gotosocial/vendor/github.com/jackc/puddle/v2/pool.go
dependabot[bot] 9b76afc851
[chore]: Bump github.com/jackc/pgx/v5 from 5.4.3 to 5.5.0 ()
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-06 14:44:53 +00:00

696 lines
20 KiB
Go

package puddle
import (
"context"
"errors"
"sync"
"sync/atomic"
"time"
"github.com/jackc/puddle/v2/internal/genstack"
"golang.org/x/sync/semaphore"
)
const (
resourceStatusConstructing = 0
resourceStatusIdle = iota
resourceStatusAcquired = iota
resourceStatusHijacked = iota
)
// ErrClosedPool occurs on an attempt to acquire a connection from a closed pool
// or a pool that is closed while the acquire is waiting.
var ErrClosedPool = errors.New("closed pool")
// ErrNotAvailable occurs on an attempt to acquire a resource from a pool
// that is at maximum capacity and has no available resources.
var ErrNotAvailable = errors.New("resource not available")
// Constructor is a function called by the pool to construct a resource.
type Constructor[T any] func(ctx context.Context) (res T, err error)
// Destructor is a function called by the pool to destroy a resource.
type Destructor[T any] func(res T)
// Resource is the resource handle returned by acquiring from the pool.
type Resource[T any] struct {
value T
pool *Pool[T]
creationTime time.Time
lastUsedNano int64
poolResetCount int
status byte
}
// Value returns the resource value.
func (res *Resource[T]) Value() T {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.value
}
// Release returns the resource to the pool. res must not be subsequently used.
func (res *Resource[T]) Release() {
if res.status != resourceStatusAcquired {
panic("tried to release resource that is not acquired")
}
res.pool.releaseAcquiredResource(res, nanotime())
}
// ReleaseUnused returns the resource to the pool without updating when it was last used used. i.e. LastUsedNanotime
// will not change. res must not be subsequently used.
func (res *Resource[T]) ReleaseUnused() {
if res.status != resourceStatusAcquired {
panic("tried to release resource that is not acquired")
}
res.pool.releaseAcquiredResource(res, res.lastUsedNano)
}
// Destroy returns the resource to the pool for destruction. res must not be
// subsequently used.
func (res *Resource[T]) Destroy() {
if res.status != resourceStatusAcquired {
panic("tried to destroy resource that is not acquired")
}
go res.pool.destroyAcquiredResource(res)
}
// Hijack assumes ownership of the resource from the pool. Caller is responsible
// for cleanup of resource value.
func (res *Resource[T]) Hijack() {
if res.status != resourceStatusAcquired {
panic("tried to hijack resource that is not acquired")
}
res.pool.hijackAcquiredResource(res)
}
// CreationTime returns when the resource was created by the pool.
func (res *Resource[T]) CreationTime() time.Time {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.creationTime
}
// LastUsedNanotime returns when Release was last called on the resource measured in nanoseconds from an arbitrary time
// (a monotonic time). Returns creation time if Release has never been called. This is only useful to compare with
// other calls to LastUsedNanotime. In almost all cases, IdleDuration should be used instead.
func (res *Resource[T]) LastUsedNanotime() int64 {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.lastUsedNano
}
// IdleDuration returns the duration since Release was last called on the resource. This is equivalent to subtracting
// LastUsedNanotime to the current nanotime.
func (res *Resource[T]) IdleDuration() time.Duration {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return time.Duration(nanotime() - res.lastUsedNano)
}
// Pool is a concurrency-safe resource pool.
type Pool[T any] struct {
// mux is the pool internal lock. Any modification of shared state of
// the pool (but Acquires of acquireSem) must be performed only by
// holder of the lock. Long running operations are not allowed when mux
// is held.
mux sync.Mutex
// acquireSem provides an allowance to acquire a resource.
