mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-22 07:08:23 +00:00
282 lines
8.7 KiB
Python
282 lines
8.7 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8; mode: python; -*-
|
||
|
#
|
||
|
# GStreamer Debug Viewer - View and analyze GStreamer debug log files
|
||
|
#
|
||
|
# Copyright (C) 2007 René Stadler <mail@renestadler.de>
|
||
|
#
|
||
|
# This program is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU General Public License as published by the Free
|
||
|
# Software Foundation; either version 3 of the License, or (at your option)
|
||
|
# any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
# more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along with
|
||
|
# this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
"""GStreamer Debug Viewer test suite for the custom tree models."""
|
||
|
|
||
|
import sys
|
||
|
import os
|
||
|
import os.path
|
||
|
from glob import glob
|
||
|
|
||
|
from unittest import TestCase, main as test_main
|
||
|
|
||
|
from .. import Common, Data
|
||
|
from .. GUI.filters import CategoryFilter, Filter
|
||
|
from .. GUI.models import (FilteredLogModel,
|
||
|
LogModelBase,
|
||
|
SubRange,)
|
||
|
|
||
|
|
||
|
class TestSubRange (TestCase):
|
||
|
|
||
|
def test_len(self):
|
||
|
|
||
|
values = list(range(20))
|
||
|
|
||
|
sr = SubRange(values, 0, 20)
|
||
|
self.assertEqual(len(sr), 20)
|
||
|
|
||
|
sr = SubRange(values, 10, 20)
|
||
|
self.assertEqual(len(sr), 10)
|
||
|
|
||
|
sr = SubRange(values, 0, 10)
|
||
|
self.assertEqual(len(sr), 10)
|
||
|
|
||
|
sr = SubRange(values, 5, 15)
|
||
|
self.assertEqual(len(sr), 10)
|
||
|
|
||
|
def test_iter(self):
|
||
|
|
||
|
values = list(range(20))
|
||
|
|
||
|
sr = SubRange(values, 0, 20)
|
||
|
self.assertEqual(list(sr), values)
|
||
|
|
||
|
sr = SubRange(values, 10, 20)
|
||
|
self.assertEqual(list(sr), list(range(10, 20)))
|
||
|
|
||
|
sr = SubRange(values, 0, 10)
|
||
|
self.assertEqual(list(sr), list(range(0, 10)))
|
||
|
|
||
|
sr = SubRange(values, 5, 15)
|
||
|
self.assertEqual(list(sr), list(range(5, 15)))
|
||
|
|
||
|
|
||
|
class Model (LogModelBase):
|
||
|
|
||
|
def __init__(self):
|
||
|
|
||
|
LogModelBase.__init__(self)
|
||
|
|
||
|
for i in range(20):
|
||
|
self.line_offsets.append(i * 100)
|
||
|
self.line_levels.append(Data.debug_level_debug)
|
||
|
|
||
|
def ensure_cached(self, line_offset):
|
||
|
|
||
|
pid = line_offset // 100
|
||
|
if pid % 2 == 0:
|
||
|
category = b"EVEN"
|
||
|
else:
|
||
|
category = b"ODD"
|
||
|
|
||
|
line_fmt = (b"0:00:00.000000000 %5i 0x0000000 DEBUG "
|
||
|
b"%20s dummy.c:1:dummy: dummy")
|
||
|
line_str = line_fmt % (pid, category,)
|
||
|
log_line = Data.LogLine.parse_full(line_str)
|
||
|
self.line_cache[line_offset] = log_line
|
||
|
|
||
|
def access_offset(self, line_offset):
|
||
|
|
||
|
return ""
|
||
|
|
||
|
|
||
|
class IdentityFilter (Filter):
|
||
|
|
||
|
def __init__(self):
|
||
|
|
||
|
def filter_func(row):
|
||
|
return True
|
||
|
self.filter_func = filter_func
|
||
|
|
||
|
|
||
|
class RandomFilter (Filter):
|
||
|
|
||
|
def __init__(self, seed):
|
||
|
|
||
|
import random
|
||
|
rand = random.Random()
|
||
|
rand.seed(seed)
|
||
|
|
||
|
def filter_func(row):
|
||
|
return rand.choice((True, False,))
|
||
|
self.filter_func = filter_func
|
||
|
|
||
|
|
||
|
class TestDynamicFilter (TestCase):
|
||
|
|
||
|
def test_unset_filter_rerange(self):
|
||
|
|
||
|
full_model = Model()
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
row_list = self.__row_list
|
||
|
|
||
|
self.assertEqual(row_list(full_model), list(range(20)))
|
||
|
self.assertEqual(row_list(filtered_model), list(range(20)))
|
||
|
|
||
|
filtered_model.set_range(5, 16)
|
||
|
|
||
|
self.assertEqual(row_list(filtered_model), list(range(5, 16)))
|
||
|
|
||
|
def test_identity_filter_rerange(self):
|
||
|
|
||
|
full_model = Model()
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
row_list = self.__row_list
|
||
|
|
||
|
self.assertEqual(row_list(full_model), list(range(20)))
|
||
|
self.assertEqual(row_list(filtered_model), list(range(20)))
|
||
|
|
||
|
filtered_model.add_filter(IdentityFilter(),
|
||
|
Common.Data.DefaultDispatcher())
|
||
|
filtered_model.set_range(5, 16)
|
||
|
|
||
|
self.assertEqual(row_list(filtered_model), list(range(5, 16)))
|
||
|
|
||
|
def test_filtered_range_refilter_skip(self):
|
