang <seungha@centricular.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:element-amfh264enc
* @title: amfh264enc
* @short_description: An AMD AMF API based H.264 video encoder
*
* amfh264enc element encodes raw video stream into compressed H.264 bitstream
* via AMD AMF API.
*
* ## Example launch line
* ```
* gst-launch-1.0 videotestsrc num-buffers=100 ! amfh264enc ! h264parse ! mp4mux ! filesink location=encoded.mp4
* ```
*
* Since: 1.22
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstamfh264enc.h"
#include <components/Component.h>
#include <components/VideoEncoderVCE.h>
#include <core/Factory.h>
#include <gst/codecparsers/gsth264parser.h>
#include <gst/pbutils/codec-utils.h>
#include <string>
#include <set>
#include <string.h>
using namespace amf;
GST_DEBUG_CATEGORY_STATIC (gst_amf_h264_enc_debug);
#define GST_CAT_DEFAULT gst_amf_h264_enc_debug
static GTypeClass *parent_class = nullptr;
typedef struct
{
amf_int64 max_bitrate;
amf_int64 num_of_streams;
amf_int64 max_profile;
amf_int64 max_level;
amf_int64 bframes;
amf_int64 min_ref_frames;
amf_int64 max_ref_frames;
amf_int64 max_temporal_layers;
amf_int64 fixed_slice_mode;
amf_int64 num_of_hw_instances;
amf_int64 color_conversion;
amf_int64 pre_analysis;
amf_int64 roi_map;
amf_int64 max_throughput;
amf_int64 query_timeout_support;
amf_int64 default_qp_i;
amf_int64 default_qp_p;
amf_int64 default_qp_b;
gboolean interlace_supported;
guint valign;
gboolean pre_encode_supported;
gboolean smart_access_supported;
gboolean mini_gop_supported;
gboolean b_frames_delta_qp_supported;
GstAmfEncoderPASupportedOptions pa_supported;
} GstAmfH264EncDeviceCaps;
/**
* GstAmfH264EncUsage:
*
* Encoder usages
*
* Since: 1.22
*/
#define GST_TYPE_AMF_H264_ENC_USAGE (gst_amf_h264_enc_usage_get_type ())
static GType
gst_amf_h264_enc_usage_get_type (void)
{
static GType usage_type = 0;
static const GEnumValue usages[] = {
/**
* GstAmfH264EncUsage::transcoding:
*
* Transcoding usage
*/
{AMF_VIDEO_ENCODER_USAGE_TRANSCODING, "Transcoding", "transcoding"},
/**
* GstAmfH264EncUsage::ultra-low-latency:
*
* Ultra Low Latency usage
*/
{AMF_VIDEO_ENCODER_USAGE_ULTRA_LOW_LATENCY, "Ultra Low Latency",
"ultra-low-latency"},
/**
* GstAmfH264EncUsage::low-latency:
*
* Low Latency usage
*/
{AMF_VIDEO_ENCODER_USAGE_LOW_LATENCY, "Low Latency", "low-latency"},
/**
* GstAmfH264EncUsage::webcam:
*
* Webcam usage
*/
{AMF_VIDEO_ENCODER_USAGE_WEBCAM, "Webcam", "webcam"},
{0, nullptr, nullptr}
};
if (g_once_init_enter (&usage_type)) {
GType type = g_enum_register_static ("GstAmfH264EncUsage", usages);
g_once_init_leave (&usage_type, type);
}
return usage_type;
}
/**
* GstAmfH264EncRateControl:
*
* Rate control methods
*
* Since: 1.22
*/
#define GST_TYPE_AMF_H264_ENC_RATE_CONTROL (gst_amf_h264_enc_rate_control_get_type ())
static GType
gst_amf_h264_enc_rate_control_get_type (void)
{
static GType rate_control_type = 0;
static const GEnumValue rate_controls[] = {
/**
* GstAmfH264EncRateControl::default:
*
* Default rate control method depending on usage
*/
{AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN, "Default, depends on Usage",
"default"},
/**
* GstAmfH264EncRateControl::cqp:
*
* Constant QP
*/
{AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CONSTANT_QP, "Constant QP", "cqp"},
/**
* GstAmfH264EncRateControl::cbr:
*
* Constant Bitrate
*/
{AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CBR, "Constant Bitrate", "cbr"},
/**
* GstAmfH264EncRateControl::vbr:
*
* Peak Constrained Variable Bitrate
*/
{AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_PEAK_CONSTRAINED_VBR,
"Peak Constrained VBR", "vbr"},
/**
* GstAmfH264EncRateControl::lcvbr:
*
* Latency Constrained Variable Bitrate
*/
{AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_LATENCY_CONSTRAINED_VBR,
"Latency Constrained VBR", "lcvbr"},
{0, nullptr, nullptr}
};
if (g_once_init_enter (&rate_control_type)) {
GType type =
g_enum_register_static ("GstAmfH264EncRateControl", rate_controls);
g_once_init_leave (&rate_control_type, type);
}
return rate_control_type;
}
/**
* GstAmfH264EncPreset:
*
* Encoding quality presets
*
* Since: 1.22
*/
#define AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN -1
#define GST_TYPE_AMF_H264_ENC_PRESET (gst_amf_h264_enc_preset_get_type ())
static GType
gst_amf_h264_enc_preset_get_type (void)
{
static GType preset_type = 0;
static const GEnumValue presets[] = {
/**
* GstAmfH264EncRateControl::default:
*
* Default preset depends on usage
*/
{AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN, "Default, depends on USAGE",
"default"},
/**
* GstAmfH264EncRateControl::balanced:
*
* Balanced preset
*/
{AMF_VIDEO_ENCODER_QUALITY_PRESET_BALANCED, "Balanced", "balanced"},
/**
* GstAmfH264EncRateControl::speed:
*
* Speed oriented preset
*/
{AMF_VIDEO_ENCODER_QUALITY_PRESET_SPEED, "Speed", "speed"},
/**
* GstAmfH264EncRateControl::quality:
*
* Quality oriented preset
*/
{AMF_VIDEO_ENCODER_QUALITY_PRESET_QUALITY, "Quality", "quality"},
{0, nullptr, nullptr}
};
if (g_once_init_enter (&preset_type)) {
GType type = g_enum_register_static ("GstAmfH264EncPreset", presets);
g_once_init_leave (&preset_type, type);
}
return preset_type;
}
typedef struct
{
GstCaps *sink_caps;
GstCaps *src_caps;
gint64 adapter_luid;
GstAmfH264EncDeviceCaps dev_caps;
} GstAmfH264EncClassData;
enum
{
PROP_0,
PROP_ADAPTER_LUID,
PROP_USAGE,
PROP_RATE_CONTROL,
PROP_PRESET,
PROP_BITRATE,
PROP_MAX_BITRATE,
PROP_GOP_SIZE,
PROP_MIN_QP,
PROP_MAX_QP,
PROP_QP_I,
PROP_QP_P,
PROP_REF_FRAMES,
PROP_AUD,
PROP_CABAC,
PROP_ADAPT_MINI_GOP,
PROP_MAX_B_FRAMES,
PROP_B_FRAMES,
PROP_B_REFERENCE,
PROP_B_FRAMES_DELTA_QP,
PROP_REF_B_FRAMES_DELTA_QP,
PROP_SMART_ACCESS,
PROP_PRE_ENCODE,
PROP_PRE_ANALYSIS,
PROP_PA_ACTIVITY_TYPE,
PROP_PA_SCENE_CHANGE_DETECTION,
PROP_PA_SCENE_CHANGE_DETECTION_SENSITIVITY,
PROP_PA_STATIC_SCENE_DETECTION,
PROP_PA_STATIC_SCENE_DETECTION_SENSITIVITY,
PROP_PA_INITIAL_QP,
PROP_PA_MAX_QP,
PROP_PA_CAQ_STRENGTH,
PROP_PA_FRAME_SAD,
PROP_PA_LTR,
PROP_PA_LOOKAHEAD_BUFFER_DEPTH,
PROP_PA_PAQ_MODE,
PROP_PA_TAQ_MODE,
PROP_PA_HQMB_MODE,
};
#define DEFAULT_USAGE AMF_VIDEO_ENCODER_USAGE_TRANSCODING
#define DEFAULT_RATE_CONTROL AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN
#define DEFAULT_PRESET AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN
#define DEFAULT_BITRATE 0
#define DEFAULT_MAX_BITRATE 0
#define DEFAULT_GOP_SIZE -1
#define DEFAULT_MIN_MAX_QP -1
#define DEFAULT_AUD TRUE
#define DEFAULT_CABAC TRUE
#define DEFAULT_ADAPT_MINI_GOP FALSE
// B-frames settings
#define DEFAULT_MAX_B_FRAMES 0
#define DEFAULT_B_FRAMES 0
#define DEFAULT_B_REFERENCE TRUE
#define DEFAULT_B_FRAMES_DELTA_QP 4
#define DEFAULT_REF_B_FRAMES_DELTA_QP 4
#define DEFAULT_SMART_ACCESS FALSE
#define DEFAULT_PRE_ENCODE FALSE
#define DOC_SINK_CAPS_COMM \
"format = (string) NV12, " \
"width = (int) [ 128, 4096 ], height = (int) [ 128, 4096 ]"
#define DOC_SINK_CAPS \
"video/x-raw(memory:D3D11Memory), " DOC_SINK_CAPS_COMM "; " \
"video/x-raw, " DOC_SINK_CAPS_COMM
#define DOC_SRC_CAPS \
"video/x-h264, width = (int) [ 128, 4096 ], height = (int) [ 128, 4096 ], " \
"profile = (string) { main, high, constrained-baseline, baseline }, " \
"stream-format = (string) { avc, byte-stream }, alignment = (string) au"
typedef struct _GstAmfH264Enc
{
GstAmfEncoder parent;
gboolean packetized;
GstH264NalParser *parser;
GMutex prop_lock;
gboolean property_updated;
gint usage;
gint rate_control;
gint preset;
guint bitrate;
guint max_bitrate;
gint gop_size;
gint min_qp;
gint max_qp;
guint qp_i;
guint qp_p;
guint ref_frames;
gboolean aud;
gboolean cabac;
gboolean adaptive_mini_gop;
guint max_b_frames;
gint b_frames;
gboolean b_reference;
gint b_frames_delta_qp;
gint ref_b_frames_delta_qp;
gboolean smart_access;
gboolean pre_encode;
GstAmfEncoderPreAnalysis pa;
} GstAmfH264Enc;
typedef struct _GstAmfH264EncClass
{
GstAmfEncoderClass parent_class;
GstAmfH264EncDeviceCaps dev_caps;
gint64 adapter_luid;