//
// Releases are allowed only when caller holds mux. Acquires have to
// happen before mux is locked (doesn't apply to semaphore.TryAcquire in
// AcquireAllIdle).
acquireSem *semaphore.Weighted
destructWG sync.WaitGroup
allResources resList[T]
idleResources *genstack.GenStack[*Resource[T]]
constructor Constructor[T]
destructor Destructor[T]
maxSize int32
acquireCount int64
acquireDuration time.Duration
emptyAcquireCount int64
canceledAcquireCount atomic.Int64
resetCount int
baseAcquireCtx context.Context
cancelBaseAcquireCtx context.CancelFunc
closed bool
}
type Config[T any] struct {
Constructor Constructor[T]
Destructor Destructor[T]
MaxSize int32
}
// NewPool creates a new pool. Panics if maxSize is less than 1.
func NewPool[T any](config *Config[T]) (*Pool[T], error) {
if config.MaxSize < 1 {
return nil, errors.New("MaxSize must be >= 1")
}
baseAcquireCtx, cancelBaseAcquireCtx := context.WithCancel(context.Background())
return &Pool[T]{
acquireSem: semaphore.NewWeighted(int64(config.MaxSize)),
idleResources: genstack.NewGenStack[*Resource[T]](),
maxSize: config.MaxSize,
constructor: config.Constructor,
destructor: config.Destructor,
baseAcquireCtx: baseAcquireCtx,
cancelBaseAcquireCtx: cancelBaseAcquireCtx,
}, nil
}
// Close destroys all resources in the pool and rejects future Acquire calls.
// Blocks until all resources are returned to pool and destroyed.
func (p *Pool[T]) Close() {
defer p.destructWG.Wait()
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
return
}
p.closed = true
p.cancelBaseAcquireCtx()
for res, ok := p.idleResources.Pop(); ok; res, ok = p.idleResources.Pop() {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
}
}
// Stat is a snapshot of Pool statistics.
type Stat struct {
constructingResources int32
acquiredResources int32
idleResources int32
maxResources int32
acquireCount int64
acquireDuration time.Duration
emptyAcquireCount int64
canceledAcquireCount int64
}
// TotalResources returns the total number of resources currently in the pool.
// The value is the sum of ConstructingResources, AcquiredResources, and
// IdleResources.
func (s *Stat) TotalResources() int32 {
return s.constructingResources + s.acquiredResources + s.idleResources
}
// ConstructingResources returns the number of resources with construction in progress in
// the pool.
func (s *Stat) ConstructingResources() int32 {
return s.constructingResources
}
// AcquiredResources returns the number of currently acquired resources in the pool.
func (s *Stat) AcquiredResources() int32 {
return s.acquiredResources
}
// IdleResources returns the number of currently idle resources in the pool.
func (s *Stat) IdleResources() int32 {
return s.idleResources
}
// MaxResources returns the maximum size of the pool.
func (s *Stat) MaxResources() int32 {
return s.maxResources
}
// AcquireCount returns the cumulative count of successful acquires from the pool.
func (s *Stat) AcquireCount() int64 {
return s.acquireCount
}
// AcquireDuration returns the total duration of all successful acquires from
// the pool.
func (s *Stat) AcquireDuration() time.Duration {
return s.acquireDuration
}
// EmptyAcquireCount returns the cumulative count of successful acquires from the pool
// that waited for a resource to be released or constructed because the pool was
// empty.
func (s *Stat) EmptyAcquireCount() int64 {
return s.emptyAcquireCount
}
// CanceledAcquireCount returns the cumulative count of acquires from the pool
// that were canceled by a context.
func (s *Stat) CanceledAcquireCount() int64 {
return s.canceledAcquireCount
}
// Stat returns the current pool statistics.
