mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-07 16:05:47 +00:00
312 lines
5.7 KiB
C
312 lines
5.7 KiB
C
|
/* Resampling library
|
||
|
* Copyright (C) <2001> David A. Schleef <ds@schleef.org>
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <string.h>
|
||
|
#include <math.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include <resample.h>
|
||
|
|
||
|
|
||
|
|
||
|
double functable_sinc(void *p,double x)
|
||
|
{
|
||
|
if(x==0)return 1;
|
||
|
return sin(x)/x;
|
||
|
}
|
||
|
|
||
|
double functable_dsinc(void *p,double x)
|
||
|
{
|
||
|
if(x==0)return 0;
|
||
|
return cos(x)/x - sin(x)/(x*x);
|
||
|
}
|
||
|
|
||
|
double functable_window_boxcar(void *p,double x)
|
||
|
{
|
||
|
if(x<-1 || x>1)return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
double functable_window_dboxcar(void *p,double x)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
double functable_window_std(void *p,double x)
|
||
|
{
|
||
|
if(x<-1 || x>1)return 0;
|
||
|
return (1-x*x)*(1-x*x);
|
||
|
}
|
||
|
|
||
|
double functable_window_dstd(void *p,double x)
|
||
|
{
|
||
|
if(x<-1 || x>1)return 0;
|
||
|
return -4*x*(1-x*x);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void functable_init(functable_t *t)
|
||
|
{
|
||
|
int i;
|
||
|
double x;
|
||
|
|
||
|
t->fx = malloc(sizeof(double)*(t->len+1));
|
||
|
t->fdx = malloc(sizeof(double)*(t->len+1));
|
||
|
|
||
|
t->invoffset = 1.0 / t->offset;
|
||
|
|
||
|
for(i=0;i<t->len+1;i++){
|
||
|
x = t->start + t->offset * i;
|
||
|
x *= t->scale;
|
||
|
|
||
|
t->fx[i] = t->func_x(t->priv,x);
|
||
|
t->fdx[i] = t->scale * t->func_dx(t->priv,x);
|
||
|
}
|
||
|
if(t->func2_x){
|
||
|
double f1x,f1dx;
|
||
|
double f2x,f2dx;
|
||
|
|
||
|
for(i=0;i<t->len+1;i++){
|
||
|
x = t->start + t->offset * i;
|
||
|
x *= t->scale2;
|
||
|
|
||
|
f2x = t->func2_x(t->priv,x);
|
||
|
f2dx = t->scale2 * t->func2_dx(t->priv,x);
|
||
|
|
||
|
f1x = t->fx[i];
|
||
|
f1dx = t->fdx[i];
|
||
|
|
||
|
t->fx[i] = f1x * f2x;
|
||
|
t->fdx[i] = f1x * f2dx + f1dx * f2x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double functable_eval(functable_t *t,double x)
|
||
|
{
|
||
|
int i;
|
||
|
double f0, f1, w0, w1;
|
||
|
double x2, x3;
|
||
|
double w;
|
||
|
|
||
|
if(x<t->start || x>(t->start+(t->len+1)*t->offset)){
|
||
|
printf("x out of range %g\n",x);
|
||
|
}
|
||
|
x -= t->start;
|
||
|
x /= t->offset;
|
||
|
i = floor(x);
|
||
|
x -= i;
|
||
|
|
||
|
x2 = x * x;
|
||
|
x3 = x2 * x;
|
||
|
|
||
|
f1 = 3 * x2 - 2 * x3;
|
||
|
f0 = 1 - f1;
|
||
|
w0 = (x - 2 * x2 + x3) * t->offset;
|
||
|
w1 = (-x2 + x3) * t->offset;
|
||
|
|
||
|
//printf("i=%d x=%g f0=%g f1=%g w0=%g w1=%g\n",i,x,f0,f1,w0,w1);
|
||
|
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
|
||
|
//w = t->fx[i] * (1-x) + t->fx[i+1] * x;
|
||
|
|
||
|
return w;
|
||
|
}
|
||
|
|
||
|
|
||
|
double functable_fir(functable_t *t, double x, int n, double *data, int len)
|
||
|
{
|
||
|
int i,j;
|
||
|
double f0, f1, w0, w1;
|
||
|
double x2, x3;
|
||
|
double w;
|
||
|
double sum;
|
||
|
|
||
|
x -= t->start;
|
||
|
x /= t->offset;
|
||
|
i = floor(x);
|
||
|
x -= i;
|
||
|
|
||
|
x2 = x * x;
|
||
|
x3 = x2 * x;
|
||
|
|
||
|
f1 = 3 * x2 - 2 * x3;
|
||
|
f0 = 1 - f1;
|
||
|
w0 = (x - 2 * x2 + x3) * t->offset;
|
||
|
w1 = (-x2 + x3) * t->offset;
|
||
|
|
||
|
sum = 0;
|
||
|
for(j=0;j<len;j++){
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
