mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-12-14 11:16:38 +00:00
560 lines
16 KiB
Go
560 lines
16 KiB
Go
// Copyright 2019+ Klaus Post. All rights reserved.
|
|
// License information can be found in the LICENSE file.
|
|
// Based on work by Yann Collet, released under BSD License.
|
|
|
|
package zstd
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
|
|
"github.com/klauspost/compress"
|
|
)
|
|
|
|
const (
|
|
bestLongTableBits = 22 // Bits used in the long match table
|
|
bestLongTableSize = 1 << bestLongTableBits // Size of the table
|
|
bestLongLen = 8 // Bytes used for table hash
|
|
|
|
// Note: Increasing the short table bits or making the hash shorter
|
|
// can actually lead to compression degradation since it will 'steal' more from the
|
|
// long match table and match offsets are quite big.
|
|
// This greatly depends on the type of input.
|
|
bestShortTableBits = 18 // Bits used in the short match table
|
|
bestShortTableSize = 1 << bestShortTableBits // Size of the table
|
|
bestShortLen = 4 // Bytes used for table hash
|
|
|
|
)
|
|
|
|
type match struct {
|
|
offset int32
|
|
s int32
|
|
length int32
|
|
rep int32
|
|
est int32
|
|
}
|
|
|
|
const highScore = maxMatchLen * 8
|
|
|
|
// estBits will estimate output bits from predefined tables.
|
|
func (m *match) estBits(bitsPerByte int32) {
|
|
mlc := mlCode(uint32(m.length - zstdMinMatch))
|
|
var ofc uint8
|
|
if m.rep < 0 {
|
|
ofc = ofCode(uint32(m.s-m.offset) + 3)
|
|
} else {
|
|
ofc = ofCode(uint32(m.rep) & 3)
|
|
}
|
|
// Cost, excluding
|
|
ofTT, mlTT := fsePredefEnc[tableOffsets].ct.symbolTT[ofc], fsePredefEnc[tableMatchLengths].ct.symbolTT[mlc]
|
|
|
|
// Add cost of match encoding...
|
|
m.est = int32(ofTT.outBits + mlTT.outBits)
|
|
m.est += int32(ofTT.deltaNbBits>>16 + mlTT.deltaNbBits>>16)
|
|
// Subtract savings compared to literal encoding...
|
|
m.est -= (m.length * bitsPerByte) >> 10
|
|
if m.est > 0 {
|
|
// Unlikely gain..
|
|
m.length = 0
|
|
m.est = highScore
|
|
}
|
|
}
|
|
|
|
// bestFastEncoder uses 2 tables, one for short matches (5 bytes) and one for long matches.
|
|
// The long match table contains the previous entry with the same hash,
|
|
// effectively making it a "chain" of length 2.
|
|
// When we find a long match we choose between the two values and select the longest.
|
|
// When we find a short match, after checking the long, we check if we can find a long at n+1
|
|
// and that it is longer (lazy matching).
|
|
type bestFastEncoder struct {
|
|
fastBase
|
|
table [bestShortTableSize]prevEntry
|
|
longTable [bestLongTableSize]prevEntry
|
|
dictTable []prevEntry
|
|
dictLongTable []prevEntry
|
|
}
|
|
|
|
// Encode improves compression...
|
|
func (e *bestFastEncoder) Encode(blk *blockEnc, src []byte) {
|
|
const (
|
|
// Input margin is the number of bytes we read (8)
|
|
// and the maximum we will read ahead (2)
|
|
inputMargin = 8 + 4
|
|
minNonLiteralBlockSize = 16
|
|
)
|
|
|
|
// Protect against e.cur wraparound.
|
|
for e.cur >= e.bufferReset-int32(len(e.hist)) {
|
|
if len(e.hist) == 0 {
|
|
e.table = [bestShortTableSize]prevEntry{}
|
|
e.longTable = [bestLongTableSize]prevEntry{}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
// Shift down everything in the table that isn't already too far away.