func (p *Pool[T]) Stat() *Stat {
p.mux.Lock()
defer p.mux.Unlock()
s := &Stat{
maxResources: p.maxSize,
acquireCount: p.acquireCount,
emptyAcquireCount: p.emptyAcquireCount,
canceledAcquireCount: p.canceledAcquireCount.Load(),
acquireDuration: p.acquireDuration,
}
for _, res := range p.allResources {
switch res.status {
case resourceStatusConstructing:
s.constructingResources += 1
case resourceStatusIdle:
s.idleResources += 1
case resourceStatusAcquired:
s.acquiredResources += 1
}
}
return s
}
// tryAcquireIdleResource checks if there is any idle resource. If there is
// some, this method removes it from idle list and returns it. If the idle pool
// is empty, this method returns nil and doesn't modify the idleResources slice.
//
// WARNING: Caller of this method must hold the pool mutex!
func (p *Pool[T]) tryAcquireIdleResource() *Resource[T] {
res, ok := p.idleResources.Pop()
if !ok {
return nil
}
res.status = resourceStatusAcquired
return res
}
// createNewResource creates a new resource and inserts it into list of pool
// resources.
//
// WARNING: Caller of this method must hold the pool mutex!
func (p *Pool[T]) createNewResource() *Resource[T] {
res := &Resource[T]{
pool: p,
creationTime: time.Now(),
lastUsedNano: nanotime(),
poolResetCount: p.resetCount,
status: resourceStatusConstructing,
}
p.allResources.append(res)
p.destructWG.Add(1)
return res
}
// Acquire gets a resource from the pool. If no resources are available and the pool is not at maximum capacity it will
// create a new resource. If the pool is at maximum capacity it will block until a resource is available. ctx can be
// used to cancel the Acquire.
//
// If Acquire creates a new resource the resource constructor function will receive a context that delegates Value() to
// ctx. Canceling ctx will cause Acquire to return immediately but it will not cancel the resource creation. This avoids
// the problem of it being impossible to create resources when the time to create a resource is greater than any one
// caller of Acquire is willing to wait.
func (p *Pool[T]) Acquire(ctx context.Context) (_ *Resource[T], err error) {
select {
case <-ctx.Done():
p.canceledAcquireCount.Add(1)
return nil, ctx.Err()
default:
}
return p.acquire(ctx)
}
// acquire is a continuation of Acquire function that doesn't check context
// validity.
//
// This function exists solely only for benchmarking purposes.
func (p *Pool[T]) acquire(ctx context.Context) (*Resource[T], error) {
startNano := nanotime()
var waitedForLock bool
if !p.acquireSem.TryAcquire(1) {
waitedForLock = true
err := p.acquireSem.Acquire(ctx, 1)
if err != nil {
p.canceledAcquireCount.Add(1)
return nil, err
}
}
p.mux.Lock()
if p.closed {
p.acquireSem.Release(1)
p.mux.Unlock()
return nil, ErrClosedPool
}
// If a resource is available in the pool.
if res := p.tryAcquireIdleResource(); res != nil {
if waitedForLock {
p.emptyAcquireCount += 1
}
p.acquireCount += 1
p.acquireDuration += time.Duration(nanotime() - startNano)
p.mux.Unlock()
return res, nil
}
if len(p.allResources) >= int(p.maxSize) {
// Unreachable code.
panic("bug: semaphore allowed more acquires than pool allows")
}
// The resource is not idle, but there is enough space to create one.
res := p.createNewResource()
p.mux.Unlock()
res, err := p.initResourceValue(ctx, res)
if err != nil {
return nil, err
}
p.mux.Lock()
defer p.mux.Unlock()
p.emptyAcquireCount += 1
p.acquireCount += 1
p.acquireDuration += time.Duration(nanotime() - startNano)
return res, nil
}
func (p *Pool[T]) initResourceValue(ctx context.Context, res *Resource[T]) (*Resource[T], error) {
// Create the resource in a goroutine to immediately return from Acquire
// if ctx is canceled without also canceling the constructor.