} GstAmfH264EncClass;
#define GST_AMF_H264_ENC(object) ((GstAmfH264Enc *) (object))
#define GST_AMF_H264_ENC_GET_CLASS(object) \
(G_TYPE_INSTANCE_GET_CLASS ((object),G_TYPE_FROM_INSTANCE (object),GstAmfH264EncClass))
static void gst_amf_h264_enc_finalize (GObject * object);
static void gst_amf_h264_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec);
static void gst_amf_h264_enc_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec);
static GstCaps *gst_amf_h264_enc_getcaps (GstVideoEncoder * encoder,
GstCaps * filter);
static gboolean gst_amf_h264_enc_set_format (GstAmfEncoder * encoder,
GstVideoCodecState * state, gpointer component, guint * num_reorder_frames);
static gboolean gst_amf_h264_enc_set_output_state (GstAmfEncoder * encoder,
GstVideoCodecState * state, gpointer component);
static gboolean gst_amf_h264_enc_set_surface_prop (GstAmfEncoder * encoder,
GstVideoCodecFrame * frame, gpointer surface);
static GstBuffer *gst_amf_h264_enc_create_output_buffer (GstAmfEncoder *
encoder, gpointer data, gboolean * sync_point);
static gboolean gst_amf_h264_enc_check_reconfigure (GstAmfEncoder * encoder);
static void
gst_amf_h264_enc_class_init (GstAmfH264EncClass * klass, gpointer data)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
GstVideoEncoderClass *videoenc_class = GST_VIDEO_ENCODER_CLASS (klass);
GstAmfEncoderClass *amf_class = GST_AMF_ENCODER_CLASS (klass);
GstAmfH264EncClassData *cdata = (GstAmfH264EncClassData *) data;
GstAmfH264EncDeviceCaps *dev_caps = &cdata->dev_caps;
GstAmfEncoderPASupportedOptions *pa_supported = &dev_caps->pa_supported;
GParamFlags param_flags = (GParamFlags) (G_PARAM_READWRITE |
GST_PARAM_MUTABLE_PLAYING | G_PARAM_STATIC_STRINGS);
GParamFlags pa_param_flags = (GParamFlags) (G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS | GST_PARAM_CONDITIONALLY_AVAILABLE);
GstPadTemplate *pad_templ;
GstCaps *doc_caps;
parent_class = (GTypeClass *) g_type_class_peek_parent (klass);
object_class->finalize = gst_amf_h264_enc_finalize;
object_class->set_property = gst_amf_h264_enc_set_property;
object_class->get_property = gst_amf_h264_enc_get_property;
g_object_class_install_property (object_class, PROP_ADAPTER_LUID,
g_param_spec_int64 ("adapter-luid", "Adapter LUID",
"DXGI Adapter LUID (Locally Unique Identifier) of associated GPU",
G_MININT64, G_MAXINT64, 0, (GParamFlags) (GST_PARAM_DOC_SHOW_DEFAULT |
G_PARAM_READABLE | G_PARAM_STATIC_STRINGS)));
g_object_class_install_property (object_class, PROP_USAGE,
g_param_spec_enum ("usage", "Usage",
"Target usage", GST_TYPE_AMF_H264_ENC_USAGE,
DEFAULT_USAGE, param_flags));
g_object_class_install_property (object_class, PROP_RATE_CONTROL,
g_param_spec_enum ("rate-control", "Rate Control",
"Rate Control Method", GST_TYPE_AMF_H264_ENC_RATE_CONTROL,
DEFAULT_RATE_CONTROL, param_flags));
g_object_class_install_property (object_class, PROP_PRESET,
g_param_spec_enum ("preset", "Preset",
"Preset", GST_TYPE_AMF_H264_ENC_PRESET, DEFAULT_PRESET, param_flags));
g_object_class_install_property (object_class, PROP_BITRATE,
g_param_spec_uint ("bitrate", "Bitrate",
"Target bitrate in kbit/sec (0: USAGE default)",
0, G_MAXINT / 1000, DEFAULT_BITRATE, param_flags));
g_object_class_install_property (object_class, PROP_MAX_BITRATE,
g_param_spec_uint ("max-bitrate", "Max Bitrate",
"Maximum bitrate in kbit/sec (0: USAGE default)",
0, G_MAXINT / 1000, DEFAULT_MAX_BITRATE, param_flags));
g_object_class_install_property (object_class, PROP_GOP_SIZE,
g_param_spec_int ("gop-size", "GOP Size",
"Number of pictures within a GOP (-1: USAGE default)",
-1, G_MAXINT, DEFAULT_GOP_SIZE, param_flags));
g_object_class_install_property (object_class, PROP_MIN_QP,
g_param_spec_int ("min-qp", "Min QP",
"Minimum allowed QP value (-1: USAGE default)",
-1, 51, DEFAULT_MIN_MAX_QP, param_flags));
g_object_class_install_property (object_class, PROP_MAX_QP,
g_param_spec_int ("max-qp", "Max QP",
"Maximum allowed QP value (-1: USAGE default)",
-1, 51, DEFAULT_MIN_MAX_QP, param_flags));
g_object_class_install_property (object_class, PROP_QP_I,
g_param_spec_uint ("qp-i", "QP I",
"Constant QP for I frames", 0, 51,
(guint) dev_caps->default_qp_i, param_flags));
g_object_class_install_property (object_class, PROP_QP_P,
g_param_spec_uint ("qp-p", "QP P",
"Constant QP for P frames", 0, 51,
(guint) dev_caps->default_qp_p, param_flags));
g_object_class_install_property (object_class, PROP_REF_FRAMES,
g_param_spec_uint ("ref-frames", "Reference Frames",
"Number of reference frames", (guint) dev_caps->min_ref_frames,
(guint) dev_caps->max_ref_frames,
(guint) dev_caps->min_ref_frames, param_flags));
g_object_class_install_property (object_class, PROP_AUD,
g_param_spec_boolean ("aud", "AUD",
"Use AU (Access Unit) delimiter", DEFAULT_AUD, param_flags));
g_object_class_install_property (object_class, PROP_CABAC,
g_param_spec_boolean ("cabac", "CABAC",
"Enable CABAC entropy coding", TRUE, param_flags));
if (cdata->dev_caps.pre_encode_supported) {
g_object_class_install_property (object_class, PROP_PRE_ENCODE,
g_param_spec_boolean ("pre-encode", "Pre-encode",
"Enable pre-encode", DEFAULT_PRE_ENCODE,
(GParamFlags) (param_flags | GST_PARAM_CONDITIONALLY_AVAILABLE)));
}
if (dev_caps->bframes) {
g_object_class_install_property (object_class, PROP_MAX_B_FRAMES,
g_param_spec_uint ("max-b-frames", "Maximum number of B-frames",
"Maximum number of consecutive B Pictures. "
"Suggestion set to 3 if b-frames is not 0", 0, 3,
DEFAULT_MAX_B_FRAMES, param_flags));
g_object_class_install_property (object_class, PROP_B_FRAMES,
g_param_spec_int ("b-frames", "B-Frames",
"Number of consecutive B-frames in a GOP. "
"If b-frames > max-b-frames, then b-frames set to max-b-frames "
"(-1: USAGE default)", -1, 3, DEFAULT_B_FRAMES, param_flags));
g_object_class_install_property (object_class, PROP_B_REFERENCE,
g_param_spec_boolean ("b-reference", "B-Frames as reference",
"Enables or disables using B-pictures as references",
DEFAULT_B_REFERENCE, param_flags));
if (dev_caps->b_frames_delta_qp_supported) {
g_object_class_install_property (object_class, PROP_B_FRAMES_DELTA_QP,
g_param_spec_int ("b-frames-delta-qp", "B-Frames delta QP",
"Selects the delta QP of non-reference B pictures with respect to I pictures",
-10, 10, DEFAULT_B_FRAMES_DELTA_QP, param_flags));
g_object_class_install_property (object_class, PROP_REF_B_FRAMES_DELTA_QP,
g_param_spec_int ("ref-b-frames-delta-qp",
"Reference B-Frames delta QP",
"Selects delta QP of reference B pictures with respect to I pictures",
-10, 10, DEFAULT_REF_B_FRAMES_DELTA_QP, param_flags));
}
}
if (cdata->dev_caps.smart_access_supported) {
g_object_class_install_property (object_class, PROP_SMART_ACCESS,
g_param_spec_boolean ("smart-access-video", "Smart Access Video",
"Enable AMF SmartAccess Video feature for optimal distribution"
" between multiple AMD hardware instances", DEFAULT_SMART_ACCESS,
(GParamFlags) (G_PARAM_READWRITE |
GST_PARAM_CONDITIONALLY_AVAILABLE |
GST_PARAM_MUTABLE_PLAYING | G_PARAM_STATIC_STRINGS)));
}
if (dev_caps->pre_analysis) {
g_object_class_install_property (object_class, PROP_PRE_ANALYSIS,
g_param_spec_boolean ("pre-analysis", "Pre Analysis",
"Enable pre-analysis", DEFAULT_PRE_ANALYSIS, param_flags));
if (cdata->dev_caps.mini_gop_supported) {
g_object_class_install_property (object_class, PROP_ADAPT_MINI_GOP,
g_param_spec_boolean ("adaptive-mini-gop", "Adaptive MiniGOP",
"Enable Adaptive MiniGOP. Determines the number of B-frames to be "
"inserted between I and P frames, or between two consecutive P-frames",
DEFAULT_ADAPT_MINI_GOP,
(GParamFlags) (param_flags | GST_PARAM_CONDITIONALLY_AVAILABLE)));
}
if (pa_supported->activity_type) {
g_object_class_install_property (object_class, PROP_PA_ACTIVITY_TYPE,
g_param_spec_enum ("pa-activity-type", "Pre-analysis activity type",
"Set the type of activity analysis for pre-analysis",
GST_TYPE_AMF_ENC_PA_ACTIVITY_TYPE, DEFAULT_PA_ACTIVITY_TYPE,
