mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-11-03 16:09:39 +00:00
271 lines
7.8 KiB
C
271 lines
7.8 KiB
C
|
/* GStreamer
|
||
|
* Copyright (C) <2007> Sebastian Dröge <slomo@circular-chaos.org>
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
#include <glib.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "kiss_fftr_f32.h"
|
||
|
#include "gstfft.h"
|
||
|
#include "gstfftf32.h"
|
||
|
|
||
|
/**
|
||
|
* SECTION:gstfftf32
|
||
|
* @short_description: FFT functions for 32 bit float samples
|
||
|
*
|
||
|
* #GstFFTF32 provides a FFT implementation and related functions for
|
||
|
* 32 bit float samples. To use this call gst_fft_f32_new() for
|
||
|
* allocating a #GstFFTF32 instance with the appropiate parameters and
|
||
|
* then call gst_fft_f32_fft() or gst_fft_f32_inverse_fft() to perform the
|
||
|
* FFT or inverse FFT on a buffer of samples.
|
||
|
*
|
||
|
* After use free the #GstFFTF32 instance with gst_fft_f32_free().
|
||
|
*
|
||
|
* For the best performance use gst_fft_next_fast_length() to get a
|
||
|
* number that is entirely a product of 2, 3 and 5 and use this as the
|
||
|
* @len parameter for gst_fft_f32_new().
|
||
|
*
|
||
|
* The @len parameter specifies the number of samples in the time domain that
|
||
|
* will be processed or generated. The number of samples in the frequency domain
|
||
|
* is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.
|
||
|
*
|
||
|
* Before performing the FFT on time domain data it usually makes sense
|
||
|
* to apply a window function to it. For this gst_fft_f32_window() can comfortably
|
||
|
* be used.
|
||
|
*
|
||
|
* For calculating the magnitude or phase of frequency data the functions
|
||
|
* gst_fft_f32_magnitude() and gst_fft_f32_phase() exist, if you want to calculate
|
||
|
* the magnitude yourself note that the magnitude of the frequency data is
|
||
|
* a value between 0 and 1 and is to be scaled by the length of the FFT.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_new:
|
||
|
* @len: Length of the FFT in the time domain
|
||
|
* @inverse: %TRUE if the #GstFFTF32 instance should be used for the inverse FFT
|
||
|
*
|
||
|
* This returns a new #GstFFTF32 instance with the given parameters. It makes
|
||
|
* sense to keep one instance for several calls for speed reasons.
|
||
|
*
|
||
|
* @len must be even and to get the best performance a product of
|
||
|
* 2, 3 and 5. To get the next number with this characteristics use
|
||
|
* gst_fft_next_fast_length().
|
||
|
*
|
||
|
* Returns: a new #GstFFTF32 instance.
|
||
|
*/
|
||
|
GstFFTF32 *
|
||
|
gst_fft_f32_new (gint len, gboolean inverse)
|
||
|
{
|
||
|
GstFFTF32 *self;
|
||
|
|
||
|
g_return_val_if_fail (len > 0, NULL);
|
||
|
g_return_val_if_fail (len % 2 == 0, NULL);
|
||
|
|
||
|
self = g_new (GstFFTF32, 1);
|
||
|
|
||
|
self->cfg = kiss_fftr_f32_alloc (len, (inverse) ? 1 : 0, NULL, NULL);
|
||
|
g_assert (self->cfg);
|
||
|
|
||
|
self->inverse = inverse;
|
||
|
self->len = len;
|
||
|
|
||
|
return self;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_fft:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
* @timedata: Buffer of the samples in the time domain
|
||
|
* @freqdata: Target buffer for the samples in the frequency domain
|
||
|
*
|
||
|
* This performs the FFT on @timedata and puts the result in @freqdata.
|
||
|
*
|
||
|
* @timedata must have as many samples as specified with the @len parameter while
|
||
|
* allocating the #GstFFTF32 instance with gst_fft_f32_new().
|
||
|
*
|
||
|
* @freqdata must be large enough to hold @len/2 + 1 #GstFFTF32Complex frequency
|
||
|
* domain samples.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_fft (GstFFTF32 * self, const gfloat * timedata,
|
||
|
GstFFTF32Complex * freqdata)
|
||
|
{
|
||
|
g_return_if_fail (self);
|
||
|
g_return_if_fail (!self->inverse);
|
||
|
g_return_if_fail (timedata);
|
||
|
g_return_if_fail (freqdata);
|
||
|
|
||
|
kiss_fftr_f32 (self->cfg, timedata, (kiss_fft_f32_cpx *) freqdata);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_inverse_fft:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
* @freqdata: Buffer of the samples in the frequency domain
|
||
|
* @timedata: Target buffer for the samples in the time domain
|
||
|
*
|
||
|
* This performs the inverse FFT on @freqdata and puts the result in @timedata.
|
||
|
*
|
||
|
* @freqdata must have @len/2 + 1 samples, where @len is the parameter specified
|
||
|
* while allocating the #GstFFTF32 instance with gst_fft_f32_new().