|
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
|
|
for i := range e.table[:] {
|
|
v := e.table[i].offset
|
|
v2 := e.table[i].prev
|
|
if v < minOff {
|
|
v = 0
|
|
v2 = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
if v2 < minOff {
|
|
v2 = 0
|
|
} else {
|
|
v2 = v2 - e.cur + e.maxMatchOff
|
|
}
|
|
}
|
|
e.table[i] = prevEntry{
|
|
offset: v,
|
|
prev: v2,
|
|
}
|
|
}
|
|
for i := range e.longTable[:] {
|
|
v := e.longTable[i].offset
|
|
v2 := e.longTable[i].prev
|
|
if v < minOff {
|
|
v = 0
|
|
v2 = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
if v2 < minOff {
|
|
v2 = 0
|
|
} else {
|
|
v2 = v2 - e.cur + e.maxMatchOff
|
|
}
|
|
}
|
|
e.longTable[i] = prevEntry{
|
|
offset: v,
|
|
prev: v2,
|
|
}
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
|
|
// Add block to history
|
|
s := e.addBlock(src)
|
|
blk.size = len(src)
|
|
|
|
// Check RLE first
|
|
if len(src) > zstdMinMatch {
|
|
ml := matchLen(src[1:], src)
|
|
if ml == len(src)-1 {
|
|
blk.literals = append(blk.literals, src[0])
|
|
blk.sequences = append(blk.sequences, seq{litLen: 1, matchLen: uint32(len(src)-1) - zstdMinMatch, offset: 1 + 3})
|
|
return
|
|
}
|
|
}
|
|
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Use this to estimate literal cost.
|
|
// Scaled by 10 bits.
|
|
bitsPerByte := int32((compress.ShannonEntropyBits(src) * 1024) / len(src))
|
|
// Huffman can never go < 1 bit/byte
|
|
if bitsPerByte < 1024 {
|
|
bitsPerByte = 1024
|
|
}
|
|
|
|
// Override src
|
|
src = e.hist
|
|
sLimit := int32(len(src)) - inputMargin
|
|
const kSearchStrength = 10
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
offset3 := int32(blk.recentOffsets[2])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
// We allow the encoder to optionally turn off repeat offsets across blocks
|
|
canRepeat := len(blk.sequences) > 2
|
|
|
|
if debugAsserts && canRepeat && offset1 == 0 {
|
|
panic("offset0 was 0")
|
|
}
|
|
|
|
const goodEnough = 250
|
|
|
|
cv := load6432(src, s)
|
|
|
|
nextHashL := hashLen(cv, bestLongTableBits, bestLongLen)
|
|
nextHashS := hashLen(cv, bestShortTableBits, bestShortLen)
|
|
candidateL := e.longTable[nextHashL]
|
|
candidateS := e.table[nextHashS]
|
|
|
|
// Set m to a match at offset if it looks like that will improve compression.
|
|
improve := func(m *match, offset int32, s int32, first uint32, rep int32) {
|
|
delta := s - offset
|
|
if delta >= e.maxMatchOff || delta <= 0 || load3232(src, offset) != first {
|
|
return
|
|
}
|
|
// Try to quick reject if we already have a long match.
|
|
if m.length > 16 {
|
|
left := len(src) - int(m.s+m.length)
|
|
// If we are too close to the end, keep as is.
|
|
if left <= 0 {
|
|
return
|
|
}
|
|
checkLen := m.length - (s - m.s) - 8
|
|
if left > 2 && checkLen > 4 {
|
|
// Check 4 bytes, 4 bytes from the end of the current match.
|
|
a := load3232(src, offset+checkLen)
|
|
b := load3232(src, s+checkLen)
|
|
if a != b {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
l := 4 + e.matchlen(s+4, offset+4, src)
|
|
if m.rep <= 0 {
|
|
// Extend candidate match backwards as far as possible.
|
|
// Do not extend repeats as we can assume they are optimal
|
|
// and offsets change if s == nextEmit.
