gstreamer/gst/nsf/fmopl.c

1373 lines
38 KiB
C
Raw Normal View History

/*
**
** File: fmopl.c -- software implementation of FM sound generator
**
** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
**
** Version 0.36f
**
*/
/*
preliminary :
Problem :
note:
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
/*#include "driver.h" */
/* use M.A.M.E. */
#include "fmopl.h"
#include <math.h>
/* MPC - hacks */
#include "types.h"
#include "log.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
#define FREQ_BITS 24 /* frequency turn */
/* counter bits = 20 , octerve 7 */
#define FREQ_RATE (1<<(FREQ_BITS-20))
#define TL_BITS (FREQ_BITS+2)
/* final output shift , limit minimum and maximum */
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
/* -------------------- quality selection --------------------- */
/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#define SIN_ENT 2048
/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
#define ENV_BITS 16
/* envelope output entries */
#define EG_ENT 4096
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static memory = EG_ENT*4 (byte) */
#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
#define EG_DED EG_OFF
#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
#define EG_AED EG_DST
#define EG_AST 0 /* ATTACK START */
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)
#define VIB_RATE 256
/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* envelope phase */
#define ENV_MOD_RR 0x00
#define ENV_MOD_DR 0x01
#define ENV_MOD_AR 0x02
/* -------------------- tables --------------------- */
static const int slot_array[32] = {
0, 2, 4, 1, 3, 5, -1, -1,
6, 8, 10, 7, 9, 11, -1, -1,
12, 14, 16, 13, 15, 17, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
/* key scale level */
#define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP))
static const UINT32 KSL_TABLE[8 * 16] = {
/* OCT 0 */
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
/* OCT 1 */
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (0.750), ML (1.125), ML (1.500),
ML (1.875), ML (2.250), ML (2.625), ML (3.000),
/* OCT 2 */
ML (0.000), ML (0.000), ML (0.000), ML (0.000),
ML (0.000), ML (1.125), ML (1.875), ML (2.625),
ML (3.000), ML (3.750), ML (4.125), ML (4.500),
ML (4.875), ML (5.250), ML (5.625), ML (6.000),
/* OCT 3 */
ML (0.000), ML (0.000), ML (0.000), ML (1.875),
ML (3.000), ML (4.125), ML (4.875), ML (5.625),
ML (6.000), ML (6.750), ML (7.125), ML (7.500),
ML (7.875), ML (8.250), ML (8.625), ML (9.000),
/* OCT 4 */
ML (0.000), ML (0.000), ML (3.000), ML (4.875),
ML (6.000), ML (7.125), ML (7.875), ML (8.625),
ML (9.000), ML (9.750), ML (10.125), ML (10.500),
ML (10.875), ML (11.250), ML (11.625), ML (12.000),
/* OCT 5 */
ML (0.000), ML (3.000), ML (6.000), ML (7.875),
ML (9.000), ML (10.125), ML (10.875), ML (11.625),
ML (12.000), ML (12.750), ML (13.125), ML (13.500),
ML (13.875), ML (14.250), ML (14.625), ML (15.000),
/* OCT 6 */
ML (0.000), ML (6.000), ML (9.000), ML (10.875),
ML (12.000), ML (13.125), ML (13.875), ML (14.625),
ML (15.000), ML (15.750), ML (16.125), ML (16.500),
ML (16.875), ML (17.250), ML (17.625), ML (18.000),
/* OCT 7 */
ML (0.000), ML (9.000), ML (12.000), ML (13.875),
ML (15.000), ML (16.125), ML (16.875), ML (17.625),
ML (18.000), ML (18.750), ML (19.125), ML (19.500),
ML (19.875), ML (20.250), ML (20.625), ML (21.000)
};
#undef ML
/* sustain lebel table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST)
static const INT32 SL_TABLE[16] = {
SC (0), SC (1), SC (2), SC (3), SC (4), SC (5), SC (6), SC (7),
SC (8), SC (9), SC (10), SC (11), SC (12), SC (13), SC (14), SC (31)
};
#undef SC
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static INT32 *TL_TABLE;
/* pointers to TL_TABLE with sinwave output offset */
