gotosocial/vendor/github.com/cilium/ebpf/internal/feature.go
Daniele Sluijters acc333c40b
[feature] Inherit resource limits from cgroups (#1336)
When GTS is running in a container runtime which has configured CPU or
memory limits or under an init system that uses cgroups to impose CPU
and memory limits the values the Go runtime sees for GOMAXPROCS and
GOMEMLIMIT are still based on the host resources, not the cgroup.

At least for the throttling middlewares which use GOMAXPROCS to
configure their queue size, this can result in GTS running with values
too big compared to the resources that will actuall be available to it.

This introduces 2 dependencies which can pick up resource contraints
from the current cgroup and tune the Go runtime accordingly. This should
result in the different queues being appropriately sized and in general
more predictable performance. These dependencies are a no-op on
non-Linux systems or if running in a cgroup that doesn't set a limit on
CPU or memory.

The automatic tuning of GOMEMLIMIT can be disabled by either explicitly
setting GOMEMLIMIT yourself or by setting AUTOMEMLIMIT=off. The
automatic tuning of GOMAXPROCS can similarly be counteracted by setting
GOMAXPROCS yourself.
2023-01-17 20:59:04 +00:00

139 lines
3.4 KiB
Go

package internal
import (
"errors"
"fmt"
"sync"
)
// ErrNotSupported indicates that a feature is not supported by the current kernel.
var ErrNotSupported = errors.New("not supported")
// UnsupportedFeatureError is returned by FeatureTest() functions.
type UnsupportedFeatureError struct {
// The minimum Linux mainline version required for this feature.
// Used for the error string, and for sanity checking during testing.
MinimumVersion Version
// The name of the feature that isn't supported.
Name string
}
func (ufe *UnsupportedFeatureError) Error() string {
if ufe.MinimumVersion.Unspecified() {
return fmt.Sprintf("%s not supported", ufe.Name)
}
return fmt.Sprintf("%s not supported (requires >= %s)", ufe.Name, ufe.MinimumVersion)
}
// Is indicates that UnsupportedFeatureError is ErrNotSupported.
func (ufe *UnsupportedFeatureError) Is(target error) bool {
return target == ErrNotSupported
}
type featureTest struct {
sync.RWMutex
successful bool
result error
}
// FeatureTestFn is used to determine whether the kernel supports
// a certain feature.
//
// The return values have the following semantics:
//
// err == ErrNotSupported: the feature is not available
// err == nil: the feature is available
// err != nil: the test couldn't be executed
type FeatureTestFn func() error
// FeatureTest wraps a function so that it is run at most once.
//
// name should identify the tested feature, while version must be in the
// form Major.Minor[.Patch].
//
// Returns an error wrapping ErrNotSupported if the feature is not supported.
func FeatureTest(name, version string, fn FeatureTestFn) func() error {
v, err := NewVersion(version)
if err != nil {
return func() error { return err }
}
ft := new(featureTest)
return func() error {
ft.RLock()
if ft.successful {
defer ft.RUnlock()
return ft.result
}
ft.RUnlock()
ft.Lock()
defer ft.Unlock()
// check one more time on the off
// chance that two go routines
// were able to call into the write
// lock
if ft.successful {
return ft.result
}
err := fn()
switch {
case errors.Is(err, ErrNotSupported):
ft.result = &UnsupportedFeatureError{
MinimumVersion: v,
Name: name,
}
fallthrough
case err == nil:
ft.successful = true
default:
// We couldn't execute the feature test to a point
// where it could make a determination.
// Don't cache the result, just return it.
return fmt.Errorf("detect support for %s: %w", name, err)
}
return ft.result
}
}
// A Version in the form Major.Minor.Patch.
type Version [3]uint16
// NewVersion creates a version from a string like "Major.Minor.Patch".
//
// Patch is optional.
func NewVersion(ver string) (Version, error) {
var major, minor, patch uint16
n, _ := fmt.Sscanf(ver, "%d.%d.%d", &major, &minor, &patch)
if n < 2 {
return Version{}, fmt.Errorf("invalid version: %s", ver)
}
return Version{major, minor, patch}, nil
}
func (v Version) String() string {
if v[2] == 0 {
return fmt.Sprintf("v%d.%d", v[0], v[1])
}
return fmt.Sprintf("v%d.%d.%d", v[0], v[1], v[2])
}
// Less returns true if the version is less than another version.
func (v Version) Less(other Version) bool {
for i, a := range v {
if a == other[i] {
continue
}
return a < other[i]
}
return false
}
// Unspecified returns true if the version is all zero.
func (v Version) Unspecified() bool {
return v[0] == 0 && v[1] == 0 && v[2] == 0
}