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for offset > tMin && s > nextEmit && src[offset-1] == src[s-1] && l < maxMatchLength {
|
|
s--
|
|
offset--
|
|
l++
|
|
}
|
|
}
|
|
if debugAsserts {
|
|
if offset >= s {
|
|
panic(fmt.Sprintf("offset: %d - s:%d - rep: %d - cur :%d - max: %d", offset, s, rep, e.cur, e.maxMatchOff))
|
|
}
|
|
if !bytes.Equal(src[s:s+l], src[offset:offset+l]) {
|
|
panic(fmt.Sprintf("second match mismatch: %v != %v, first: %08x", src[s:s+4], src[offset:offset+4], first))
|
|
}
|
|
}
|
|
cand := match{offset: offset, s: s, length: l, rep: rep}
|
|
cand.estBits(bitsPerByte)
|
|
if m.est >= highScore || cand.est-m.est+(cand.s-m.s)*bitsPerByte>>10 < 0 {
|
|
*m = cand
|
|
}
|
|
}
|
|
|
|
best := match{s: s, est: highScore}
|
|
improve(&best, candidateL.offset-e.cur, s, uint32(cv), -1)
|
|
improve(&best, candidateL.prev-e.cur, s, uint32(cv), -1)
|
|
improve(&best, candidateS.offset-e.cur, s, uint32(cv), -1)
|
|
improve(&best, candidateS.prev-e.cur, s, uint32(cv), -1)
|
|
|
|
if canRepeat && best.length < goodEnough {
|
|
if s == nextEmit {
|
|
// Check repeats straight after a match.
|
|
improve(&best, s-offset2, s, uint32(cv), 1|4)
|
|
improve(&best, s-offset3, s, uint32(cv), 2|4)
|
|
if offset1 > 1 {
|
|
improve(&best, s-(offset1-1), s, uint32(cv), 3|4)
|
|
}
|
|
}
|
|
|
|
// If either no match or a non-repeat match, check at + 1
|
|
if best.rep <= 0 {
|
|
cv32 := uint32(cv >> 8)
|
|
spp := s + 1
|
|
improve(&best, spp-offset1, spp, cv32, 1)
|
|
improve(&best, spp-offset2, spp, cv32, 2)
|
|
improve(&best, spp-offset3, spp, cv32, 3)
|
|
if best.rep < 0 {
|
|
cv32 = uint32(cv >> 24)
|
|
spp += 2
|
|
improve(&best, spp-offset1, spp, cv32, 1)
|
|
improve(&best, spp-offset2, spp, cv32, 2)
|
|
improve(&best, spp-offset3, spp, cv32, 3)
|
|
}
|
|
}
|
|
}
|
|
// Load next and check...
|
|
e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: candidateL.offset}
|
|
e.table[nextHashS] = prevEntry{offset: s + e.cur, prev: candidateS.offset}
|
|
index0 := s + 1
|
|
|
|
// Look far ahead, unless we have a really long match already...
|
|
if best.length < goodEnough {
|
|
// No match found, move forward on input, no need to check forward...
|
|
if best.length < 4 {
|
|
s += 1 + (s-nextEmit)>>(kSearchStrength-1)
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
continue
|
|
}
|
|
|
|
candidateS = e.table[hashLen(cv>>8, bestShortTableBits, bestShortLen)]
|
|
cv = load6432(src, s+1)
|
|
cv2 := load6432(src, s+2)
|
|
candidateL = e.longTable[hashLen(cv, bestLongTableBits, bestLongLen)]
|
|
candidateL2 := e.longTable[hashLen(cv2, bestLongTableBits, bestLongLen)]
|
|
|
|
// Short at s+1
|
|
improve(&best, candidateS.offset-e.cur, s+1, uint32(cv), -1)
|
|
// Long at s+1, s+2
|
|
improve(&best, candidateL.offset-e.cur, s+1, uint32(cv), -1)
|
|
improve(&best, candidateL.prev-e.cur, s+1, uint32(cv), -1)
|
|
improve(&best, candidateL2.offset-e.cur, s+2, uint32(cv2), -1)
|
|
improve(&best, candidateL2.prev-e.cur, s+2, uint32(cv2), -1)
|
|
if false {
|
|
// Short at s+3.
|
|
// Too often worse...
|
|
improve(&best, e.table[hashLen(cv2>>8, bestShortTableBits, bestShortLen)].offset-e.cur, s+3, uint32(cv2>>8), -1)
|
|
}
|
|
|
|
// Start check at a fixed offset to allow for a few mismatches.