pa_param_flags));
}
if (pa_supported->scene_change_detection) {
g_object_class_install_property (object_class,
PROP_PA_SCENE_CHANGE_DETECTION,
g_param_spec_boolean ("pa-scene-change-detection",
"Pre-analysis scene change detection",
"Enable scene change detection for pre-analysis",
DEFAULT_PA_SCENE_CHANGE_DETECTION, pa_param_flags));
}
if (pa_supported->scene_change_detection_sensitivity) {
g_object_class_install_property (object_class,
PROP_PA_SCENE_CHANGE_DETECTION_SENSITIVITY,
g_param_spec_enum ("pa-scene-change-detection-sensitivity",
"Pre-analysis scene change detection sensitivity",
"Set the sensitivity of scene change detection for pre-analysis",
GST_TYPE_AMF_ENC_PA_SCENE_CHANGE_DETECTION_SENSITIVITY,
DEFAULT_PA_SCENE_CHANGE_DETECTION_SENSITIVITY, pa_param_flags));
}
if (pa_supported->static_scene_detection) {
g_object_class_install_property (object_class,
PROP_PA_STATIC_SCENE_DETECTION,
g_param_spec_boolean ("pa-static-scene-detection",
"Pre-analysis static scene detection",
"Enable static scene detection for pre-analysis",
DEFAULT_PA_STATIC_SCENE_DETECTION, pa_param_flags));
}
if (pa_supported->static_scene_detection_sensitivity) {
g_object_class_install_property (object_class,
PROP_PA_STATIC_SCENE_DETECTION_SENSITIVITY,
g_param_spec_enum ("pa-static-scene-detection-sensitivity",
"Pre-analysis static scene detection sensitivity",
"Set the sensitivity of static scene detection for pre-analysis",
GST_TYPE_AMF_ENC_PA_STATIC_SCENE_DETECTION_SENSITIVITY,
DEFAULT_PA_STATIC_SCENE_DETECTION_SENSITIVITY, pa_param_flags));
}
if (pa_supported->initial_qp) {
g_object_class_install_property (object_class, PROP_PA_INITIAL_QP,
g_param_spec_uint ("pa-initial-qp", "Pre-analysis initial QP",
"The QP value that is used immediately after a scene change", 0,
51, DEFAULT_PA_INITIAL_QP, pa_param_flags));
}
if (pa_supported->max_qp) {
g_object_class_install_property (object_class, PROP_PA_MAX_QP,
g_param_spec_uint ("pa-max-qp", "Pre-analysis max QP",
"The QP threshold to allow a skip frame", 0, 51,
DEFAULT_PA_MAX_QP, pa_param_flags));
}
if (pa_supported->caq_strength) {
g_object_class_install_property (object_class, PROP_PA_CAQ_STRENGTH,
g_param_spec_enum ("pa-caq-strength", "Pre-analysis CAQ strength",
"Content Adaptive Quantization strength for pre-analysis",
GST_TYPE_AMF_ENC_PA_CAQ_STRENGTH, DEFAULT_PA_CAQ_STRENGTH,
pa_param_flags));
}
if (pa_supported->frame_sad) {
g_object_class_install_property (object_class, PROP_PA_FRAME_SAD,
g_param_spec_boolean ("pa-frame-sad", "Pre-analysis SAD algorithm",
"Enable Frame SAD algorithm", DEFAULT_PA_FRAME_SAD,
pa_param_flags));
}
if (pa_supported->ltr) {
g_object_class_install_property (object_class, PROP_PA_LTR,
g_param_spec_boolean ("pa-ltr", "Pre-analysis LTR",
"Enable long term reference frame management", DEFAULT_PA_LTR,
pa_param_flags));
}
if (pa_supported->lookahead_buffer_depth) {
g_object_class_install_property (object_class,
PROP_PA_LOOKAHEAD_BUFFER_DEPTH,
g_param_spec_uint ("pa-lookahead-buffer-depth",
"Pre-analysis lookahead buffer depth",
"Set the PA lookahead buffer size", 0, 41,
DEFAULT_PA_LOOKAHEAD_BUFFER_DEPTH, pa_param_flags));
}
if (pa_supported->paq_mode) {
g_object_class_install_property (object_class, PROP_PA_PAQ_MODE,
g_param_spec_enum ("pa-paq-mode", "Pre-analysis PAQ mode",
"Set the perceptual adaptive quantization mode",
GST_TYPE_AMF_ENC_PA_PAQ_MODE, DEFAULT_PA_PAQ_MODE,
pa_param_flags));
}
if (pa_supported->taq_mode) {
g_object_class_install_property (object_class, PROP_PA_TAQ_MODE,
g_param_spec_enum ("pa-taq-mode", "Pre-analysis TAQ mode",
"Set the temporal adaptive quantization mode",
GST_TYPE_AMF_ENC_PA_TAQ_MODE, DEFAULT_PA_TAQ_MODE,
pa_param_flags));
}
if (pa_supported->hmqb_mode) {
g_object_class_install_property (object_class, PROP_PA_HQMB_MODE,
g_param_spec_enum ("pa-hqmb-mode", "Pre-analysis HQMB mode",
"Set the PA high motion quality boost mode",
GST_TYPE_AMF_ENC_PA_HQMB_MODE, DEFAULT_PA_HQMB_MODE,
pa_param_flags));
}
}
gst_element_class_set_metadata (element_class,
"AMD AMF H.264 Video Encoder",
"Codec/Encoder/Video/Hardware",
"Encode H.264 video streams using AMF API",
"Seungha Yang <seungha@centricular.com>");
pad_templ = gst_pad_template_new ("sink",
GST_PAD_SINK, GST_PAD_ALWAYS, cdata->sink_caps);
doc_caps = gst_caps_from_string (DOC_SINK_CAPS);
gst_pad_template_set_documentation_caps (pad_templ, doc_caps);
gst_caps_unref (doc_caps);
gst_element_class_add_pad_template (element_class, pad_templ);
pad_templ = gst_pad_template_new ("src",
GST_PAD_SRC, GST_PAD_ALWAYS, cdata->src_caps);
doc_caps = gst_caps_from_string (DOC_SRC_CAPS);
gst_pad_template_set_documentation_caps (pad_templ, doc_caps);
gst_caps_unref (doc_caps);
gst_element_class_add_pad_template (element_class, pad_templ);
videoenc_class->getcaps = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_getcaps);
amf_class->set_format = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_format);
amf_class->set_output_state =
GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_output_state);
amf_class->set_surface_prop =
GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_surface_prop);
amf_class->create_output_buffer =
GST_DEBUG_FUNCPTR (gst_amf_h264_enc_create_output_buffer);
amf_class->check_reconfigure =
GST_DEBUG_FUNCPTR (gst_amf_h264_enc_check_reconfigure);
klass->dev_caps = cdata->dev_caps;
klass->adapter_luid = cdata->adapter_luid;
gst_caps_unref (cdata->sink_caps);
gst_caps_unref (cdata->src_caps);
g_free (cdata);
gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_USAGE,
(GstPluginAPIFlags) 0);
gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_RATE_CONTROL,
(GstPluginAPIFlags) 0);
gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_PRESET,
(GstPluginAPIFlags) 0);
}
static void
gst_amf_h264_enc_init (GstAmfH264Enc * self)
{
GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self);
GstAmfH264EncDeviceCaps *dev_caps = &klass->dev_caps;
gst_amf_encoder_set_subclass_data (GST_AMF_ENCODER (self),
klass->adapter_luid, AMFVideoEncoderVCE_AVC);
self->parser = gst_h264_nal_parser_new ();
g_mutex_init (&self->prop_lock);
self->usage = DEFAULT_USAGE;
self->rate_control = DEFAULT_RATE_CONTROL;
self->preset = DEFAULT_PRESET;
self->bitrate = DEFAULT_BITRATE;
self->max_bitrate = DEFAULT_MAX_BITRATE;
self->gop_size = DEFAULT_GOP_SIZE;
self->min_qp = DEFAULT_MIN_MAX_QP;
self->max_qp = DEFAULT_MIN_MAX_QP;
self->qp_i = (guint) dev_caps->default_qp_i;
self->qp_p = (guint) dev_caps->default_qp_p;
self->ref_frames = (guint) dev_caps->min_ref_frames;
self->aud = DEFAULT_AUD;
self->cabac = DEFAULT_CABAC;
self->adaptive_mini_gop = DEFAULT_ADAPT_MINI_GOP;
self->smart_access = DEFAULT_SMART_ACCESS;
self->pre_encode = DEFAULT_PRE_ENCODE;
// b-frames settings
self->max_b_frames = DEFAULT_MAX_B_FRAMES;
self->b_frames = DEFAULT_B_FRAMES;
self->b_reference = DEFAULT_B_REFERENCE;
self->b_frames_delta_qp = DEFAULT_B_FRAMES_DELTA_QP;
self->ref_b_frames_delta_qp = DEFAULT_REF_B_FRAMES_DELTA_QP;
// Init pre-analysis options
self->pa.pre_analysis = DEFAULT_PRE_ANALYSIS;
self->pa.activity_type = DEFAULT_PA_ACTIVITY_TYPE;
self->pa.scene_change_detection = DEFAULT_PA_SCENE_CHANGE_DETECTION;
self->pa.scene_change_detection_sensitivity =
DEFAULT_PA_SCENE_CHANGE_DETECTION_SENSITIVITY;
self->pa.static_scene_detection = DEFAULT_PA_STATIC_SCENE_DETECTION;
self->pa.static_scene_detection_sensitivity =
DEFAULT_PA_STATIC_SCENE_DETECTION_SENSITIVITY;
self->pa.initial_qp = DEFAULT_PA_INITIAL_QP;
self->pa.max_qp = DEFAULT_PA_MAX_QP;
self->pa.caq_strength = DEFAULT_PA_CAQ_STRENGTH;
self->pa.frame_sad = DEFAULT_PA_FRAME_SAD;
self->pa.ltr = DEFAULT_PA_LTR;
self->pa.lookahead_buffer_depth = DEFAULT_PA_LOOKAHEAD_BUFFER_DEPTH;
self->pa.paq_mode = DEFAULT_PA_PAQ_MODE;
self->pa.taq_mode = DEFAULT_PA_TAQ_MODE;
self->pa.hmqb_mode = DEFAULT_PA_HQMB_MODE;
}
static void
gst_amf_h264_enc_finalize (GObject * object)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (object);