static INT32 **SIN_TABLE;
/* LFO table */
static INT32 *AMS_TABLE;
static INT32 *VIB_TABLE;
/* envelope output curve table */
/* attack + decay + OFF */
static INT32 ENV_CURVE[2 * EG_ENT + 1];
/* multiple table */
#define ML(x) ((UINT32) (2*(x)))
static const UINT32 MUL_TABLE[16] = {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
ML (0.50), ML (1.00), ML (2.00), ML (3.00), ML (4.00), ML (5.00), ML (6.00),
ML (7.00),
ML (8.00), ML (9.00), ML (10.00), ML (10.00), ML (12.00), ML (12.00),
ML (15.00), ML (15.00)
};
#undef ML
/* dummy attack / decay rate ( when rate == 0 ) */
static INT32 RATE_0[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static FMSAMPLE *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static INT32 outd[1];
static INT32 ams;
static INT32 vib;
INT32 *ams_table;
INT32 *vib_table;
static INT32 amsIncr;
static INT32 vibIncr;
static INT32 feedback2; /* connect for SLOT 2 */
/* log output level */
#define LOG_ERR 3 /* ERROR */
#define LOG_WAR 2 /* WARNING */
#define LOG_INF 1 /* INFORMATION */
#define LOG_LEVEL LOG_INF
/* #define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x */
#define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x
/* --------------------- subroutines --------------------- */
INLINE int
Limit (int val, int max, int min)
{
if (val > max)
val = max;
else if (val < min)
val = min;
return val;
}
/* status set and IRQ handling */
INLINE void
OPL_STATUS_SET (FM_OPL * OPL, int flag)
{
/* set status flag */
OPL->status |= flag;
if (!(OPL->status & 0x80)) {
if (OPL->status & OPL->statusmask) { /* IRQ on */
OPL->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
if (OPL->IRQHandler)
(OPL->IRQHandler) (OPL->IRQParam, 1);
}
}
}
/* status reset and IRQ handling */
INLINE void
OPL_STATUS_RESET (FM_OPL * OPL, int flag)
{
/* reset status flag */
OPL->status &= ~flag;
if ((OPL->status & 0x80)) {
if (!(OPL->status & OPL->statusmask)) {
OPL->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if (OPL->IRQHandler)
(OPL->IRQHandler) (OPL->IRQParam, 0);
}
}
}
/* IRQ mask set */
INLINE void
OPL_STATUSMASK_SET (FM_OPL * OPL, int flag)
{
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET (OPL, 0);
OPL_STATUS_RESET (OPL, 0);
}
/* ----- key on ----- */
INLINE void
OPL_KEYON (OPL_SLOT * SLOT)
{
/* sin wave restart */
SLOT->Cnt = 0;
/* set attack */
SLOT->evm = ENV_MOD_AR;
SLOT->evs = SLOT->evsa;
SLOT->evc = EG_AST;
SLOT->eve = EG_AED;
}
/* ----- key off ----- */
INLINE void
OPL_KEYOFF (OPL_SLOT * SLOT)
{
if (SLOT->evm > ENV_MOD_RR) {
/* set envelope counter from envleope output */
SLOT->evm = ENV_MOD_RR;
if (!(SLOT->evc & EG_DST))
/* SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; */
SLOT->evc = EG_DST;
SLOT->eve = EG_DED;
SLOT->evs = SLOT->evsr;
}
}
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
INLINE UINT32
OPL_CALC_SLOT (OPL_SLOT * SLOT)
{
/* calcrate envelope generator */
if ((SLOT->evc += SLOT->evs) >= SLOT->eve) {
switch (SLOT->evm) {
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
/* next DR */
SLOT->evm = ENV_MOD_DR;
SLOT->evc = EG_DST;
SLOT->eve = SLOT->SL;
SLOT->evs = SLOT->evsd;
break;
case ENV_MOD_DR: /* DECAY -> SL or RR */
SLOT->evc = SLOT->SL;
SLOT->eve = EG_DED;
if (SLOT->eg_typ) {
SLOT->evs = 0;
} else {
SLOT->evm = ENV_MOD_RR;
SLOT->evs = SLOT->evsr;
}
break;
case ENV_MOD_RR: /* RR -> OFF */
SLOT->evc = EG_OFF;
SLOT->eve = EG_OFF + 1;
SLOT->evs = 0;
break;
}
}
/* calcrate envelope */
return SLOT->TLL + ENV_CURVE[SLOT->evc >> ENV_BITS] + (SLOT->ams ? ams : 0);
}
/* set algorythm connection */
static void
set_algorythm (OPL_CH * CH)
{
INT32 *carrier = &outd[0];
CH->connect1 = CH->CON ? carrier : &feedback2;
CH->connect2 = carrier;
}
/* ---------- frequency counter for operater update ---------- */
INLINE void