||
|
|
||
|
full_model = Model()
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
|
||
|
row_list = self.__row_list
|
||
|
|
||
|
filtered_model.add_filter(CategoryFilter("EVEN"),
|
||
|
Common.Data.DefaultDispatcher())
|
||
|
self.__dump_model(filtered_model, "filtered")
|
||
|
|
||
|
self.assertEqual(row_list(filtered_model), list(range(1, 20, 2)))
|
||
|
self.assertEqual([filtered_model.line_index_from_super(i)
|
||
|
for i in range(1, 20, 2)],
|
||
|
list(range(10)))
|
||
|
self.assertEqual([filtered_model.line_index_to_super(i)
|
||
|
for i in range(10)],
|
||
|
list(range(1, 20, 2)))
|
||
|
|
||
|
filtered_model.set_range(1, 20)
|
||
|
self.__dump_model(filtered_model, "ranged (1, 20)")
|
||
|
self.__dump_model(filtered_model, "filtered range")
|
||
|
|
||
|
self.assertEqual([filtered_model.line_index_from_super(i)
|
||
|
for i in range(0, 19, 2)],
|
||
|
list(range(10)))
|
||
|
self.assertEqual([filtered_model.line_index_to_super(i)
|
||
|
for i in range(10)],
|
||
|
list(range(1, 20, 2)))
|
||
|
|
||
|
filtered_model.set_range(2, 20)
|
||
|
self.__dump_model(filtered_model, "ranged (2, 20)")
|
||
|
|
||
|
self.assertEqual(row_list(filtered_model), list(range(3, 20, 2)))
|
||
|
|
||
|
def test_filtered_range_refilter(self):
|
||
|
|
||
|
full_model = Model()
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
|
||
|
row_list = self.__row_list
|
||
|
rows = row_list(full_model)
|
||
|
rows_filtered = row_list(filtered_model)
|
||
|
|
||
|
self.__dump_model(full_model, "full model")
|
||
|
|
||
|
self.assertEqual(rows, rows_filtered)
|
||
|
|
||
|
self.assertEqual([filtered_model.line_index_from_super(i)
|
||
|
for i in range(20)],
|
||
|
list(range(20)))
|
||
|
self.assertEqual([filtered_model.line_index_to_super(i)
|
||
|
for i in range(20)],
|
||
|
list(range(20)))
|
||
|
|
||
|
filtered_model.set_range(5, 16)
|
||
|
self.__dump_model(filtered_model, "ranged model (5, 16)")
|
||
|
|
||
|
rows_ranged = row_list(filtered_model)
|
||
|
self.assertEqual(rows_ranged, list(range(5, 16)))
|
||
|
|
||
|
self.__dump_model(filtered_model, "filtered model (nofilter, 5, 15)")
|
||
|
|
||
|
filtered_model.add_filter(CategoryFilter("EVEN"),
|
||
|
Common.Data.DefaultDispatcher())
|
||
|
rows_filtered = row_list(filtered_model)
|
||
|
self.assertEqual(rows_filtered, list(range(5, 16, 2)))
|
||
|
|
||
|
self.__dump_model(filtered_model, "filtered model")
|
||
|
|
||
|
def test_random_filtered_range_refilter(self):
|
||
|
|
||
|
full_model = Model()
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
row_list = self.__row_list
|
||
|
|
||
|
self.assertEqual(row_list(full_model), list(range(20)))
|
||
|
self.assertEqual(row_list(filtered_model), list(range(20)))
|
||
|
|
||
|
filtered_model.add_filter(RandomFilter(538295943),
|
||
|
Common.Data.DefaultDispatcher())
|
||
|
random_rows = row_list(filtered_model)
|
||
|
|
||
|
self.__dump_model(filtered_model)
|
||
|
|
||
|
filtered_model = FilteredLogModel(full_model)
|
||
|
filtered_model.add_filter(RandomFilter(538295943),
|
||
|
Common.Data.DefaultDispatcher())
|
||
|
self.__dump_model(filtered_model, "filtered model")
|
||
|
self.assertEqual(row_list(filtered_model), random_rows)
|
||
|
|
||
|
filtered_model.set_range(1, 10)
|
||
|
self.__dump_model(filtered_model)
|
||
|
self.assertEqual(row_list(filtered_model), [
|
||
|
x for x in range(0, 10) if x in random_rows])
|
||
|
|
||
|
def __row_list(self, model):
|
||
|
|
||
|
return [row[Model.COL_PID] for row in model]
|
||
|
|
||
|
def __dump_model(self, model, comment=None):
|
||
|
|
||
|
# TODO: Provide a command line option to turn this on and off.
|
||
|
|
||
|
return
|
||
|
|
||
|
if not hasattr(model, "super_model"):
|
||
|
# Top model.
|
||
|
print("\t(%s)" % ("|".join([str(i).rjust(2)
|
||
|
for i in self.__row_list(model)]),), end=' ')
|
||
|
else:
|
||
|
top_model = model.super_model
|
||
|
if hasattr(top_model, "super_model"):
|
||
|
top_model = top_model.super_model
|
||
|
top_indices = self.__row_list(top_model)
|
||
|
positions = self.__row_list(model)
|
||
|
output = [" "] * len(top_indices)
|
||
|
for i, position in enumerate(positions):
|
||
|
output[position] = str(i).rjust(2)
|
||
|
print("\t(%s)" % ("|".join(output),), end=' ')
|
||
|
|
||
|
if comment is None:
|
||
|
print()
|
||
|
else:
|
||
|
print(comment)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_main()
|