gst_h264_nal_parser_free (self->parser);
g_mutex_clear (&self->prop_lock);
G_OBJECT_CLASS (parent_class)->finalize (object);
}
static void
update_int (GstAmfH264Enc * self, gint * old_val, const GValue * new_val)
{
gint val = g_value_get_int (new_val);
if (*old_val == val)
return;
*old_val = val;
self->property_updated = TRUE;
}
static void
update_uint (GstAmfH264Enc * self, guint * old_val, const GValue * new_val)
{
guint val = g_value_get_uint (new_val);
if (*old_val == val)
return;
*old_val = val;
self->property_updated = TRUE;
}
static void
update_enum (GstAmfH264Enc * self, gint * old_val, const GValue * new_val)
{
gint val = g_value_get_enum (new_val);
if (*old_val == val)
return;
*old_val = val;
self->property_updated = TRUE;
}
static void
update_bool (GstAmfH264Enc * self, gboolean * old_val, const GValue * new_val)
{
gboolean val = g_value_get_boolean (new_val);
if (*old_val == val)
return;
*old_val = val;
self->property_updated = TRUE;
}
static void
gst_amf_h264_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (object);
g_mutex_lock (&self->prop_lock);
switch (prop_id) {
case PROP_USAGE:
update_enum (self, &self->usage, value);
break;
case PROP_RATE_CONTROL:
update_enum (self, &self->rate_control, value);
break;
case PROP_PRESET:
update_enum (self, &self->preset, value);
break;
case PROP_BITRATE:
update_uint (self, &self->bitrate, value);
break;
case PROP_MAX_BITRATE:
update_uint (self, &self->max_bitrate, value);
break;
case PROP_GOP_SIZE:
update_int (self, &self->gop_size, value);
break;
case PROP_MIN_QP:
update_int (self, &self->min_qp, value);
break;
case PROP_MAX_QP:
update_int (self, &self->max_qp, value);
break;
case PROP_QP_I:
update_uint (self, &self->qp_i, value);
break;
case PROP_QP_P:
update_uint (self, &self->qp_p, value);
break;
case PROP_REF_FRAMES:
update_uint (self, &self->ref_frames, value);
break;
case PROP_AUD:
/* This is per frame property, don't need to reset encoder */
self->aud = g_value_get_boolean (value);
break;
case PROP_CABAC:
update_bool (self, &self->cabac, value);
break;
case PROP_ADAPT_MINI_GOP:
update_bool (self, &self->adaptive_mini_gop, value);
break;
case PROP_MAX_B_FRAMES:
update_uint (self, &self->max_b_frames, value);
break;
case PROP_B_FRAMES:
update_int (self, &self->b_frames, value);
break;
case PROP_B_REFERENCE:
update_bool (self, &self->b_reference, value);
break;
case PROP_B_FRAMES_DELTA_QP:
update_int (self, &self->b_frames_delta_qp, value);
break;
case PROP_REF_B_FRAMES_DELTA_QP:
update_int (self, &self->ref_b_frames_delta_qp, value);
break;
case PROP_SMART_ACCESS:
update_bool (self, &self->smart_access, value);
break;
case PROP_PRE_ENCODE:
update_bool (self, &self->pre_encode, value);
break;
case PROP_PRE_ANALYSIS:
update_bool (self, &self->pa.pre_analysis, value);
break;
case PROP_PA_ACTIVITY_TYPE:
update_enum (self, &self->pa.activity_type, value);
break;
case PROP_PA_SCENE_CHANGE_DETECTION:
update_bool (self, &self->pa.scene_change_detection, value);
break;
case PROP_PA_SCENE_CHANGE_DETECTION_SENSITIVITY:
update_enum (self, &self->pa.scene_change_detection_sensitivity, value);
break;
case PROP_PA_STATIC_SCENE_DETECTION:
update_bool (self, &self->pa.static_scene_detection, value);
break;
case PROP_PA_STATIC_SCENE_DETECTION_SENSITIVITY:
update_enum (self, &self->pa.static_scene_detection_sensitivity, value);
break;
case PROP_PA_INITIAL_QP:
update_uint (self, &self->pa.initial_qp, value);
break;
case PROP_PA_MAX_QP:
update_uint (self, &self->pa.max_qp, value);
break;
case PROP_PA_CAQ_STRENGTH:
update_enum (self, &self->pa.caq_strength, value);
break;
case PROP_PA_FRAME_SAD:
update_bool (self, &self->pa.frame_sad, value);
case PROP_PA_LTR:
update_bool (self, &self->pa.ltr, value);
break;
case PROP_PA_LOOKAHEAD_BUFFER_DEPTH:
update_uint (self, &self->pa.lookahead_buffer_depth, value);
break;
case PROP_PA_PAQ_MODE:
update_enum (self, &self->pa.paq_mode, value);
break;
case PROP_PA_TAQ_MODE:
update_enum (self, &self->pa.taq_mode, value);
break;
case PROP_PA_HQMB_MODE:
update_enum (self, &self->pa.hmqb_mode, value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
g_mutex_unlock (&self->prop_lock);
}
static void
gst_amf_h264_enc_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec)
{
GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (object);
GstAmfH264Enc *self = GST_AMF_H264_ENC (object);
switch (prop_id) {
case PROP_ADAPTER_LUID:
g_value_set_int64 (value, klass->adapter_luid);
break;
case PROP_USAGE:
g_value_set_enum (value, self->usage);
break;
case PROP_RATE_CONTROL:
g_value_set_enum (value, self->rate_control);
break;
case PROP_PRESET:
g_value_set_enum (value, self->preset);
break;
case PROP_BITRATE:
g_value_set_uint (value, self->bitrate);
break;
case PROP_MAX_BITRATE:
g_value_set_uint (value, self->max_bitrate);
break;
case PROP_GOP_SIZE:
g_value_set_int (value, self->gop_size);
break;
case PROP_MIN_QP:
g_value_set_int (value, self->min_qp);
break;
case PROP_MAX_QP:
g_value_set_int (value, self->max_qp);
break;
case PROP_QP_I:
g_value_set_uint (value, self->qp_i);
break;
case PROP_QP_P:
g_value_set_uint (value, self->qp_p);
break;
case PROP_REF_FRAMES:
g_value_set_uint (value, self->ref_frames);
break;
case PROP_AUD:
g_value_set_boolean (value, self->aud);
break;
case PROP_CABAC:
g_value_set_boolean (value, self->cabac);
break;
case PROP_ADAPT_MINI_GOP:
g_value_set_boolean (value, self->adaptive_mini_gop);
break;
case PROP_MAX_B_FRAMES:
g_value_set_uint (value, self->max_b_frames);
break;
case PROP_B_FRAMES:
g_value_set_int (value, self->b_frames);
break;
case PROP_B_REFERENCE:
g_value_set_boolean (value, self->b_reference);
break;
case PROP_B_FRAMES_DELTA_QP:
g_value_set_int (value, self->b_frames_delta_qp);
break;
case PROP_REF_B_FRAMES_DELTA_QP:
g_value_set_int (value, self->ref_b_frames_delta_qp);
break;
case PROP_SMART_ACCESS:
g_value_set_boolean (value, self->smart_access);
break;
case PROP_PRE_ENCODE:
g_value_set_boolean (value, self->pre_encode);
break;
case PROP_PRE_ANALYSIS:
g_value_set_boolean (value, self->pa.pre_analysis);
break;
case PROP_PA_ACTIVITY_TYPE:
g_value_set_enum (value, self->pa.activity_type);
break;
case PROP_PA_SCENE_CHANGE_DETECTION:
g_value_set_boolean (value, self->pa.scene_change_detection);
break;
case PROP_PA_SCENE_CHANGE_DETECTION_SENSITIVITY:
g_value_set_enum (value, self->pa.scene_change_detection_sensitivity);
break;
case PROP_PA_STATIC_SCENE_DETECTION:
g_value_set_boolean (value, self->pa.static_scene_detection);
break;
case PROP_PA_STATIC_SCENE_DETECTION_SENSITIVITY:
g_value_set_enum (value, self->pa.static_scene_detection_sensitivity);
break;
case PROP_PA_INITIAL_QP:
g_value_set_uint (value, self->pa.initial_qp);
break;
case PROP_PA_MAX_QP:
g_value_set_uint (value, self->pa.max_qp);
break;
case PROP_PA_CAQ_STRENGTH:
g_value_set_enum (value, self->pa.caq_strength);
break;
case PROP_PA_FRAME_SAD:
g_value_set_boolean (value, self->pa.frame_sad);
break;
case PROP_PA_LTR:
g_value_set_boolean (value, self->pa.ltr);
break;
case PROP_PA_LOOKAHEAD_BUFFER_DEPTH:
g_value_set_uint (value, self->pa.lookahead_buffer_depth);
break;
case PROP_PA_PAQ_MODE:
g_value_set_enum (value, self->pa.paq_mode);
break;
case PROP_PA_TAQ_MODE:
g_value_set_enum (value, self->pa.taq_mode);
break;
case PROP_PA_HQMB_MODE:
g_value_set_enum (value, self->pa.hmqb_mode);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_amf_h264_enc_get_downstream_profiles_and_format (GstAmfH264Enc * self,
std::set < std::string > &downstream_profiles, gboolean * packetized)
{
GstCaps *allowed_caps;
GstStructure *s;
const gchar *stream_format;
allowed_caps = gst_pad_get_allowed_caps (GST_VIDEO_ENCODER_SRC_PAD (self));
if (!allowed_caps || gst_caps_is_empty (allowed_caps) ||
gst_caps_is_any (allowed_caps)) {
gst_clear_caps (&allowed_caps);
return;
}
for (guint i = 0; i < gst_caps_get_size (allowed_caps); i++) {
const GValue *profile_value;
const gchar *profile;