CALC_FCSLOT (OPL_CH * CH, OPL_SLOT * SLOT)
{
int ksr;
/* frequency step counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if (SLOT->ksr != ksr) {
SLOT->ksr = ksr;
/* attack , decay rate recalcration */
SLOT->evsa = SLOT->AR[ksr];
SLOT->evsd = SLOT->DR[ksr];
SLOT->evsr = SLOT->RR[ksr];
}
SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
}
/* set multi,am,vib,EG-TYP,KSR,mul */
INLINE void
set_mul (FM_OPL * OPL, int slot, int v)
{
OPL_CH *CH = &OPL->P_CH[slot / 2];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
SLOT->mul = MUL_TABLE[v & 0x0f];
SLOT->KSR = (v & 0x10) ? 0 : 2;
SLOT->eg_typ = (v & 0x20) >> 5;
SLOT->vib = (v & 0x40);
SLOT->ams = (v & 0x80);
CALC_FCSLOT (CH, SLOT);
}
/* set ksl & tl */
INLINE void
set_ksl_tl (FM_OPL * OPL, int slot, int v)
{
OPL_CH *CH = &OPL->P_CH[slot / 2];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
SLOT->ksl = ksl ? 3 - ksl : 31;
SLOT->TL = (INT32) (((v & 0x3f) * (0.75 / EG_STEP))); /* 0.75db step */
if (!(OPL->mode & 0x80)) { /* not CSM latch total level */
SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
}
}
/* set attack rate & decay rate */
INLINE void
set_ar_dr (FM_OPL * OPL, int slot, int v)
{
OPL_CH *CH = &OPL->P_CH[slot / 2];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int ar = v >> 4;
int dr = v & 0x0f;
SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
SLOT->evsa = SLOT->AR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_AR)
SLOT->evs = SLOT->evsa;
SLOT->DR = dr ? &OPL->DR_TABLE[dr << 2] : RATE_0;
SLOT->evsd = SLOT->DR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_DR)
SLOT->evs = SLOT->evsd;
}
/* set sustain level & release rate */
INLINE void
set_sl_rr (FM_OPL * OPL, int slot, int v)
{
OPL_CH *CH = &OPL->P_CH[slot / 2];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int sl = v >> 4;
int rr = v & 0x0f;
SLOT->SL = SL_TABLE[sl];
if (SLOT->evm == ENV_MOD_DR)
SLOT->eve = SLOT->SL;
SLOT->RR = &OPL->DR_TABLE[rr << 2];
SLOT->evsr = SLOT->RR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_RR)
SLOT->evs = SLOT->evsr;
}
/* operator output calcrator */
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
INLINE void
OPL_CALC_CH (OPL_CH * CH)
{
UINT32 env_out;
OPL_SLOT *SLOT;
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env_out = OPL_CALC_SLOT (SLOT);
if (env_out < EG_ENT - 1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
else
SLOT->Cnt += SLOT->Incr;
/* connectoion */
if (CH->FB) {
int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
CH->op1_out[1] = CH->op1_out[0];
*CH->connect1 += CH->op1_out[0] = OP_OUT (SLOT, env_out, feedback1);
} else {
*CH->connect1 += OP_OUT (SLOT, env_out, 0);
}
} else {
CH->op1_out[1] = CH->op1_out[0];
CH->op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH->SLOT[SLOT2];
env_out = OPL_CALC_SLOT (SLOT);
if (env_out < EG_ENT - 1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
else
SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT (SLOT, env_out, feedback2);
}
}
/* ---------- calcrate rythm block ---------- */
#define WHITE_NOISE_db 6.0
INLINE void
OPL_CALC_RH (OPL_CH * CH)
{
UINT32 env_tam, env_sd, env_top, env_hh;
int whitenoise = (rand () & 1) * ((int) (WHITE_NOISE_db / EG_STEP));
INT32 tone8;
OPL_SLOT *SLOT;
int env_out;
/* BD : same as FM serial mode and output level is large */
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env_out = OPL_CALC_SLOT (SLOT);
if (env_out < EG_ENT - 1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
else
SLOT->Cnt += SLOT->Incr;
/* connectoion */
if (CH[6].FB) {
int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
CH[6].op1_out[1] = CH[6].op1_out[0];
feedback2 = CH[6].op1_out[0] = OP_OUT (SLOT, env_out, feedback1);
} else {
feedback2 = OP_OUT (SLOT, env_out, 0);
}
} else {
feedback2 = 0;
CH[6].op1_out[1] = CH[6].op1_out[0];