|
|
// For this compression level 2 yields the best results.
|
|
// We cannot do this if we have already indexed this position.
|
|
const skipBeginning = 2
|
|
if best.s > s-skipBeginning {
|
|
// See if we can find a better match by checking where the current best ends.
|
|
// Use that offset to see if we can find a better full match.
|
|
if sAt := best.s + best.length; sAt < sLimit {
|
|
nextHashL := hashLen(load6432(src, sAt), bestLongTableBits, bestLongLen)
|
|
candidateEnd := e.longTable[nextHashL]
|
|
|
|
if off := candidateEnd.offset - e.cur - best.length + skipBeginning; off >= 0 {
|
|
improve(&best, off, best.s+skipBeginning, load3232(src, best.s+skipBeginning), -1)
|
|
if off := candidateEnd.prev - e.cur - best.length + skipBeginning; off >= 0 {
|
|
improve(&best, off, best.s+skipBeginning, load3232(src, best.s+skipBeginning), -1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if debugAsserts {
|
|
if best.offset >= best.s {
|
|
panic(fmt.Sprintf("best.offset > s: %d >= %d", best.offset, best.s))
|
|
}
|
|
if best.s < nextEmit {
|
|
panic(fmt.Sprintf("s %d < nextEmit %d", best.s, nextEmit))
|
|
}
|
|
if best.offset < s-e.maxMatchOff {
|
|
panic(fmt.Sprintf("best.offset < s-e.maxMatchOff: %d < %d", best.offset, s-e.maxMatchOff))
|
|
}
|
|
if !bytes.Equal(src[best.s:best.s+best.length], src[best.offset:best.offset+best.length]) {
|
|
panic(fmt.Sprintf("match mismatch: %v != %v", src[best.s:best.s+best.length], src[best.offset:best.offset+best.length]))
|
|
}
|
|
}
|
|
|
|
// We have a match, we can store the forward value
|
|
s = best.s
|
|
if best.rep > 0 {
|
|
var seq seq
|
|
seq.matchLen = uint32(best.length - zstdMinMatch)
|
|
addLiterals(&seq, best.s)
|
|
|
|
// Repeat. If bit 4 is set, this is a non-lit repeat.
|
|
seq.offset = uint32(best.rep & 3)
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", best.s, "off:", best.s-best.offset)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Index old s + 1 -> s - 1
|
|
s = best.s + best.length
|
|
nextEmit = s
|
|
|
|
// Index skipped...
|
|
end := s
|
|
if s > sLimit+4 {
|
|
end = sLimit + 4
|
|
}
|
|
off := index0 + e.cur
|
|
for index0 < end {
|
|
cv0 := load6432(src, index0)
|
|
h0 := hashLen(cv0, bestLongTableBits, bestLongLen)
|
|
h1 := hashLen(cv0, bestShortTableBits, bestShortLen)
|
|
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset}
|
|
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset}
|
|
off++
|
|
index0++
|
|
}
|
|
|
|
switch best.rep {
|
|
case 2, 4 | 1:
|
|
offset1, offset2 = offset2, offset1
|
|
case 3, 4 | 2:
|
|
offset1, offset2, offset3 = offset3, offset1, offset2
|
|
case 4 | 3:
|
|
offset1, offset2, offset3 = offset1-1, offset1, offset2
|
|
}
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, best.length)
|
|
}
|
|
break encodeLoop
|
|
}
|
|
continue
|
|
}
|
|
|
|
// A 4-byte match has been found. Update recent offsets.
|
|
// We'll later see if more than 4 bytes.
|
|
t := best.offset
|
|
offset1, offset2, offset3 = s-t, offset1, offset2
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && int(offset1) > len(src) {
|
|
panic("invalid offset")
|
|
}
|
|
|
|
// Write our sequence
|
|
var seq seq
|
|
l := best.length
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
|
|
// Index old s + 1 -> s - 1 or sLimit
|
|
end := s
|
|
if s > sLimit-4 {
|
|
end = sLimit - 4
|
|
}
|
|
|
|
off := index0 + e.cur
|
|
for index0 < end {
|
|
cv0 := load6432(src, index0)
|
|
h0 := hashLen(cv0, bestLongTableBits, bestLongLen)
|
|
h1 := hashLen(cv0, bestShortTableBits, bestShortLen)
|
|
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset}
|
|
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset}
|
|
index0++
|
|
off++
|
|
}
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
blk.recentOffsets[0] = uint32(offset1)
|
|
blk.recentOffsets[1] = uint32(offset2)
|
|
blk.recentOffsets[2] = uint32(offset3)
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
}
|
|
|
|
// EncodeNoHist will encode a block with no history and no following blocks.