//
// See:
// - https://github.com/jackc/pgx/issues/1287
// - https://github.com/jackc/pgx/issues/1259
constructErrChan := make(chan error)
go func() {
constructorCtx := newValueCancelCtx(ctx, p.baseAcquireCtx)
value, err := p.constructor(constructorCtx)
if err != nil {
p.mux.Lock()
p.allResources.remove(res)
p.destructWG.Done()
// The resource won't be acquired because its
// construction failed. We have to allow someone else to
// take that resouce.
p.acquireSem.Release(1)
p.mux.Unlock()
select {
case constructErrChan <- err:
case <-ctx.Done():
// The caller is cancelled, so no-one awaits the
// error. This branch avoid goroutine leak.
}
return
}
// The resource is already in p.allResources where it might be read. So we need to acquire the lock to update its
// status.
p.mux.Lock()
res.value = value
res.status = resourceStatusAcquired
p.mux.Unlock()
// This select works because the channel is unbuffered.
select {
case constructErrChan <- nil:
case <-ctx.Done():
p.releaseAcquiredResource(res, res.lastUsedNano)
}
}()
select {
case <-ctx.Done():
p.canceledAcquireCount.Add(1)
return nil, ctx.Err()
case err := <-constructErrChan:
if err != nil {
return nil, err
}
return res, nil
}
}
// TryAcquire gets a resource from the pool if one is immediately available. If not, it returns ErrNotAvailable. If no
// resources are available but the pool has room to grow, a resource will be created in the background. ctx is only
// used to cancel the background creation.
func (p *Pool[T]) TryAcquire(ctx context.Context) (*Resource[T], error) {
if !p.acquireSem.TryAcquire(1) {
return nil, ErrNotAvailable
}
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
p.acquireSem.Release(1)
return nil, ErrClosedPool
}
// If a resource is available now
if res := p.tryAcquireIdleResource(); res != nil {
p.acquireCount += 1
return res, nil
}
if len(p.allResources) >= int(p.maxSize) {
// Unreachable code.
panic("bug: semaphore allowed more acquires than pool allows")
}
res := p.createNewResource()
go func() {
value, err := p.constructor(ctx)
p.mux.Lock()
defer p.mux.Unlock()
// We have to create the resource and only then release the
// semaphore - For the time being there is no resource that
// someone could acquire.
defer p.acquireSem.Release(1)
if err != nil {
p.allResources.remove(res)
p.destructWG.Done()
return
}
res.value = value
res.status = resourceStatusIdle
p.idleResources.Push(res)
}()
return nil, ErrNotAvailable
}
// acquireSemAll tries to acquire num free tokens from sem. This function is
// guaranteed to acquire at least the lowest number of tokens that has been
// available in the semaphore during runtime of this function.
//
// For the time being, semaphore doesn't allow to acquire all tokens atomically
// (see https://github.com/golang/sync/pull/19). We simulate this by trying all
// powers of 2 that are less or equal to num.
//
// For example, let's immagine we have 19 free tokens in the semaphore which in
// total has 24 tokens (i.e. the maxSize of the pool is 24 resources). Then if
// num is 24, the log2Uint(24) is 4 and we try to acquire 16, 8, 4, 2 and 1
// tokens. Out of those, the acquire of 16, 2 and 1 tokens will succeed.
//
// Naturally, Acquires and Releases of the semaphore might take place
// concurrently. For this reason, it's not guaranteed that absolutely all free
// tokens in the semaphore will be acquired. But it's guaranteed that at least
// the minimal number of tokens that has been present over the whole process
// will be acquired. This is sufficient for the use-case we have in this
// package.