CH[6].op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH[6].SLOT[SLOT2];
env_out = OPL_CALC_SLOT (SLOT);
if (env_out < EG_ENT - 1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
else
SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT (SLOT, env_out, feedback2) * 2;
}
/* SD (17) = mul14[fnum7] + white noise
TAM (15) = mul15[fnum8]
TOP (18) = fnum6(mul18[fnum8]+whitenoise)
HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise */
env_sd = OPL_CALC_SLOT (SLOT7_2) + whitenoise;
env_tam = OPL_CALC_SLOT (SLOT8_1);
env_top = OPL_CALC_SLOT (SLOT8_2);
env_hh = OPL_CALC_SLOT (SLOT7_1) + whitenoise;
/* PG */
if (SLOT7_1->vib)
SLOT7_1->Cnt += (2 * SLOT7_1->Incr * vib / VIB_RATE);
else
SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
if (SLOT7_2->vib)
SLOT7_2->Cnt += ((CH[7].fc * 8) * vib / VIB_RATE);
else
SLOT7_2->Cnt += (CH[7].fc * 8);
if (SLOT8_1->vib)
SLOT8_1->Cnt += (SLOT8_1->Incr * vib / VIB_RATE);
else
SLOT8_1->Cnt += SLOT8_1->Incr;
if (SLOT8_2->vib)
SLOT8_2->Cnt += ((CH[8].fc * 48) * vib / VIB_RATE);
else
SLOT8_2->Cnt += (CH[8].fc * 48);
tone8 = OP_OUT (SLOT8_2, whitenoise, 0);
/* SD */
if (env_sd < EG_ENT - 1)
outd[0] += OP_OUT (SLOT7_1, env_sd, 0) * 8;
/* TAM */
if (env_tam < EG_ENT - 1)
outd[0] += OP_OUT (SLOT8_1, env_tam, 0) * 2;
/* TOP-CY */
if (env_top < EG_ENT - 1)
outd[0] += OP_OUT (SLOT7_2, env_top, tone8) * 2;
/* HH */
if (env_hh < EG_ENT - 1)
outd[0] += OP_OUT (SLOT7_2, env_hh, tone8) * 2;
}
/* ----------- initialize time tabls ----------- */
static void
init_timetables (FM_OPL * OPL, int ARRATE, int DRRATE)
{
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0; i < 4; i++)
OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4; i <= 60; i++) {
rate = OPL->freqbase; /* frequency rate */
if (i < 60)
rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
rate *= (double) (EG_ENT << ENV_BITS);
OPL->AR_TABLE[i] = (INT32) (rate / ARRATE);
OPL->DR_TABLE[i] = (INT32) (rate / DRRATE);
}
for (i = 60; i < 75; i++) {
OPL->AR_TABLE[i] = EG_AED - 1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
#if 0
for (i = 0; i < 64; i++) { /* make for overflow area */
LOG (LOG_WAR, ("rate %2d , ar %f ms , dr %f ms \n", i,
((double) (EG_ENT << ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 /
OPL->rate),
((double) (EG_ENT << ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 /
OPL->rate)));
}
#endif
}
/* ---------- generic table initialize ---------- */
static int
OPLOpenTable (void)
{
int s, t;
double rate;
int i, j;
double pom;
/* allocate dynamic tables */
if ((TL_TABLE = malloc (TL_MAX * 2 * sizeof (INT32))) == NULL)
return 0;
if ((SIN_TABLE = malloc (SIN_ENT * 4 * sizeof (INT32 *))) == NULL) {
free (TL_TABLE);
return 0;
}
if ((AMS_TABLE = malloc (AMS_ENT * 2 * sizeof (INT32))) == NULL) {
free (TL_TABLE);
free (SIN_TABLE);
return 0;
}
if ((VIB_TABLE = malloc (VIB_ENT * 2 * sizeof (INT32))) == NULL) {
free (TL_TABLE);
free (SIN_TABLE);
free (AMS_TABLE);
return 0;
}
/* make total level table */
for (t = 0; t < EG_ENT - 1; t++) {
rate = ((1 << TL_BITS) - 1) / pow (10, EG_STEP * t / 20); /* dB -> voltage */
TL_TABLE[t] = (int) rate;
TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
}
/* fill volume off area */
for (t = EG_ENT - 1; t < TL_MAX; t++) {
TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
}
/* make sinwave table (total level offet) */
/* degree 0 = degree 180 = off */
SIN_TABLE[0] = SIN_TABLE[SIN_ENT / 2] = &TL_TABLE[EG_ENT - 1];
for (s = 1; s <= SIN_ENT / 4; s++) {
pom = sin (2 * PI * s / SIN_ENT); /* sin */
pom = 20 * log10 (1 / pom); /* decibel */
j = (int) (pom / EG_STEP); /* TL_TABLE steps */
/* degree 0 - 90 , degree 180 - 90 : plus section */
SIN_TABLE[s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
