gotosocial/vendor/codeberg.org/gruf/go-mutexes/map.go

264 lines
6 KiB
Go

package mutexes
import (
"sync"
"unsafe"
)
const (
// possible lock types.
lockTypeRead = uint8(1) << 0
lockTypeWrite = uint8(1) << 1
lockTypeMap = uint8(1) << 2
// frequency of GC cycles
// per no. unlocks. i.e.
// every 'gcfreq' unlocks.
gcfreq = 1024
)
// MutexMap is a structure that allows read / write locking
// per key, performing as you'd expect a map[string]*RWMutex
// to perform, without you needing to worry about deadlocks
// between competing read / write locks and the map's own mutex.
// It uses memory pooling for the internal "mutex" (ish) types
// and performs self-eviction of keys.
//
// Under the hood this is achieved using a single mutex for the
// map, state tracking for individual keys, and some simple waitgroup
// type structures to park / block goroutines waiting for keys.
type MutexMap struct {
mapmu sync.Mutex
mumap map[string]*rwmutexish
mupool rwmutexPool
count uint32
}
// checkInit ensures MutexMap is initialized (UNSAFE).
func (mm *MutexMap) checkInit() {
if mm.mumap == nil {
mm.mumap = make(map[string]*rwmutexish)
}
}
// Lock acquires a write lock on key in map, returning unlock function.
func (mm *MutexMap) Lock(key string) func() {
return mm.lock(key, lockTypeWrite)
}
// RLock acquires a read lock on key in map, returning runlock function.
func (mm *MutexMap) RLock(key string) func() {
return mm.lock(key, lockTypeRead)
}
func (mm *MutexMap) lock(key string, lt uint8) func() {
// Perform first map lock
// and check initialization
// OUTSIDE the main loop.
mm.mapmu.Lock()
mm.checkInit()
for {
// Check map for mu.
mu := mm.mumap[key]
if mu == nil {
// Allocate new mutex.
mu = mm.mupool.Acquire()
mm.mumap[key] = mu
}
if !mu.Lock(lt) {
// Wait on mutex unlock, after
// immediately relocking map mu.
mu.WaitRelock(&mm.mapmu)
continue
}
// Done with map.
mm.mapmu.Unlock()
// Return mutex unlock function.
return func() { mm.unlock(key, mu) }
}
}
func (mm *MutexMap) unlock(key string, mu *rwmutexish) {
// Get map lock.
mm.mapmu.Lock()
// Unlock mutex.
if mu.Unlock() {
// Mutex fully unlocked
// with zero waiters. Self
// evict and release it.
delete(mm.mumap, key)
mm.mupool.Release(mu)
}
if mm.count++; mm.count%gcfreq == 0 {
// Every 'gcfreq' unlocks perform
// a garbage collection to keep
// us squeaky clean :]
mm.mupool.GC()
}
// Done with map.
mm.mapmu.Unlock()
}
// rwmutexPool is a very simply memory rwmutexPool.
type rwmutexPool struct {
current []*rwmutexish
victim []*rwmutexish
}
// Acquire will returns a rwmutexState from rwmutexPool (or alloc new).
func (p *rwmutexPool) Acquire() *rwmutexish {
// First try the current queue
if l := len(p.current) - 1; l >= 0 {
mu := p.current[l]
p.current = p.current[:l]
return mu
}
// Next try the victim queue.
if l := len(p.victim) - 1; l >= 0 {
mu := p.victim[l]
p.victim = p.victim[:l]
return mu
}
// Lastly, alloc new.
mu := new(rwmutexish)
return mu
}
// Release places a sync.rwmutexState back in the rwmutexPool.
func (p *rwmutexPool) Release(mu *rwmutexish) {
p.current = append(p.current, mu)
}
// GC will clear out unused entries from the rwmutexPool.
func (p *rwmutexPool) GC() {
current := p.current
p.current = nil
p.victim = current
}
// rwmutexish is a RW mutex (ish), i.e. the representation
// of one only to be accessed within
type rwmutexish struct {
tr trigger
ln int32 // no. locks
wn int32 // no. waiters
lt uint8 // lock type
}
// Lock will lock the mutex for given lock type, in the
// sense that it will update the internal state tracker
// accordingly. Return value is true on successful lock.
func (mu *rwmutexish) Lock(lt uint8) bool {
switch mu.lt {
case lockTypeRead:
// already read locked,
// only permit more reads.
if lt != lockTypeRead {
return false
}
case lockTypeWrite:
// already write locked,
// no other locks allowed.
return false
default:
// Fully unlocked.
mu.lt = lt
}
// Update
// count.
mu.ln++
return true
}
// Unlock will unlock the mutex, in the sense that
// it will update the internal state tracker accordingly.
// On any unlock it will awaken sleeping waiting threads.
// Returned boolean is if unlocked=true AND waiters=0.
func (mu *rwmutexish) Unlock() bool {
var ok bool
switch mu.ln--; {
case mu.ln > 0 && mu.lt == lockTypeWrite:
panic("BUG: multiple writer locks")
case mu.ln < 0:
panic("BUG: negative lock count")
case mu.ln == 0:
// Fully unlocked.
mu.lt = 0
// Only return true
// with no waiters.
ok = (mu.wn == 0)
}
// Awake all waiting
// goroutines for mu.
mu.tr.Trigger()
return ok
}
// WaitRelock expects a mutex to be passed in already in
// the lock state. It incr the rwmutexish waiter count before
// unlocking the outer mutex and blocking on internal trigger.
// On awake it will relock outer mutex and decr wait count.
func (mu *rwmutexish) WaitRelock(outer *sync.Mutex) {
mu.wn++
outer.Unlock()
mu.tr.Wait()
outer.Lock()
mu.wn--
}
// trigger uses the internals of sync.Cond to provide
// a waitgroup type structure (including goroutine parks)
// without such a heavy reliance on a delta value.
type trigger struct{ notifyList }
func (t *trigger) Trigger() {
runtime_notifyListNotifyAll(&t.notifyList)
}
func (t *trigger) Wait() {
v := runtime_notifyListAdd(&t.notifyList)
runtime_notifyListWait(&t.notifyList, v)
}
// Approximation of notifyList in runtime/sema.go.
type notifyList struct {
wait uint32
notify uint32
lock uintptr // key field of the mutex
head unsafe.Pointer
tail unsafe.Pointer
}
// See runtime/sema.go for documentation.
//
//go:linkname runtime_notifyListAdd sync.runtime_notifyListAdd
func runtime_notifyListAdd(l *notifyList) uint32
// See runtime/sema.go for documentation.
//
//go:linkname runtime_notifyListWait sync.runtime_notifyListWait
func runtime_notifyListWait(l *notifyList, t uint32)
// See runtime/sema.go for documentation.
//
//go:linkname runtime_notifyListNotifyAll sync.runtime_notifyListNotifyAll
func runtime_notifyListNotifyAll(l *notifyList)