gotosocial/vendor/github.com/klauspost/compress/s2/dict.go

351 lines
9.4 KiB
Go

// Copyright (c) 2022+ Klaus Post. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package s2
import (
"bytes"
"encoding/binary"
"sync"
)
const (
// MinDictSize is the minimum dictionary size when repeat has been read.
MinDictSize = 16
// MaxDictSize is the maximum dictionary size when repeat has been read.
MaxDictSize = 65536
// MaxDictSrcOffset is the maximum offset where a dictionary entry can start.
MaxDictSrcOffset = 65535
)
// Dict contains a dictionary that can be used for encoding and decoding s2
type Dict struct {
dict []byte
repeat int // Repeat as index of dict
fast, better, best sync.Once
fastTable *[1 << 14]uint16
betterTableShort *[1 << 14]uint16
betterTableLong *[1 << 17]uint16
bestTableShort *[1 << 16]uint32
bestTableLong *[1 << 19]uint32
}
// NewDict will read a dictionary.
// It will return nil if the dictionary is invalid.
func NewDict(dict []byte) *Dict {
if len(dict) == 0 {
return nil
}
var d Dict
// Repeat is the first value of the dict
r, n := binary.Uvarint(dict)
if n <= 0 {
return nil
}
dict = dict[n:]
d.dict = dict
if cap(d.dict) < len(d.dict)+16 {
d.dict = append(make([]byte, 0, len(d.dict)+16), d.dict...)
}
if len(dict) < MinDictSize || len(dict) > MaxDictSize {
return nil
}
d.repeat = int(r)
if d.repeat > len(dict) {
return nil
}
return &d
}
// Bytes will return a serialized version of the dictionary.
// The output can be sent to NewDict.
func (d *Dict) Bytes() []byte {
dst := make([]byte, binary.MaxVarintLen16+len(d.dict))
return append(dst[:binary.PutUvarint(dst, uint64(d.repeat))], d.dict...)
}
// MakeDict will create a dictionary.
// 'data' must be at least MinDictSize.
// If data is longer than MaxDictSize only the last MaxDictSize bytes will be used.
// If searchStart is set the start repeat value will be set to the last
// match of this content.
// If no matches are found, it will attempt to find shorter matches.
// This content should match the typical start of a block.
// If at least 4 bytes cannot be matched, repeat is set to start of block.
func MakeDict(data []byte, searchStart []byte) *Dict {
if len(data) == 0 {
return nil
}
if len(data) > MaxDictSize {
data = data[len(data)-MaxDictSize:]
}
var d Dict
dict := data
d.dict = dict
if cap(d.dict) < len(d.dict)+16 {
d.dict = append(make([]byte, 0, len(d.dict)+16), d.dict...)
}
if len(dict) < MinDictSize {
return nil
}
// Find the longest match possible, last entry if multiple.
for s := len(searchStart); s > 4; s-- {
if idx := bytes.LastIndex(data, searchStart[:s]); idx >= 0 && idx <= len(data)-8 {
d.repeat = idx
break
}
}
return &d
}
// MakeDictManual will create a dictionary.
// 'data' must be at least MinDictSize and less than or equal to MaxDictSize.
// A manual first repeat index into data must be provided.
// It must be less than len(data)-8.
func MakeDictManual(data []byte, firstIdx uint16) *Dict {
if len(data) < MinDictSize || int(firstIdx) >= len(data)-8 || len(data) > MaxDictSize {
return nil
}
var d Dict
dict := data
d.dict = dict
if cap(d.dict) < len(d.dict)+16 {
d.dict = append(make([]byte, 0, len(d.dict)+16), d.dict...)
}
d.repeat = int(firstIdx)
return &d
}
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// The blocks will require the same amount of memory to decode as encoding,
// and does not make for concurrent decoding.
// Also note that blocks do not contain CRC information, so corruption may be undetected.
//
// If you need to encode larger amounts of data, consider using
// the streaming interface which gives all of these features.
func (d *Dict) Encode(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if cap(dst) < n {
dst = make([]byte, n)
} else {
dst = dst[:n]
}
// The block starts with the varint-encoded length of the decompressed bytes.
dstP := binary.PutUvarint(dst, uint64(len(src)))
if len(src) == 0 {
return dst[:dstP]
}
if len(src) < minNonLiteralBlockSize {
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
n := encodeBlockDictGo(dst[dstP:], src, d)
if n > 0 {
dstP += n
return dst[:dstP]
}
// Not compressible
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
// EncodeBetter returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// EncodeBetter compresses better than Encode but typically with a
// 10-40% speed decrease on both compression and decompression.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// The blocks will require the same amount of memory to decode as encoding,
// and does not make for concurrent decoding.