/* degree 180 - 270 , degree 360 - 270 : minus section */
SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
}
for (s = 0; s < SIN_ENT; s++) {
SIN_TABLE[SIN_ENT * 1 + s] =
s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
SIN_TABLE[SIN_ENT * 3 + s] =
(s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 +
s];
}
/* envelope counter -> envelope output table */
for (i = 0; i < EG_ENT; i++) {
/* ATTACK curve */
pom = (float) pow (((double) (EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
ENV_CURVE[i] = (int) pom;
/* DECAY ,RELEASE curve */
ENV_CURVE[(EG_DST >> ENV_BITS) + i] = i;
}
/* off */
ENV_CURVE[EG_OFF >> ENV_BITS] = EG_ENT - 1;
/* make LFO ams table */
for (i = 0; i < AMS_ENT; i++) {
pom = (1.0 + sin (2 * PI * i / AMS_ENT)) / 2; /* sin */
AMS_TABLE[i] = (INT32) ((1.0 / EG_STEP) * pom); /* 1dB */
AMS_TABLE[AMS_ENT + i] = (INT32) ((4.8 / EG_STEP) * pom); /* 4.8dB */
}
/* make LFO vibrate table */
for (i = 0; i < VIB_ENT; i++) {
/* 100cent = 1seminote = 6% ?? */
pom = (double) VIB_RATE *0.06 * sin (2 * PI * i / VIB_ENT); /* +-100sect step */
VIB_TABLE[i] = VIB_RATE + (INT32) (pom * 0.07); /* +- 7cent */
VIB_TABLE[VIB_ENT + i] = VIB_RATE + (INT32) (pom * 0.14); /* +-14cent */
/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
}
return 1;
}
static void
OPLCloseTable (void)
{
free (TL_TABLE);
free (SIN_TABLE);
free (AMS_TABLE);
free (VIB_TABLE);
}
/* CSM Key Controll */
INLINE void
CSMKeyControll (OPL_CH * CH)
{
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
/* all key off */
OPL_KEYOFF (slot1);
OPL_KEYOFF (slot2);
/* total level latch */
slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl);
slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl);
/* key on */
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON (slot1);
OPL_KEYON (slot2);
}
/* ---------- opl initialize ---------- */
static void
OPL_initalize (FM_OPL * OPL)
{
int fn;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double) OPL->clock / OPL->rate) / 72 : 0;
/* Timer base time */
OPL->TimerBase = 1.0 / ((double) OPL->clock / 72.0);
/* make time tables */
init_timetables (OPL, OPL_ARRATE, OPL_DRRATE);
/* make fnumber -> increment counter table */
for (fn = 0; fn < 1024; fn++) {
OPL->FN_TABLE[fn] =
(UINT32) (OPL->freqbase * fn * FREQ_RATE * (1 << 7) / 2);
}
/* LFO freq.table */
OPL->amsIncr =
(INT32) (OPL->rate ? (double) AMS_ENT * (1 << AMS_SHIFT) / OPL->rate *
3.7 * ((double) OPL->clock / 3600000) : 0);
OPL->vibIncr =
(INT32) (OPL->rate ? (double) VIB_ENT * (1 << VIB_SHIFT) / OPL->rate *
6.4 * ((double) OPL->clock / 3600000) : 0);
}
/* ---------- write a OPL registers ---------- */
static void
OPLWriteReg (FM_OPL * OPL, int r, int v)
{
OPL_CH *CH;
int slot;
unsigned int block_fnum;
switch (r & 0xe0) {
case 0x00: /* 00-1f:controll */
switch (r & 0x1f) {
case 0x01:
/* wave selector enable */
if (OPL->type & OPL_TYPE_WAVESEL) {
OPL->wavesel = v & 0x20;
if (!OPL->wavesel) {
/* preset compatible mode */
int c;
for (c = 0; c < OPL->max_ch; c++) {
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
}
}
}
return;
case 0x02: /* Timer 1 */
OPL->T[0] = (256 - v) * 4;
break;
case 0x03: /* Timer 2 */
OPL->T[1] = (256 - v) * 16;
return;
case 0x04: /* IRQ clear / mask and Timer enable */
if (v & 0x80) { /* IRQ flag clear */
OPL_STATUS_RESET (OPL, 0x7f);
} else { /* set IRQ mask ,timer enable */
UINT8 st1 = v & 1;
UINT8 st2 = (v >> 1) & 1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET (OPL, v & 0x78);
OPL_STATUSMASK_SET (OPL, ((~v) & 0x78) | 0x01);
/* timer 2 */
if (OPL->st[1] != st2) {
double interval = st2 ? (double) OPL->T[1] * OPL->TimerBase : 0.0;
OPL->st[1] = st2;
if (OPL->TimerHandler)
(OPL->TimerHandler) (OPL->TimerParam + 1, interval);
}
/* timer 1 */
if (OPL->st[0] != st1) {
double interval = st1 ? (double) OPL->T[0] * OPL->TimerBase : 0.0;
