mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-20 21:18:09 +00:00
0a1555521d
* use single-threaded image resizing in native code so we have more control over goroutines * implement parallel-free versions of image transform functions also * remove debug code
623 lines
14 KiB
Go
623 lines
14 KiB
Go
// GoToSocial
|
|
// Copyright (C) GoToSocial Authors admin@gotosocial.org
|
|
// SPDX-License-Identifier: AGPL-3.0-or-later
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package media
|
|
|
|
import (
|
|
"image"
|
|
"image/color"
|
|
"math"
|
|
)
|
|
|
|
// NOTE:
|
|
// the following code is borrowed from
|
|
// github.com/disintegration/imaging
|
|
// and collapses in some places for our
|
|
// particular usecases and with parallel()
|
|
// function (spans work across goroutines)
|
|
// removed, instead working synchronously.
|
|
//
|
|
// at gotosocial we take particular
|
|
// care about where we spawn goroutines
|
|
// to ensure we're in control of the
|
|
// amount of concurrency in relation
|
|
// to the amount configured by user.
|
|
|
|
// resizeDownLinear resizes image to given width x height using linear resampling.
|
|
// This is specifically optimized for resizing down (i.e. smaller), else is noop.
|
|
func resizeDownLinear(img image.Image, width, height int) image.Image {
|
|
srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy()
|
|
if srcW <= 0 || srcH <= 0 ||
|
|
width < 0 || height < 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
if width == 0 {
|
|
// If no width is given, use aspect preserving width.
|
|
tmp := float64(height) * float64(srcW) / float64(srcH)
|
|
width = int(math.Max(1.0, math.Floor(tmp+0.5)))
|
|
}
|
|
|
|
if height == 0 {
|
|
// If no height is given, use aspect preserving height.
|
|
tmp := float64(width) * float64(srcH) / float64(srcW)
|
|
height = int(math.Max(1.0, math.Floor(tmp+0.5)))
|
|
}
|
|
|
|
if width < srcW {
|
|
// Width is smaller, resize horizontally.
|
|
img = resizeHorizontalLinear(img, width)
|
|
}
|
|
|
|
if height < srcH {
|
|
// Height is smaller, resize vertically.
|
|
img = resizeVerticalLinear(img, height)
|
|
}
|
|
|
|
return img
|
|
}
|
|
|
|
// flipH flips the image horizontally (left to right).
|
|
func flipH(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.w
|
|
dstH := src.h
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcY := y
|
|
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
|
|
reverse(dst.Pix[i : i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// flipV flips the image vertically (from top to bottom).
|
|
func flipV(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.w
|
|
dstH := src.h
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcY := dstH - y - 1
|
|
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// rotate90 rotates the image 90 counter-clockwise.
|
|
func rotate90(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.h
|
|
dstH := src.w
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcX := dstH - y - 1
|
|
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// rotate180 rotates the image 180 counter-clockwise.
|
|
func rotate180(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.w
|
|
dstH := src.h
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcY := dstH - y - 1
|
|
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
|
|
reverse(dst.Pix[i : i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// rotate270 rotates the image 270 counter-clockwise.
|
|
func rotate270(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.h
|
|
dstH := src.w
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcX := y
|
|
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
|
|
reverse(dst.Pix[i : i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// transpose flips the image horizontally and rotates 90 counter-clockwise.
|
|
func transpose(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.h
|
|
dstH := src.w
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcX := y
|
|
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// transverse flips the image vertically and rotates 90 counter-clockwise.
|
|
func transverse(img image.Image) image.Image {
|
|
src := newScanner(img)
|
|
dstW := src.h
|
|
dstH := src.w
|
|
rowSize := dstW * 4
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
for y := 0; y < dstH; y++ {
|
|
i := y * dst.Stride
|
|
srcX := dstH - y - 1
|
|
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
|
|
reverse(dst.Pix[i : i+rowSize])
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// resizeHorizontalLinear resizes image to given width using linear resampling.