s = gst_caps_get_structure (allowed_caps, i);
profile_value = gst_structure_get_value (s, "profile");
if (!profile_value)
continue;
if (GST_VALUE_HOLDS_LIST (profile_value)) {
for (guint j = 0; j < gst_value_list_get_size (profile_value); j++) {
const GValue *p = gst_value_list_get_value (profile_value, j);
if (!G_VALUE_HOLDS_STRING (p))
continue;
profile = g_value_get_string (p);
if (profile)
downstream_profiles.insert (profile);
}
} else if (G_VALUE_HOLDS_STRING (profile_value)) {
profile = g_value_get_string (profile_value);
if (profile)
downstream_profiles.insert (profile);
}
}
if (packetized) {
*packetized = FALSE;
allowed_caps = gst_caps_fixate (allowed_caps);
s = gst_caps_get_structure (allowed_caps, 0);
stream_format = gst_structure_get_string (s, "stream-format");
if (g_strcmp0 (stream_format, "avc") == 0)
*packetized = TRUE;
}
gst_caps_unref (allowed_caps);
}
static GstCaps *
gst_amf_h264_enc_getcaps (GstVideoEncoder * encoder, GstCaps * filter)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self);
GstCaps *template_caps;
GstCaps *supported_caps;
std::set < std::string > downstream_profiles;
if (!klass->dev_caps.interlace_supported)
return gst_video_encoder_proxy_getcaps (encoder, nullptr, filter);
gst_amf_h264_enc_get_downstream_profiles_and_format (self,
downstream_profiles, nullptr);
GST_DEBUG_OBJECT (self, "Downstream specified %" G_GSIZE_FORMAT " profiles",
downstream_profiles.size ());
if (downstream_profiles.size () == 0)
return gst_video_encoder_proxy_getcaps (encoder, NULL, filter);
/* Profile allows interlaced? */
/* *INDENT-OFF* */
gboolean can_support_interlaced = FALSE;
for (const auto &iter: downstream_profiles) {
if (iter == "high" || iter == "main" || iter == "constrained-high") {
can_support_interlaced = TRUE;
break;
}
}
/* *INDENT-ON* */
GST_DEBUG_OBJECT (self, "Downstream %s support interlaced format",
can_support_interlaced ? "can" : "cannot");
if (can_support_interlaced) {
/* No special handling is needed */
return gst_video_encoder_proxy_getcaps (encoder, nullptr, filter);
}
template_caps = gst_pad_get_pad_template_caps (encoder->sinkpad);
template_caps = gst_caps_make_writable (template_caps);
gst_caps_set_simple (template_caps, "interlace-mode", G_TYPE_STRING,
"progressive", nullptr);
supported_caps = gst_video_encoder_proxy_getcaps (encoder,
template_caps, filter);
gst_caps_unref (template_caps);
GST_DEBUG_OBJECT (self, "Returning %" GST_PTR_FORMAT, supported_caps);
return supported_caps;
}
static gboolean
gst_amf_h264_enc_set_format (GstAmfEncoder * encoder,
GstVideoCodecState * state, gpointer component, guint * num_reorder_frames)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self);
GstAmfH264EncDeviceCaps *dev_caps = &klass->dev_caps;
AMFComponent *comp = (AMFComponent *) component;
GstVideoInfo *info = &state->info;
std::set < std::string > downstream_profiles;
AMF_VIDEO_ENCODER_PROFILE_ENUM profile = AMF_VIDEO_ENCODER_PROFILE_UNKNOWN;
AMF_RESULT result;
AMFRate framerate;
AMFRatio aspect_ratio;
amf_int64 int64_val;
amf_bool boolean_val;
AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_ENUM rc_mode;
AMF_VIDEO_ENCODER_CODING_ENUM cabac = AMF_VIDEO_ENCODER_UNDEFINED;
self->packetized = FALSE;
gst_amf_h264_enc_get_downstream_profiles_and_format (self,
downstream_profiles, &self->packetized);
if (downstream_profiles.empty ()) {
GST_ERROR_OBJECT (self, "Unable to get downstream profile");
return FALSE;
}
if (GST_VIDEO_INFO_IS_INTERLACED (info)) {
downstream_profiles.erase ("constrained-high");
downstream_profiles.erase ("constrained-baseline");
downstream_profiles.erase ("baseline");
if (downstream_profiles.empty ()) {
GST_ERROR_OBJECT (self,
"None of downstream profile supports interlaced encoding");
return FALSE;
}
}
if (downstream_profiles.find ("main") != downstream_profiles.end ()) {
profile = AMF_VIDEO_ENCODER_PROFILE_MAIN;
} else if (downstream_profiles.find ("high") != downstream_profiles.end ()) {
profile = AMF_VIDEO_ENCODER_PROFILE_HIGH;
} else if (downstream_profiles.find ("constrained-high") !=
downstream_profiles.end ()) {
if (dev_caps->max_profile >=
(gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH) {
profile = AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH;
} else {
profile = AMF_VIDEO_ENCODER_PROFILE_HIGH;
}
} else if (downstream_profiles.find ("constrained-baseline") !=
downstream_profiles.end ()) {
if (dev_caps->max_profile >=
(gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE) {
profile = AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE;
} else {
profile = AMF_VIDEO_ENCODER_PROFILE_BASELINE;
}
} else if (downstream_profiles.find ("baseline") !=
downstream_profiles.end ()) {
profile = AMF_VIDEO_ENCODER_PROFILE_BASELINE;
} else {
GST_ERROR_OBJECT (self, "Failed to determine profile");
return FALSE;
}
g_mutex_lock (&self->prop_lock);
/* Configure static properties first before Init() */
result = comp->SetProperty (AMF_VIDEO_ENCODER_FRAMESIZE,
AMFConstructSize (info->width, info->height));
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set frame size, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_USAGE, (amf_int64) self->usage);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set usage, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (self->preset > AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_QUALITY_PRESET,
(amf_int64) self->preset);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set quality preset, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_PROFILE, (amf_int64) profile);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set profile, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_MAX_NUM_REFRAMES,
(amf_int64) self->ref_frames);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set ref-frames, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
aspect_ratio = AMFConstructRatio (info->par_n, info->par_d);
result = comp->SetProperty (AMF_VIDEO_ENCODER_ASPECT_RATIO, aspect_ratio);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set aspect ratio, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (info->colorimetry.range == GST_VIDEO_COLOR_RANGE_0_255)
boolean_val = true;
else
boolean_val = false;
result = comp->SetProperty (AMF_VIDEO_ENCODER_FULL_RANGE_COLOR, boolean_val);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set full-range-color, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (self->rate_control != AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD,
(amf_int64) self->rate_control);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set rate-control, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
if (dev_caps->bframes && (profile == AMF_VIDEO_ENCODER_PROFILE_MAIN ||
profile == AMF_VIDEO_ENCODER_PROFILE_HIGH)) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_MAX_CONSECUTIVE_BPICTURES,
(amf_int64) self->max_b_frames);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self,
"Failed to set maximum number of consecutive B Pictures, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (self->max_b_frames > 0) {
gint b_frames = self->b_frames;
if (b_frames != -1 && (guint) b_frames > self->max_b_frames) {
GST_WARNING_OBJECT (self,
"Limited b-frames option to max-b-frames value");
b_frames = self->max_b_frames;
}
if (b_frames != -1) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_B_PIC_PATTERN,
(amf_int64) b_frames);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set B-picture pattern, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_B_REFERENCE_ENABLE,
(amf_bool) self->b_reference);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self,
"Failed to set using B-frames as reference, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (dev_caps->b_frames_delta_qp_supported) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_B_PIC_DELTA_QP,
(amf_int64) self->b_frames_delta_qp);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set B-frames delta QP, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_REF_B_PIC_DELTA_QP,