OPL->st[0] = st1;
if (OPL->TimerHandler)
(OPL->TimerHandler) (OPL->TimerParam + 0, interval);
}
}
return;
#if BUILD_Y8950
case 0x06: /* Key Board OUT */
if (OPL->type & OPL_TYPE_KEYBOARD) {
if (OPL->keyboardhandler_w)
OPL->keyboardhandler_w (OPL->keyboard_param, v);
else
LOG (LOG_WAR, ("OPL:write unmapped KEYBOARD port\n"));
}
return;
case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
if (OPL->type & OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v);
return;
case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
OPL->mode = v;
v &= 0x1f; /* for DELTA-T unit */
case 0x09: /* START ADD */
case 0x0a:
case 0x0b: /* STOP ADD */
case 0x0c:
case 0x0d: /* PRESCALE */
case 0x0e:
case 0x0f: /* ADPCM data */
case 0x10: /* DELTA-N */
case 0x11: /* DELTA-N */
case 0x12: /* EG-CTRL */
if (OPL->type & OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v);
return;
#if 0
case 0x15: /* DAC data */
case 0x16:
case 0x17: /* SHIFT */
return;
case 0x18: /* I/O CTRL (Direction) */
if (OPL->type & OPL_TYPE_IO)
OPL->portDirection = v & 0x0f;
return;
case 0x19: /* I/O DATA */
if (OPL->type & OPL_TYPE_IO) {
OPL->portLatch = v;
if (OPL->porthandler_w)
OPL->porthandler_w (OPL->port_param, v & OPL->portDirection);
}
return;
case 0x1a: /* PCM data */
return;
#endif
#endif
}
break;
case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
set_mul (OPL, slot, v);
return;
case 0x40:
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
set_ksl_tl (OPL, slot, v);
return;
case 0x60:
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
set_ar_dr (OPL, slot, v);
return;
case 0x80:
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
set_sl_rr (OPL, slot, v);
return;
case 0xa0:
switch (r) {
case 0xbd:
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
UINT8 rkey = OPL->rythm ^ v;
OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
OPL->rythm = v & 0x3f;
if (OPL->rythm & 0x20) {
#if 0
usrintf_showmessage ("OPL Rythm mode select");
#endif
/* BD key on/off */
if (rkey & 0x10) {
if (v & 0x10) {
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT2]);
} else {
OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT2]);
}
}
/* SD key on/off */
if (rkey & 0x08) {
if (v & 0x08)
OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT2]);
else
OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT2]);
} /* TAM key on/off */
if (rkey & 0x04) {
if (v & 0x04)
OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT1]);
else
OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT1]);
}
/* TOP-CY key on/off */
if (rkey & 0x02) {
if (v & 0x02)
OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT2]);
else
OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT2]);
}
/* HH key on/off */
if (rkey & 0x01) {
if (v & 0x01)
OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT1]);
else
OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT1]);
}
}
}
return;
}
/* keyon,block,fnum */
if ((r & 0x0f) > 8)
return;
CH = &OPL->P_CH[r & 0x0f];
if (!(r & 0x10)) { /* a0-a8 */
block_fnum = (CH->block_fnum & 0x1f00) | v;
} else { /* b0-b8 */
int keyon = (v >> 5) & 1;
block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
if (CH->keyon != keyon) {
if ((CH->keyon = keyon)) {
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON (&CH->SLOT[SLOT1]);
OPL_KEYON (&CH->SLOT[SLOT2]);
} else {
OPL_KEYOFF (&CH->SLOT[SLOT1]);
OPL_KEYOFF (&CH->SLOT[SLOT2]);
}
}
}
/* update */
if (CH->block_fnum != block_fnum) {
int blockRv = 7 - (block_fnum >> 10);
int fnum = block_fnum & 0x3ff;
CH->block_fnum = block_fnum;
CH->ksl_base = KSL_TABLE[block_fnum >> 6];
CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
CH->kcode = CH->block_fnum >> 9;
if ((OPL->mode & 0x40) && CH->block_fnum & 0x100)
CH->kcode |= 1;