//
// TODO: Replace this with acquireSem.TryAcquireAll() if it gets to
// upstream. https://github.com/golang/sync/pull/19
func acquireSemAll(sem *semaphore.Weighted, num int) int {
if sem.TryAcquire(int64(num)) {
return num
}
var acquired int
for i := int(log2Int(num)); i >= 0; i-- {
val := 1 << i
if sem.TryAcquire(int64(val)) {
acquired += val
}
}
return acquired
}
// AcquireAllIdle acquires all currently idle resources. Its intended use is for
// health check and keep-alive functionality. It does not update pool
// statistics.
func (p *Pool[T]) AcquireAllIdle() []*Resource[T] {
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
return nil
}
numIdle := p.idleResources.Len()
if numIdle == 0 {
return nil
}
// In acquireSemAll we use only TryAcquire and not Acquire. Because
// TryAcquire cannot block, the fact that we hold mutex locked and try
// to acquire semaphore cannot result in dead-lock.
//
// Because the mutex is locked, no parallel Release can run. This
// implies that the number of tokens can only decrease because some
// Acquire/TryAcquire call can consume the semaphore token. Consequently
// acquired is always less or equal to numIdle. Moreover if acquired <
// numIdle, then there are some parallel Acquire/TryAcquire calls that
// will take the remaining idle connections.
acquired := acquireSemAll(p.acquireSem, numIdle)
idle := make([]*Resource[T], acquired)
for i := range idle {
res, _ := p.idleResources.Pop()
res.status = resourceStatusAcquired
idle[i] = res
}
// We have to bump the generation to ensure that Acquire/TryAcquire
// calls running in parallel (those which caused acquired < numIdle)
// will consume old connections and not freshly released connections
// instead.
p.idleResources.NextGen()
return idle
}
// CreateResource constructs a new resource without acquiring it. It goes straight in the IdlePool. If the pool is full
// it returns an error. It can be useful to maintain warm resources under little load.
func (p *Pool[T]) CreateResource(ctx context.Context) error {
if !p.acquireSem.TryAcquire(1) {
return ErrNotAvailable
}
p.mux.Lock()
if p.closed {
p.acquireSem.Release(1)
p.mux.Unlock()
return ErrClosedPool
}
if len(p.allResources) >= int(p.maxSize) {
p.acquireSem.Release(1)
p.mux.Unlock()
return ErrNotAvailable
}
res := p.createNewResource()
p.mux.Unlock()
value, err := p.constructor(ctx)
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
if err != nil {
p.allResources.remove(res)
p.destructWG.Done()
return err
}
res.value = value
res.status = resourceStatusIdle
// If closed while constructing resource then destroy it and return an error
if p.closed {
go p.destructResourceValue(res.value)
return ErrClosedPool
}
p.idleResources.Push(res)
return nil
}
// Reset destroys all resources, but leaves the pool open. It is intended for use when an error is detected that would
// disrupt all resources (such as a network interruption or a server state change).
//
// It is safe to reset a pool while resources are checked out. Those resources will be destroyed when they are returned
// to the pool.
func (p *Pool[T]) Reset() {
p.mux.Lock()
defer p.mux.Unlock()
p.resetCount++
for res, ok := p.idleResources.Pop(); ok; res, ok = p.idleResources.Pop() {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
}
}
// releaseAcquiredResource returns res to the the pool.
func (p *Pool[T]) releaseAcquiredResource(res *Resource[T], lastUsedNano int64) {
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
if p.closed || res.poolResetCount != p.resetCount {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
} else {
res.lastUsedNano = lastUsedNano
res.status = resourceStatusIdle
p.idleResources.Push(res)
}
}
// Remove removes res from the pool and closes it. If res is not part of the
// pool Remove will panic.
func (p *Pool[T]) destroyAcquiredResource(res *Resource[T]) {
p.destructResourceValue(res.value)
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
p.allResources.remove(res)
}
func (p *Pool[T]) hijackAcquiredResource(res *Resource[T]) {
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
p.allResources.remove(res)
res.status = resourceStatusHijacked
p.destructWG.Done() // not responsible for destructing hijacked resources
}
func (p *Pool[T]) destructResourceValue(value T) {
p.destructor(value)
p.destructWG.Done()
}