|
|
// Most notable difference is that src will not be copied for history and
|
|
// we do not need to check for max match length.
|
|
func (e *bestFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
|
|
e.ensureHist(len(src))
|
|
e.Encode(blk, src)
|
|
}
|
|
|
|
// Reset will reset and set a dictionary if not nil
|
|
func (e *bestFastEncoder) Reset(d *dict, singleBlock bool) {
|
|
e.resetBase(d, singleBlock)
|
|
if d == nil {
|
|
return
|
|
}
|
|
// Init or copy dict table
|
|
if len(e.dictTable) != len(e.table) || d.id != e.lastDictID {
|
|
if len(e.dictTable) != len(e.table) {
|
|
e.dictTable = make([]prevEntry, len(e.table))
|
|
}
|
|
end := int32(len(d.content)) - 8 + e.maxMatchOff
|
|
for i := e.maxMatchOff; i < end; i += 4 {
|
|
const hashLog = bestShortTableBits
|
|
|
|
cv := load6432(d.content, i-e.maxMatchOff)
|
|
nextHash := hashLen(cv, hashLog, bestShortLen) // 0 -> 4
|
|
nextHash1 := hashLen(cv>>8, hashLog, bestShortLen) // 1 -> 5
|
|
nextHash2 := hashLen(cv>>16, hashLog, bestShortLen) // 2 -> 6
|
|
nextHash3 := hashLen(cv>>24, hashLog, bestShortLen) // 3 -> 7
|
|
e.dictTable[nextHash] = prevEntry{
|
|
prev: e.dictTable[nextHash].offset,
|
|
offset: i,
|
|
}
|
|
e.dictTable[nextHash1] = prevEntry{
|
|
prev: e.dictTable[nextHash1].offset,
|
|
offset: i + 1,
|
|
}
|
|
e.dictTable[nextHash2] = prevEntry{
|
|
prev: e.dictTable[nextHash2].offset,
|
|
offset: i + 2,
|
|
}
|
|
e.dictTable[nextHash3] = prevEntry{
|
|
prev: e.dictTable[nextHash3].offset,
|
|
offset: i + 3,
|
|
}
|
|
}
|
|
e.lastDictID = d.id
|
|
}
|
|
|
|
// Init or copy dict table
|
|
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID {
|
|
if len(e.dictLongTable) != len(e.longTable) {
|
|
e.dictLongTable = make([]prevEntry, len(e.longTable))
|
|
}
|
|
if len(d.content) >= 8 {
|
|
cv := load6432(d.content, 0)
|
|
h := hashLen(cv, bestLongTableBits, bestLongLen)
|
|
e.dictLongTable[h] = prevEntry{
|
|
offset: e.maxMatchOff,
|
|
prev: e.dictLongTable[h].offset,
|
|
}
|
|
|
|
end := int32(len(d.content)) - 8 + e.maxMatchOff
|
|
off := 8 // First to read
|
|
for i := e.maxMatchOff + 1; i < end; i++ {
|
|
cv = cv>>8 | (uint64(d.content[off]) << 56)
|
|
h := hashLen(cv, bestLongTableBits, bestLongLen)
|
|
e.dictLongTable[h] = prevEntry{
|
|
offset: i,
|
|
prev: e.dictLongTable[h].offset,
|
|
}
|
|
off++
|
|
}
|
|
}
|
|
e.lastDictID = d.id
|
|
}
|
|
// Reset table to initial state
|
|
copy(e.longTable[:], e.dictLongTable)
|
|
|
|
e.cur = e.maxMatchOff
|
|
// Reset table to initial state
|
|
copy(e.table[:], e.dictTable)
|
|
}
|