CALC_FCSLOT (CH, &CH->SLOT[SLOT1]);
CALC_FCSLOT (CH, &CH->SLOT[SLOT2]);
}
return;
case 0xc0:
/* FB,C */
if ((r & 0x0f) > 8)
return;
CH = &OPL->P_CH[r & 0x0f];
{
int feedback = (v >> 1) & 7;
CH->FB = feedback ? (8 + 1) - feedback : 0;
CH->CON = v & 1;
set_algorythm (CH);
}
return;
case 0xe0: /* wave type */
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
CH = &OPL->P_CH[slot / 2];
if (OPL->wavesel) {
/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
CH->SLOT[slot & 1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
}
return;
}
}
/* lock/unlock for common table */
static int
OPL_LockTable (void)
{
num_lock++;
if (num_lock > 1)
return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if (!OPLOpenTable ()) {
num_lock--;
return -1;
}
return 0;
}
static void
OPL_UnLockTable (void)
{
if (num_lock)
num_lock--;
if (num_lock)
return;
/* last time */
cur_chip = NULL;
OPLCloseTable ();
}
#if (BUILD_YM3812 || BUILD_YM3526)
/*******************************************************************************/
/* YM3812 local section */
/*******************************************************************************/
/* ---------- update one of chip ----------- */
void
YM3812UpdateOne (FM_OPL * OPL, INT16 * buffer, int length)
{
int i;
int data;
FMSAMPLE *buf = buffer;
UINT32 amsCnt = OPL->amsCnt;
UINT32 vibCnt = OPL->vibCnt;
UINT8 rythm = OPL->rythm & 0x20;
OPL_CH *CH, *R_CH;
if ((void *) OPL != cur_chip) {
cur_chip = (void *) OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rythm ? &S_CH[6] : E_CH;
for (i = 0; i < length; i++) {
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
outd[0] = 0;
/* FM part */
for (CH = S_CH; CH < R_CH; CH++)
OPL_CALC_CH (CH);
/* Rythn part */
if (rythm)
OPL_CALC_RH (S_CH);
/* limit check */
data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT);
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
}
#endif /* (BUILD_YM3812 || BUILD_YM3526) */
#if BUILD_Y8950
void
Y8950UpdateOne (FM_OPL * OPL, INT16 * buffer, int length)
{
int i;
int data;
FMSAMPLE *buf = buffer;
UINT32 amsCnt = OPL->amsCnt;
UINT32 vibCnt = OPL->vibCnt;
UINT8 rythm = OPL->rythm & 0x20;
OPL_CH *CH, *R_CH;
YM_DELTAT *DELTAT = OPL->deltat;
/* setup DELTA-T unit */
YM_DELTAT_DECODE_PRESET (DELTAT);
if ((void *) OPL != cur_chip) {
cur_chip = (void *) OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rythm ? &S_CH[6] : E_CH;
for (i = 0; i < length; i++) {
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
outd[0] = 0;
/* deltaT ADPCM */
if (DELTAT->flag)
YM_DELTAT_ADPCM_CALC (DELTAT);
/* FM part */
for (CH = S_CH; CH < R_CH; CH++)
OPL_CALC_CH (CH);
/* Rythn part */
if (rythm)
OPL_CALC_RH (S_CH);
/* limit check */
data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT);
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
/* deltaT START flag */
if (!DELTAT->flag)
OPL->status &= 0xfe;
}
#endif
/* ---------- reset one of chip ---------- */
void
OPLResetChip (FM_OPL * OPL)
{
int c, s;
int i;
/* reset chip */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET (OPL, 0x7f);
/* reset with register write */
OPLWriteReg (OPL, 0x01, 0); /* wabesel disable */
OPLWriteReg (OPL, 0x02, 0); /* Timer1 */
OPLWriteReg (OPL, 0x03, 0); /* Timer2 */
OPLWriteReg (OPL, 0x04, 0); /* IRQ mask clear */
for (i = 0xff; i >= 0x20; i--)
OPLWriteReg (OPL, i, 0);
/* reset OPerator paramater */
for (c = 0; c < OPL->max_ch; c++) {
OPL_CH *CH = &OPL->P_CH[c];
/* OPL->P_CH[c].PAN = OPN_CENTER; */
for (s = 0; s < 2; s++) {
/* wave table */
CH->SLOT[s].wavetable = &SIN_TABLE[0];
/* CH->SLOT[s].evm = ENV_MOD_RR; */
CH->SLOT[s].evc = EG_OFF;
CH->SLOT[s].eve = EG_OFF + 1;
CH->SLOT[s].evs = 0;
}
}
#if BUILD_Y8950
if (OPL->type & OPL_TYPE_ADPCM) {
YM_DELTAT *DELTAT = OPL->deltat;
DELTAT->freqbase = OPL->freqbase;
DELTAT->output_pointer = outd;