// Also note that blocks do not contain CRC information, so corruption may be undetected.
//
// If you need to encode larger amounts of data, consider using
// the streaming interface which gives all of these features.
func (d *Dict) EncodeBetter(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if len(dst) < n {
dst = make([]byte, n)
}
// The block starts with the varint-encoded length of the decompressed bytes.
dstP := binary.PutUvarint(dst, uint64(len(src)))
if len(src) == 0 {
return dst[:dstP]
}
if len(src) < minNonLiteralBlockSize {
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
n := encodeBlockBetterDict(dst[dstP:], src, d)
if n > 0 {
dstP += n
return dst[:dstP]
}
// Not compressible
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
// EncodeBest returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// EncodeBest compresses as good as reasonably possible but with a
// big speed decrease.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// The blocks will require the same amount of memory to decode as encoding,
// and does not make for concurrent decoding.
// Also note that blocks do not contain CRC information, so corruption may be undetected.
//
// If you need to encode larger amounts of data, consider using
// the streaming interface which gives all of these features.
func (d *Dict) EncodeBest(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if len(dst) < n {
dst = make([]byte, n)
}
// The block starts with the varint-encoded length of the decompressed bytes.
dstP := binary.PutUvarint(dst, uint64(len(src)))
if len(src) == 0 {
return dst[:dstP]
}
if len(src) < minNonLiteralBlockSize {
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
n := encodeBlockBest(dst[dstP:], src, d)
if n > 0 {
dstP += n
return dst[:dstP]
}
// Not compressible
dstP += emitLiteral(dst[dstP:], src)
return dst[:dstP]
}
// Decode returns the decoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire decoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
func (d *Dict) Decode(dst, src []byte) ([]byte, error) {
dLen, s, err := decodedLen(src)
if err != nil {
return nil, err
}
if dLen <= cap(dst) {
dst = dst[:dLen]
} else {
dst = make([]byte, dLen)
}
if s2DecodeDict(dst, src[s:], d) != 0 {
return nil, ErrCorrupt
}
return dst, nil
}
func (d *Dict) initFast() {
d.fast.Do(func() {
const (
tableBits = 14
maxTableSize = 1 << tableBits
)
var table [maxTableSize]uint16
// We stop so any entry of length 8 can always be read.
for i := 0; i < len(d.dict)-8-2; i += 3 {
x0 := load64(d.dict, i)
h0 := hash6(x0, tableBits)
h1 := hash6(x0>>8, tableBits)
h2 := hash6(x0>>16, tableBits)
table[h0] = uint16(i)
table[h1] = uint16(i + 1)
table[h2] = uint16(i + 2)
}
d.fastTable = &table
})
}
func (d *Dict) initBetter() {
d.better.Do(func() {
const (
// Long hash matches.
lTableBits = 17
maxLTableSize = 1 << lTableBits
// Short hash matches.
sTableBits = 14
maxSTableSize = 1 << sTableBits
)
var lTable [maxLTableSize]uint16
var sTable [maxSTableSize]uint16
// We stop so any entry of length 8 can always be read.
for i := 0; i < len(d.dict)-8; i++ {
cv := load64(d.dict, i)
lTable[hash7(cv, lTableBits)] = uint16(i)
sTable[hash4(cv, sTableBits)] = uint16(i)
}
d.betterTableShort = &sTable
d.betterTableLong = &lTable
})
}
func (d *Dict) initBest() {
d.best.Do(func() {
const (
// Long hash matches.
lTableBits = 19
maxLTableSize = 1 << lTableBits
// Short hash matches.
sTableBits = 16
maxSTableSize = 1 << sTableBits
)
var lTable [maxLTableSize]uint32
var sTable [maxSTableSize]uint32
// We stop so any entry of length 8 can always be read.
for i := 0; i < len(d.dict)-8; i++ {
cv := load64(d.dict, i)
hashL := hash8(cv, lTableBits)
hashS := hash4(cv, sTableBits)
candidateL := lTable[hashL]
candidateS := sTable[hashS]
lTable[hashL] = uint32(i) | candidateL<<16
sTable[hashS] = uint32(i) | candidateS<<16
}
d.bestTableShort = &sTable
d.bestTableLong = &lTable
})
}