(amf_int64) self->ref_b_frames_delta_qp);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self,
"Failed to set reference B-frames delta QP, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
}
}
if (dev_caps->smart_access_supported) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_ENABLE_SMART_ACCESS_VIDEO,
(amf_bool) self->smart_access);
if (result != AMF_OK) {
GST_WARNING_OBJECT (self, "Failed to set smart access video, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
}
}
if (dev_caps->pre_encode_supported) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_PREENCODE_ENABLE,
(amf_bool) self->pre_encode);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set pre-encode, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
if (dev_caps->pre_analysis) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_PRE_ANALYSIS_ENABLE,
(amf_bool) self->pa.pre_analysis);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set pre-analysis, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (dev_caps->mini_gop_supported) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_ADAPTIVE_MINIGOP,
(amf_int64) self->adaptive_mini_gop);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set adaptive mini GOP, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
if (self->pa.pre_analysis) {
result =
gst_amf_encoder_set_pre_analysis_options (encoder, comp, &self->pa,
&dev_caps->pa_supported);
if (result != AMF_OK)
goto error;
}
}
result = comp->Init (AMF_SURFACE_NV12, info->width, info->height);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to init component, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
/* dynamic properties */
result = comp->GetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD,
&int64_val);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to get rate-control method, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
rc_mode = (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_ENUM) int64_val;
if (self->min_qp >= 0)
comp->SetProperty (AMF_VIDEO_ENCODER_MIN_QP, (amf_int64) self->min_qp);
if (self->max_qp >= 0)
comp->SetProperty (AMF_VIDEO_ENCODER_MAX_QP, (amf_int64) self->max_qp);
comp->SetProperty (AMF_VIDEO_ENCODER_QP_I, (amf_int64) self->qp_i);
comp->SetProperty (AMF_VIDEO_ENCODER_QP_P, (amf_int64) self->qp_p);
switch (rc_mode) {
case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CBR:
if (self->bitrate > 0) {
comp->SetProperty (AMF_VIDEO_ENCODER_TARGET_BITRATE,
(amf_int64) self->bitrate * 1000);
comp->SetProperty (AMF_VIDEO_ENCODER_PEAK_BITRATE,
(amf_int64) self->bitrate * 1000);
}
break;
case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_PEAK_CONSTRAINED_VBR:
case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_LATENCY_CONSTRAINED_VBR:
if (self->bitrate > 0) {
comp->SetProperty (AMF_VIDEO_ENCODER_TARGET_BITRATE,
(amf_int64) self->bitrate * 1000);
}
if (self->max_bitrate > 0) {
comp->SetProperty (AMF_VIDEO_ENCODER_PEAK_BITRATE,
(amf_int64) self->max_bitrate * 1000);
}
break;
default:
break;
}
/* Disable frame skip for now, need investigation the behavior */
result = comp->SetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_SKIP_FRAME_ENABLE,
(amf_bool) false);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to disable skip frame, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (info->fps_n > 0 && info->fps_d) {
framerate = AMFConstructRate (info->fps_n, info->fps_d);
} else {
framerate = AMFConstructRate (25, 1);
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_FRAMERATE, framerate);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set frame rate, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (self->gop_size >= 0) {
result = comp->SetProperty (AMF_VIDEO_ENCODER_IDR_PERIOD,
(amf_int64) self->gop_size);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set IDR period, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
}
if (profile != AMF_VIDEO_ENCODER_PROFILE_BASELINE &&
profile != AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE) {
if (self->cabac)
cabac = AMF_VIDEO_ENCODER_CABAC;
else
cabac = AMF_VIDEO_ENCODER_CALV;
}
result = comp->SetProperty (AMF_VIDEO_ENCODER_CABAC_ENABLE,
(amf_int64) cabac);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to set cabac, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (dev_caps->bframes && (profile == AMF_VIDEO_ENCODER_PROFILE_MAIN ||
profile == AMF_VIDEO_ENCODER_PROFILE_HIGH)) {
int64_val = 0;
result = comp->GetProperty (AMF_VIDEO_ENCODER_B_PIC_PATTERN, &int64_val);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Couldn't get b-frame setting, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
goto error;
}
if (int64_val > 0) {
*num_reorder_frames = (guint) int64_val;
}
}
self->property_updated = FALSE;
g_mutex_unlock (&self->prop_lock);
return TRUE;
error:
g_mutex_unlock (&self->prop_lock);
return FALSE;
}
static gboolean
gst_amf_h264_enc_set_output_state (GstAmfEncoder * encoder,
GstVideoCodecState * state, gpointer component)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
AMFComponent *comp = (AMFComponent *) component;
GstVideoCodecState *output_state;
GstCaps *caps;
const gchar *profile_from_sps;
std::set < std::string > downstream_profiles;
std::string caps_str;
GstTagList *tags;
GstBuffer *codec_data = nullptr;
GstH264NalUnit sps_nalu, pps_nalu;
GstH264ParserResult rst;
AMF_RESULT result;
AMFInterfacePtr iface;
AMFBufferPtr spspps_buf;
guint8 *spspps;
amf_size spspps_size;
result = comp->GetProperty (AMF_VIDEO_ENCODER_EXTRADATA, &iface);
if (result != AMF_OK) {
GST_ERROR_OBJECT (self, "Failed to get extra data, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
return FALSE;
}
spspps_buf = AMFBufferPtr (iface);
if (!spspps_buf) {
GST_ERROR_OBJECT (self, "Failed to set get AMFBuffer interface, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
return FALSE;
}
spspps_size = spspps_buf->GetSize ();
if (spspps_size < 4) {
GST_ERROR_OBJECT (self, "Too small spspps size %d", (guint) spspps_size);
return FALSE;
}
spspps = (guint8 *) spspps_buf->GetNative ();
if (!spspps) {
GST_ERROR_OBJECT (self, "Null SPS/PPS");
return FALSE;
}
caps_str = "video/x-h264, alignment = (string) au";
gst_amf_h264_enc_get_downstream_profiles_and_format (self,
downstream_profiles, nullptr);
rst = gst_h264_parser_identify_nalu (self->parser,
spspps, 0, spspps_size, &sps_nalu);
if (rst != GST_H264_PARSER_OK) {
GST_ERROR_OBJECT (self, "Failed to identify SPS nal");
return FALSE;
}
if (sps_nalu.size < 4) {
GST_ERROR_OBJECT (self, "Too small sps nal size %d", sps_nalu.size);
return FALSE;
}
rst = gst_h264_parser_identify_nalu_unchecked (self->parser,
spspps, sps_nalu.offset + sps_nalu.size, spspps_size, &pps_nalu);
if (rst != GST_H264_PARSER_OK && self->packetized) {
GST_ERROR_OBJECT (self, "Failed to identify PPS nal, %d", rst);
return FALSE;
}
if (self->packetized) {
GstMapInfo info;
guint8 *data;
guint8 profile_idc, profile_comp, level_idc;
const guint nal_length_size = 4;
const guint num_sps = 1;
const guint num_pps = 1;
data = sps_nalu.data + sps_nalu.offset + sps_nalu.header_bytes;
profile_idc = data[0];
profile_comp = data[1];
level_idc = data[2];
/* 5: configuration version, profile, compatibility, level, nal length
* 1: num sps
* 2: sps size bytes
* sizeof (sps)
* 1: num pps
* 2: pps size bytes
* sizeof (pps)
*
* -> 11 + sps_size + pps_size
*/
codec_data = gst_buffer_new_and_alloc (11 + sps_nalu.size + pps_nalu.size);
gst_buffer_map (codec_data, &info, GST_MAP_WRITE);
data = (guint8 *) info.data;
data[0] = 1;
data[1] = profile_idc;
data[2] = profile_comp;
data[3] = level_idc;
data[4] = 0xfc | (nal_length_size - 1);
data[5] = 0xe0 | num_sps;
data += 6;
GST_WRITE_UINT16_BE (data, sps_nalu.size);
data += 2;
memcpy (data, sps_nalu.data + sps_nalu.offset, sps_nalu.size);
data += sps_nalu.size;
data[0] = num_pps;
data++;