DELTAT->portshift = 5;
DELTAT->output_range = DELTAT_MIXING_LEVEL << TL_BITS;
YM_DELTAT_ADPCM_Reset (DELTAT, 0);
}
#endif
}
/* ---------- Create one of vietual YM3812 ---------- */
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
FM_OPL *
OPLCreate (int type, int clock, int rate)
{
char *ptr;
FM_OPL *OPL;
int state_size;
int max_ch = 9; /* normaly 9 channels */
if (OPL_LockTable () == -1)
return NULL;
/* allocate OPL state space */
state_size = sizeof (FM_OPL);
state_size += sizeof (OPL_CH) * max_ch;
#if BUILD_Y8950
if (type & OPL_TYPE_ADPCM)
state_size += sizeof (YM_DELTAT);
#endif
/* allocate memory block */
ptr = malloc (state_size);
if (ptr == NULL)
return NULL;
/* clear */
memset (ptr, 0, state_size);
OPL = (FM_OPL *) ptr;
ptr += sizeof (FM_OPL);
OPL->P_CH = (OPL_CH *) ptr;
ptr += sizeof (OPL_CH) * max_ch;
#if BUILD_Y8950
if (type & OPL_TYPE_ADPCM)
OPL->deltat = (YM_DELTAT *) ptr;
ptr += sizeof (YM_DELTAT);
#endif
/* set channel state pointer */
OPL->type = type;
OPL->clock = clock;
OPL->rate = rate;
OPL->max_ch = max_ch;
/* init grobal tables */
OPL_initalize (OPL);
/* reset chip */
OPLResetChip (OPL);
return OPL;
}
/* ---------- Destroy one of vietual YM3812 ---------- */
void
OPLDestroy (FM_OPL * OPL)
{
OPL_UnLockTable ();
free (OPL);
}
/* ---------- Option handlers ---------- */
void
OPLSetTimerHandler (FM_OPL * OPL, OPL_TIMERHANDLER TimerHandler,
int channelOffset)
{
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = channelOffset;
}
void
OPLSetIRQHandler (FM_OPL * OPL, OPL_IRQHANDLER IRQHandler, int param)
{
OPL->IRQHandler = IRQHandler;
OPL->IRQParam = param;
}
void
OPLSetUpdateHandler (FM_OPL * OPL, OPL_UPDATEHANDLER UpdateHandler, int param)
{
OPL->UpdateHandler = UpdateHandler;
OPL->UpdateParam = param;
}
#if BUILD_Y8950
void
OPLSetPortHandler (FM_OPL * OPL, OPL_PORTHANDLER_W PortHandler_w,
OPL_PORTHANDLER_R PortHandler_r, int param)
{
OPL->porthandler_w = PortHandler_w;
OPL->porthandler_r = PortHandler_r;
OPL->port_param = param;
}
void
OPLSetKeyboardHandler (FM_OPL * OPL, OPL_PORTHANDLER_W KeyboardHandler_w,
OPL_PORTHANDLER_R KeyboardHandler_r, int param)
{
OPL->keyboardhandler_w = KeyboardHandler_w;
OPL->keyboardhandler_r = KeyboardHandler_r;
OPL->keyboard_param = param;
}
#endif
/* ---------- YM3812 I/O interface ---------- */
int
OPLWrite (FM_OPL * OPL, int a, int v)
{
if (!(a & 1)) { /* address port */
OPL->address = v & 0xff;
} else { /* data port */
if (OPL->UpdateHandler)
OPL->UpdateHandler (OPL->UpdateParam, 0);
OPLWriteReg (OPL, OPL->address, v);
}
return OPL->status >> 7;
}
unsigned char
OPLRead (FM_OPL * OPL, int a)
{
if (!(a & 1)) { /* status port */
return OPL->status & (OPL->statusmask | 0x80);
}
/* data port */
switch (OPL->address) {
case 0x05: /* KeyBoard IN */
if (OPL->type & OPL_TYPE_KEYBOARD) {
if (OPL->keyboardhandler_r)
return OPL->keyboardhandler_r (OPL->keyboard_param);
else
LOG (LOG_WAR, ("OPL:read unmapped KEYBOARD port\n"));
}
return 0;
#if 0
case 0x0f: /* ADPCM-DATA */
return 0;
#endif
case 0x19: /* I/O DATA */
if (OPL->type & OPL_TYPE_IO) {
if (OPL->porthandler_r)
return OPL->porthandler_r (OPL->port_param);
else
LOG (LOG_WAR, ("OPL:read unmapped I/O port\n"));
}
return 0;
case 0x1a: /* PCM-DATA */
return 0;
}
return 0;
}
int
OPLTimerOver (FM_OPL * OPL, int c)
{
if (c) { /* Timer B */
OPL_STATUS_SET (OPL, 0x20);
} else { /* Timer A */
OPL_STATUS_SET (OPL, 0x40);
/* CSM mode key,TL controll */
if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
int ch;
if (OPL->UpdateHandler)
OPL->UpdateHandler (OPL->UpdateParam, 0);
for (ch = 0; ch < 9; ch++)
CSMKeyControll (&OPL->P_CH[ch]);
}
}
/* reload timer */
if (OPL->TimerHandler)
(OPL->TimerHandler) (OPL->TimerParam + c,
(double) OPL->T[c] * OPL->TimerBase);
return OPL->status >> 7;
}