sum += data[j*2] * w;
|
||
|
i += n;
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
void functable_fir2(functable_t *t, double *r0, double *r1, double x,
|
||
|
int n, double *data, int len)
|
||
|
{
|
||
|
int i,j;
|
||
|
double f0, f1, w0, w1;
|
||
|
double x2, x3;
|
||
|
double w;
|
||
|
double sum0, sum1;
|
||
|
double floor_x;
|
||
|
|
||
|
x -= t->start;
|
||
|
x *= t->invoffset;
|
||
|
floor_x = floor(x);
|
||
|
i = floor_x;
|
||
|
x -= floor_x;
|
||
|
|
||
|
x2 = x * x;
|
||
|
x3 = x2 * x;
|
||
|
|
||
|
f1 = 3 * x2 - 2 * x3;
|
||
|
f0 = 1 - f1;
|
||
|
w0 = (x - 2 * x2 + x3) * t->offset;
|
||
|
w1 = (-x2 + x3) * t->offset;
|
||
|
|
||
|
sum0 = 0;
|
||
|
sum1 = 0;
|
||
|
for(j=0;j<len;j++){
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
sum0 += data[j*2] * w;
|
||
|
sum1 += data[j*2+1] * w;
|
||
|
i += n;
|
||
|
|
||
|
#define unroll2
|
||
|
#define unroll3
|
||
|
#define unroll4
|
||
|
#ifdef unroll2
|
||
|
j++;
|
||
|
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
sum0 += data[j*2] * w;
|
||
|
sum1 += data[j*2+1] * w;
|
||
|
i += n;
|
||
|
#endif
|
||
|
#ifdef unroll3
|
||
|
j++;
|
||
|
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
sum0 += data[j*2] * w;
|
||
|
sum1 += data[j*2+1] * w;
|
||
|
i += n;
|
||
|
#endif
|
||
|
#ifdef unroll4
|
||
|
j++;
|
||
|
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
sum0 += data[j*2] * w;
|
||
|
sum1 += data[j*2+1] * w;
|
||
|
i += n;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
*r0 = sum0;
|
||
|
*r1 = sum1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef unused
|
||
|
void functable_fir2_altivec(functable_t *t, float *r0, float *r1,
|
||
|
double x, int n, float *data, int len)
|
||
|
{
|
||
|
int i,j;
|
||
|
double f0, f1, w0, w1;
|
||
|
double x2, x3;
|
||
|
double w;
|
||
|
double sum0, sum1;
|
||
|
double floor_x;
|
||
|
|
||
|
x -= t->start;
|
||
|
x *= t->invoffset;
|
||
|
floor_x = floor(x);
|
||
|
i = floor_x;
|
||
|
x -= floor_x;
|
||
|
|
||
|
x2 = x * x;
|
||
|
x3 = x2 * x;
|
||
|
|
||
|
f1 = 3 * x2 - 2 * x3;
|
||
|
f0 = 1 - f1;
|
||
|
w0 = (x - 2 * x2 + x3) * t->offset;
|
||
|
w1 = (-x2 + x3) * t->offset;
|
||
|
|
||
|
sum0 = 0;
|
||
|
sum1 = 0;
|
||
|
for(j=0;j<len;j++){
|
||
|
// t->fx, t->fdx needs to be multiplexed by n
|
||
|
// we need 5 consecutive floats, which fit into 2 vecs
|
||
|
// load v0, t->fx[i]
|
||
|
// load v1, t->fx[i+n]
|
||
|
// v2 = v0 (not correct)
|
||
|
// v3 = (v0>>32) || (v1<<3*32) (not correct)
|
||
|
//
|
||
|
// load v4, t->dfx[i]
|
||
|
// load v5, t->dfx[i+n]
|
||
|
// v6 = v4 (not correct)
|
||
|
// v7 = (v4>>32) || (v5<<3*32) (not correct)
|
||
|
//
|
||
|
// v8 = splat(f0)
|
||
|
// v9 = splat(f1)
|
||
|
// v10 = splat(w0)
|
||
|
// v11 = splat(w1)
|
||
|
//
|
||
|
// v12 = v2 * v8
|
||
|
// v12 += v3 * v9
|
||
|
// v12 += v6 * v10
|
||
|
// v12 += v7 * v11
|
||
|
|
||
|
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||
|
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||
|
|
||
|
// v13 = data[j*2]
|
||
|
// v14 = data[j*2+4]
|
||
|
// v15 = deinterlace_high(v13,v14)
|
||
|
// v16 = deinterlace_low(v13,v14)
|
||
|
// (sum0) v17 += multsum(v13,v15)
|
||
|
// (sum1) v18 += multsum(v14,v16)
|
||
|
|
||
|
sum0 += data[j*2] * w;
|
||
|
sum1 += data[j*2+1] * w;
|
||
|
i += n;
|
||
|
|
||
|
}
|
||
|
|
||
|
*r0 = sum0;
|
||
|
*r1 = sum1;
|
||
|
}
|
||
|
#endif
|
||
|
|