GST_WRITE_UINT16_BE (data, pps_nalu.size);
data += 2;
memcpy (data, pps_nalu.data + pps_nalu.offset, pps_nalu.size);
gst_buffer_unmap (codec_data, &info);
}
profile_from_sps =
gst_codec_utils_h264_get_profile (sps_nalu.data + sps_nalu.offset +
sps_nalu.header_bytes, 3);
if (!profile_from_sps) {
GST_WARNING_OBJECT (self, "Failed to parse profile from SPS");
} else if (!downstream_profiles.empty ()) {
if (downstream_profiles.find (profile_from_sps) !=
downstream_profiles.end ()) {
caps_str += ", profile = (string) " + std::string (profile_from_sps);
} else if (downstream_profiles.find ("baseline") !=
downstream_profiles.end () &&
strcmp (profile_from_sps, "constrained-baseline") == 0) {
caps_str += ", profile = (string) baseline";
} else if (downstream_profiles.find ("constrained-baseline") !=
downstream_profiles.end () &&
strcmp (profile_from_sps, "constrained-baseline") == 0) {
caps_str += ", profile = (string) constrained-baseline";
}
} else {
caps_str += ", profile = (string) " + std::string (profile_from_sps);
}
if (self->packetized) {
caps_str += ", stream-format = (string) avc";
} else {
caps_str += ", stream-format = (string) byte-stream";
}
caps = gst_caps_from_string (caps_str.c_str ());
if (self->packetized) {
gst_caps_set_simple (caps, "codec_data", GST_TYPE_BUFFER, codec_data,
nullptr);
gst_buffer_unref (codec_data);
}
output_state = gst_video_encoder_set_output_state (GST_VIDEO_ENCODER (self),
caps, state);
GST_INFO_OBJECT (self, "Output caps: %" GST_PTR_FORMAT, output_state->caps);
gst_video_codec_state_unref (output_state);
tags = gst_tag_list_new_empty ();
gst_tag_list_add (tags, GST_TAG_MERGE_REPLACE, GST_TAG_ENCODER,
"amfh264enc", nullptr);
gst_video_encoder_merge_tags (GST_VIDEO_ENCODER (encoder),
tags, GST_TAG_MERGE_REPLACE);
gst_tag_list_unref (tags);
return TRUE;
}
static gboolean
gst_amf_h264_enc_set_surface_prop (GstAmfEncoder * encoder,
GstVideoCodecFrame * frame, gpointer surface)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
AMFSurface *surf = (AMFSurface *) surface;
AMF_RESULT result;
amf_bool insert_aud = self->aud ? true : false;
if (GST_VIDEO_CODEC_FRAME_IS_FORCE_KEYFRAME (frame)) {
amf_int64 type = (amf_int64) AMF_VIDEO_ENCODER_PICTURE_TYPE_IDR;
result = surf->SetProperty (AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, type);
if (result != AMF_OK) {
GST_WARNING_OBJECT (encoder, "Failed to set force idr, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
}
}
result = surf->SetProperty (AMF_VIDEO_ENCODER_INSERT_AUD, &insert_aud);
if (result != AMF_OK) {
GST_WARNING_OBJECT (encoder, "Failed to set AUD, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
}
return TRUE;
}
static GstBuffer *
gst_amf_h264_enc_create_output_buffer (GstAmfEncoder * encoder,
gpointer data, gboolean * sync_point)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
AMFBuffer *amf_buf = (AMFBuffer *) data;
GstBuffer *buf;
GstH264ParserResult rst;
GstH264NalUnit nalu;
guint8 *data_ptr;
gsize data_size;
amf_int64 output_type = 0;
AMF_RESULT result;
data_ptr = (guint8 *) amf_buf->GetNative ();
data_size = amf_buf->GetSize ();
if (!data_ptr || data_size == 0) {
GST_WARNING_OBJECT (self, "Empty buffer");
return nullptr;
}
if (!self->packetized) {
buf = gst_buffer_new_memdup (data_ptr, data_size);
} else {
buf = gst_buffer_new ();
rst = gst_h264_parser_identify_nalu (self->parser,
data_ptr, 0, data_size, &nalu);
if (rst == GST_H264_PARSER_NO_NAL_END)
rst = GST_H264_PARSER_OK;
while (rst == GST_H264_PARSER_OK) {
GstMemory *mem;
guint8 *data;
data = (guint8 *) g_malloc0 (nalu.size + 4);
GST_WRITE_UINT32_BE (data, nalu.size);
memcpy (data + 4, nalu.data + nalu.offset, nalu.size);
mem = gst_memory_new_wrapped ((GstMemoryFlags) 0, data, nalu.size + 4,
0, nalu.size + 4, data, (GDestroyNotify) g_free);
gst_buffer_append_memory (buf, mem);
rst = gst_h264_parser_identify_nalu (self->parser,
data_ptr, nalu.offset + nalu.size, data_size, &nalu);
if (rst == GST_H264_PARSER_NO_NAL_END)
rst = GST_H264_PARSER_OK;
}
}
result = amf_buf->GetProperty (AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE,
&output_type);
if (result == AMF_OK &&
output_type == (amf_int64) AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE_IDR) {
*sync_point = TRUE;
}
return buf;
}
static gboolean
gst_amf_h264_enc_check_reconfigure (GstAmfEncoder * encoder)
{
GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder);
gboolean ret;
g_mutex_lock (&self->prop_lock);
ret = self->property_updated;
g_mutex_unlock (&self->prop_lock);
return ret;
}
static GstAmfH264EncClassData *
gst_amf_h264_enc_create_class_data (GstD3D11Device * device,
AMFComponent * comp)
{
AMF_RESULT result;
GstAmfH264EncDeviceCaps dev_caps = { 0, };
std::string sink_caps_str;
std::string src_caps_str;
std::set < std::string > profiles;
std::string profile_str;
std::string resolution_str;
GstAmfH264EncClassData *cdata;
AMFCapsPtr amf_caps;
AMFIOCapsPtr in_iocaps;
AMFIOCapsPtr out_iocaps;
amf_int32 in_min_width = 0, in_max_width = 0;
amf_int32 in_min_height = 0, in_max_height = 0;
amf_int32 out_min_width = 0, out_max_width = 0;
amf_int32 out_min_height = 0, out_max_height = 0;
amf_bool interlace_supported;
amf_bool pre_encode_supported;
amf_bool smart_access_supported;
amf_bool mini_gop_supported;
amf_bool b_frames_delta_qp_supported;
amf_int32 num_val;
gboolean have_nv12 = FALSE;
gboolean d3d11_supported = FALSE;
gint min_width, max_width, min_height, max_height;
GstCaps *sink_caps;
GstCaps *system_caps;
result = comp->GetCaps (&amf_caps);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Unable to get caps");
return nullptr;
}
result = amf_caps->GetInputCaps (&in_iocaps);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Unable to get input io caps");
return nullptr;
}
in_iocaps->GetWidthRange (&in_min_width, &in_max_width);
in_iocaps->GetHeightRange (&in_min_height, &in_max_height);
dev_caps.valign = in_iocaps->GetVertAlign ();
interlace_supported = in_iocaps->IsInterlacedSupported ();
GST_INFO_OBJECT (device, "Input width: [%d, %d], height: [%d, %d], "
"valign: %d, interlace supported: %d",
in_min_width, in_max_width, in_min_height, in_max_height, dev_caps.valign,
interlace_supported);
if (interlace_supported)
dev_caps.interlace_supported = TRUE;
num_val = in_iocaps->GetNumOfFormats ();
GST_LOG_OBJECT (device, "Input format count: %d", num_val);
for (amf_int32 i = 0; i < num_val; i++) {
AMF_SURFACE_FORMAT format;
amf_bool native;
result = in_iocaps->GetFormatAt (i, &format, &native);
if (result != AMF_OK)
continue;
GST_INFO_OBJECT (device, "Format %d supported, native %d", format, native);
if (format == AMF_SURFACE_NV12)
have_nv12 = TRUE;
}
if (!have_nv12) {
GST_WARNING_OBJECT (device, "NV12 is not supported");
return nullptr;
}
num_val = in_iocaps->GetNumOfMemoryTypes ();
GST_LOG_OBJECT (device, "Input memory type count: %d", num_val);
for (amf_int32 i = 0; i < num_val; i++) {
AMF_MEMORY_TYPE type;
amf_bool native;
result = in_iocaps->GetMemoryTypeAt (i, &type, &native);
if (result != AMF_OK)
continue;
GST_INFO_OBJECT (device,
"MemoryType %d supported, native %d", type, native);
if (type == AMF_MEMORY_DX11)
d3d11_supported = TRUE;
}
if (!d3d11_supported) {
GST_WARNING_OBJECT (device, "D3D11 is not supported");
return nullptr;
}
result = amf_caps->GetOutputCaps (&out_iocaps);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Unable to get input io caps");
return nullptr;
}
out_iocaps->GetWidthRange (&out_min_width, &out_max_width);
out_iocaps->GetHeightRange (&out_min_height, &out_max_height);
GST_INFO_OBJECT (device, "Output width: [%d, %d], height: [%d, %d]",
in_min_width, in_max_width, in_min_height, in_max_height);
#define QUERY_CAPS_PROP(prop,val) G_STMT_START { \
amf_int64 _val = 0; \
result = amf_caps->GetProperty (prop, &_val); \
if (result == AMF_OK) { \
GST_INFO_OBJECT (device, G_STRINGIFY (val) ": %" G_GINT64_FORMAT, _val); \
dev_caps.val = _val; \
} \
} G_STMT_END