|
||
|
*
|
||
|
* @timedata must be large enough to hold @len time domain samples.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_inverse_fft (GstFFTF32 * self, const GstFFTF32Complex * freqdata,
|
||
|
gfloat * timedata)
|
||
|
{
|
||
|
g_return_if_fail (self);
|
||
|
g_return_if_fail (self->inverse);
|
||
|
g_return_if_fail (timedata);
|
||
|
g_return_if_fail (freqdata);
|
||
|
|
||
|
kiss_fftri_f32 (self->cfg, (kiss_fft_f32_cpx *) freqdata, timedata);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_free:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
*
|
||
|
* This frees the memory allocated for @self.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_free (GstFFTF32 * self)
|
||
|
{
|
||
|
kiss_fftr_f32_free (self->cfg);
|
||
|
g_free (self);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_window:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
* @timedata: Time domain samples
|
||
|
* @window: Window function to apply
|
||
|
*
|
||
|
* This calls the window function @window on the @timedata sample buffer.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_window (GstFFTF32 * self, gfloat * timedata, GstFFTWindow window)
|
||
|
{
|
||
|
gint i, len;
|
||
|
|
||
|
g_return_if_fail (self);
|
||
|
g_return_if_fail (timedata);
|
||
|
|
||
|
len = self->len;
|
||
|
|
||
|
switch (window) {
|
||
|
case GST_FFT_WINDOW_RECTANGULAR:
|
||
|
/* do nothing */
|
||
|
break;
|
||
|
case GST_FFT_WINDOW_HAMMING:
|
||
|
for (i = 0; i < len; i++)
|
||
|
timedata[i] *= (0.53836 - 0.46164 * cos (2.0 * M_PI * i / len));
|
||
|
break;
|
||
|
case GST_FFT_WINDOW_HANN:
|
||
|
for (i = 0; i < len; i++)
|
||
|
timedata[i] *= (0.5 - 0.5 * cos (2.0 * M_PI * i / len));
|
||
|
break;
|
||
|
case GST_FFT_WINDOW_BARTLETT:
|
||
|
for (i = 0; i < len; i++)
|
||
|
timedata[i] *= (1.0 - fabs ((2.0 * i - len) / len));
|
||
|
break;
|
||
|
case GST_FFT_WINDOW_BLACKMAN:
|
||
|
for (i = 0; i < len; i++)
|
||
|
timedata[i] *= (0.42 - 0.5 * cos ((2.0 * i) / len) +
|
||
|
0.08 * cos ((4.0 * i) / len));
|
||
|
break;
|
||
|
default:
|
||
|
g_assert_not_reached ();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_magnitude:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
* @freqdata: Frequency domain samples
|
||
|
* @magnitude: Target buffer for the magnitude
|
||
|
* @decibel: %TRUE if the magnitude should be in decibel, %FALSE if it should be an amplitude
|
||
|
*
|
||
|
* This calculates the magnitude of @freqdata in @magnitude. Depending on the value
|
||
|
* of @decibel the magnitude can be calculated in decibel or as amplitude between 0.0
|
||
|
* and 1.0.
|
||
|
*
|
||
|
* @magnitude must be large enough to hold @len/2 + 1 values.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_magnitude (GstFFTF32 * self, GstFFTF32Complex * freqdata,
|
||
|
gdouble * magnitude, gboolean decibel)
|
||
|
{
|
||
|
gint i, len, nfft;
|
||
|
gdouble val;
|
||
|
|
||
|
g_return_if_fail (self);
|
||
|
g_return_if_fail (freqdata);
|
||
|
g_return_if_fail (magnitude);
|
||
|
|
||
|
len = self->len / 2 + 1;
|
||
|
nfft = self->len;
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
val = (gdouble) freqdata[i].r * (gdouble) freqdata[i].r
|
||
|
+ (gdouble) freqdata[i].i * (gdouble) freqdata[i].i;
|
||
|
val = sqrt (val) / nfft;
|
||
|
|
||
|
if (decibel)
|
||
|
val = 20.0 * log10 (val);
|
||
|
|
||
|
magnitude[i] = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gst_fft_f32_phase:
|
||
|
* @self: #GstFFTF32 instance for this call
|
||
|
* @freqdata: Frequency domain samples
|
||
|
* @phase: Target buffer for the phase
|
||
|
*
|
||
|
* This calculates the phases of @freqdata in @phase. The returned
|
||
|
* phases will be values between -pi and pi.
|
||
|
*
|
||
|
* @phase must be large enough to hold @len/2 + 1 values.
|
||
|
*
|
||
|
*/
|
||
|
void
|
||
|
gst_fft_f32_phase (GstFFTF32 * self, GstFFTF32Complex * freqdata,
|
||
|
gdouble * phase)
|
||
|
{
|
||
|
gint i, len;
|
||
|
|
||
|
g_return_if_fail (self);
|
||
|
g_return_if_fail (freqdata);
|
||
|
g_return_if_fail (phase);
|
||
|
|
||
|
len = self->len / 2 + 1;
|
||
|
|
||
|
for (i = 0; i < len; i++)
|
||
|
phase[i] = atan2 (freqdata[i].i, freqdata[i].r);
|
||
|
}
|