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_BITRATE, max_bitrate);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_NUM_OF_STREAMS, num_of_streams);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_PROFILE, max_profile);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_LEVEL, max_level);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_BFRAMES, bframes);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MIN_REFERENCE_FRAMES, min_ref_frames);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_REFERENCE_FRAMES, max_ref_frames);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_TEMPORAL_LAYERS,
max_temporal_layers);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_FIXED_SLICE_MODE, fixed_slice_mode);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_NUM_OF_HW_INSTANCES,
num_of_hw_instances);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_COLOR_CONVERSION, color_conversion);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_PRE_ANALYSIS, pre_analysis);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_ROI, roi_map);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_THROUGHPUT, max_throughput);
QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAPS_QUERY_TIMEOUT_SUPPORT,
query_timeout_support);
#undef QUERY_CAPS_PROP
#define QUERY_DEFAULT_PROP(prop,val,default_val) G_STMT_START { \
const AMFPropertyInfo *pinfo = nullptr; \
result = comp->GetPropertyInfo (prop, &pinfo); \
if (result == AMF_OK && pinfo) { \
dev_caps.val = AMFVariantGetInt64 (&pinfo->defaultValue); \
GST_INFO_OBJECT (device, G_STRINGIFY (val) ": %" G_GINT64_FORMAT, \
dev_caps.val); \
} else { \
dev_caps.val = default_val; \
} \
} G_STMT_END
QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_i, 22);
QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_p, 22);
QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_b, 22);
#undef QUERY_DEFAULT_PROP
result = comp->GetProperty (AMF_VIDEO_ENCODER_PREENCODE_ENABLE,
&pre_encode_supported);
if (result == AMF_OK)
dev_caps.pre_encode_supported = TRUE;
result = comp->GetProperty (AMF_VIDEO_ENCODER_ENABLE_SMART_ACCESS_VIDEO,
&smart_access_supported);
if (result == AMF_OK)
dev_caps.smart_access_supported = TRUE;
result = comp->GetProperty (AMF_VIDEO_ENCODER_B_PIC_DELTA_QP,
&b_frames_delta_qp_supported);
if (result == AMF_OK)
dev_caps.b_frames_delta_qp_supported = TRUE;
if (dev_caps.pre_analysis) {
amf_bool pre_analysis = FALSE;
result = comp->GetProperty (AMF_VIDEO_ENCODER_ADAPTIVE_MINIGOP,
&mini_gop_supported);
if (result == AMF_OK)
dev_caps.mini_gop_supported = TRUE;
// Store initial pre-analysis value
result =
comp->GetProperty (AMF_VIDEO_ENCODER_PRE_ANALYSIS_ENABLE,
&pre_analysis);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Failed to get pre-analysis option");
}
// We need to enable pre-analysis for checking options availability
result =
comp->SetProperty (AMF_VIDEO_ENCODER_PRE_ANALYSIS_ENABLE,
(amf_bool) TRUE);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Failed to set pre-analysis option");
}
gst_amf_encoder_check_pa_supported_options (&dev_caps.pa_supported, comp);
result =
comp->SetProperty (AMF_VIDEO_ENCODER_PRE_ANALYSIS_ENABLE, pre_analysis);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Failed to set pre-analysis options");
}
}
min_width = MAX (in_min_width, 1);
max_width = in_max_width;
if (max_width == 0) {
GST_WARNING_OBJECT (device, "Unknown max width, assuming 4096");
max_width = 4096;
}
min_height = MAX (in_min_height, 1);
max_height = in_max_height;
if (max_height == 0) {
GST_WARNING_OBJECT (device, "Unknown max height, assuming 4096");
max_height = 4096;
}
if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_BASELINE) {
profiles.insert ("baseline");
profiles.insert ("constrained-baseline");
}
if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_MAIN)
profiles.insert ("main");
if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_HIGH) {
profiles.insert ("high");
}
if (dev_caps.max_profile >=
(gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH) {
profiles.insert ("constrained-high");
}
if (profiles.empty ()) {
GST_WARNING_OBJECT (device, "Failed to determine profile support");
return nullptr;
}
#define APPEND_STRING(dst,set,str) G_STMT_START { \
if (set.find(str) != set.end()) { \
if (!first) \
dst += ", "; \
dst += str; \
first = FALSE; \
} \
} G_STMT_END
if (profiles.size () == 1) {
profile_str = "profile = (string) " + *(profiles.begin ());
} else {
gboolean first = TRUE;
profile_str = "profile = (string) { ";
APPEND_STRING (profile_str, profiles, "main");
APPEND_STRING (profile_str, profiles, "high");
APPEND_STRING (profile_str, profiles, "constrained-high");
APPEND_STRING (profile_str, profiles, "constrained-baseline");
APPEND_STRING (profile_str, profiles, "baseline");
profile_str += " } ";
}
#undef APPEND_STRING
resolution_str = "width = (int) [ " + std::to_string (min_width)
+ ", " + std::to_string (max_width) + " ]";
resolution_str += ", height = (int) [ " + std::to_string (min_height)
+ ", " + std::to_string (max_height) + " ]";
sink_caps_str = "video/x-raw, format = (string) NV12, " + resolution_str;
if (dev_caps.interlace_supported > 0) {
sink_caps_str += ", interlace-mode = (string) { interleaved, mixed }";
} else {
sink_caps_str += ", interlace-mode = (string) progressive";
}
src_caps_str = "video/x-h264, " + resolution_str + ", " + profile_str +
", stream-format = (string) { avc, byte-stream }, alignment = (string) au";
system_caps = gst_caps_from_string (sink_caps_str.c_str ());
sink_caps = gst_caps_copy (system_caps);
gst_caps_set_features (sink_caps, 0,
gst_caps_features_new (GST_CAPS_FEATURE_MEMORY_D3D11_MEMORY, nullptr));
gst_caps_append (sink_caps, system_caps);
cdata = g_new0 (GstAmfH264EncClassData, 1);
cdata->sink_caps = sink_caps;
cdata->src_caps = gst_caps_from_string (src_caps_str.c_str ());
cdata->dev_caps = dev_caps;
g_object_get (device, "adapter-luid", &cdata->adapter_luid, nullptr);
GST_MINI_OBJECT_FLAG_SET (cdata->sink_caps,
GST_MINI_OBJECT_FLAG_MAY_BE_LEAKED);
GST_MINI_OBJECT_FLAG_SET (cdata->src_caps,
GST_MINI_OBJECT_FLAG_MAY_BE_LEAKED);
GST_DEBUG_OBJECT (device, "Sink caps %" GST_PTR_FORMAT, cdata->sink_caps);
GST_DEBUG_OBJECT (device, "Src caps %" GST_PTR_FORMAT, cdata->src_caps);
return cdata;
}
void
gst_amf_h264_enc_register_d3d11 (GstPlugin * plugin, GstD3D11Device * device,
gpointer context, guint rank)
{
GstAmfH264EncClassData *cdata;
AMFContext *amf_context = (AMFContext *) context;
AMFFactory *factory = (AMFFactory *) gst_amf_get_factory ();
AMFComponentPtr comp;
AMF_RESULT result;
GST_DEBUG_CATEGORY_INIT (gst_amf_h264_enc_debug, "amfh264enc", 0,
"amfh264enc");
result = factory->CreateComponent (amf_context, AMFVideoEncoderVCE_AVC,
&comp);
if (result != AMF_OK) {
GST_WARNING_OBJECT (device, "Failed to create component, result %"
GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result));
return;
}
cdata = gst_amf_h264_enc_create_class_data (device, comp.GetPtr ());
if (!cdata)
return;
GType type;
gchar *type_name;
gchar *feature_name;
GTypeInfo type_info = {
sizeof (GstAmfH264EncClass),
nullptr,
nullptr,
(GClassInitFunc) gst_amf_h264_enc_class_init,
nullptr,
cdata,
sizeof (GstAmfH264Enc),
0,
(GInstanceInitFunc) gst_amf_h264_enc_init,
};
type_name = g_strdup ("GstAmfH264Enc");
feature_name = g_strdup ("amfh264enc");
gint index = 0;
while (g_type_from_name (type_name)) {
index++;
g_free (type_name);
g_free (feature_name);
type_name = g_strdup_printf ("GstAmfH264Device%dEnc", index);
feature_name = g_strdup_printf ("amfh264device%denc", index);
}
type = g_type_register_static (GST_TYPE_AMF_ENCODER, type_name,
&type_info, (GTypeFlags) 0);
if (rank > 0 && index != 0)
rank--;
if (index != 0)
gst_element_type_set_skip_documentation (type);
if (!gst_element_register (plugin, feature_name, rank, type))
GST_WARNING ("Failed to register plugin '%s'", type_name);
g_free (type_name);
g_free (feature_name);
}