|
|
func resizeHorizontalLinear(img image.Image, dstWidth int) image.Image {
|
|
src := newScanner(img)
|
|
dst := image.NewRGBA(image.Rect(0, 0, dstWidth, src.h))
|
|
weights := precomputeWeightsLinear(dstWidth, src.w)
|
|
scanLine := make([]uint8, src.w*4)
|
|
for y := 0; y < src.h; y++ {
|
|
src.scan(0, y, src.w, y+1, scanLine)
|
|
j0 := y * dst.Stride
|
|
for x := range weights {
|
|
var r, g, b, a float64
|
|
for _, w := range weights[x] {
|
|
i := w.index * 4
|
|
s := scanLine[i : i+4 : i+4]
|
|
aw := float64(s[3]) * w.weight
|
|
r += float64(s[0]) * aw
|
|
g += float64(s[1]) * aw
|
|
b += float64(s[2]) * aw
|
|
a += aw
|
|
}
|
|
if a != 0 {
|
|
aInv := 1 / a
|
|
j := j0 + x*4
|
|
d := dst.Pix[j : j+4 : j+4]
|
|
d[0] = clampFloat(r * aInv)
|
|
d[1] = clampFloat(g * aInv)
|
|
d[2] = clampFloat(b * aInv)
|
|
d[3] = clampFloat(a)
|
|
}
|
|
}
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// resizeVerticalLinear resizes image to given height using linear resampling.
|
|
func resizeVerticalLinear(img image.Image, height int) image.Image {
|
|
src := newScanner(img)
|
|
dst := image.NewNRGBA(image.Rect(0, 0, src.w, height))
|
|
weights := precomputeWeightsLinear(height, src.h)
|
|
scanLine := make([]uint8, src.h*4)
|
|
for x := 0; x < src.w; x++ {
|
|
src.scan(x, 0, x+1, src.h, scanLine)
|
|
for y := range weights {
|
|
var r, g, b, a float64
|
|
for _, w := range weights[y] {
|
|
i := w.index * 4
|
|
s := scanLine[i : i+4 : i+4]
|
|
aw := float64(s[3]) * w.weight
|
|
r += float64(s[0]) * aw
|
|
g += float64(s[1]) * aw
|
|
b += float64(s[2]) * aw
|
|
a += aw
|
|
}
|
|
if a != 0 {
|
|
aInv := 1 / a
|
|
j := y*dst.Stride + x*4
|
|
d := dst.Pix[j : j+4 : j+4]
|
|
d[0] = clampFloat(r * aInv)
|
|
d[1] = clampFloat(g * aInv)
|
|
d[2] = clampFloat(b * aInv)
|
|
d[3] = clampFloat(a)
|
|
}
|
|
}
|
|
}
|
|
return dst
|
|
}
|
|
|
|
type indexWeight struct {
|
|
index int
|
|
weight float64
|
|
}
|
|
|
|
func precomputeWeightsLinear(dstSize, srcSize int) [][]indexWeight {
|
|
du := float64(srcSize) / float64(dstSize)
|
|
scale := du
|
|
if scale < 1.0 {
|
|
scale = 1.0
|
|
}
|
|
|
|
ru := math.Ceil(scale)
|
|
out := make([][]indexWeight, dstSize)
|
|
tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2)
|
|
|
|
for v := 0; v < dstSize; v++ {
|
|
fu := (float64(v)+0.5)*du - 0.5
|
|
|
|
begin := int(math.Ceil(fu - ru))
|
|
if begin < 0 {
|
|
begin = 0
|
|
}
|
|
end := int(math.Floor(fu + ru))
|
|
if end > srcSize-1 {
|
|
end = srcSize - 1
|
|
}
|
|
|
|
var sum float64
|
|
for u := begin; u <= end; u++ {
|
|
w := resampleLinear((float64(u) - fu) / scale)
|
|
if w != 0 {
|
|
sum += w
|
|
tmp = append(tmp, indexWeight{index: u, weight: w})
|
|
}
|
|
}
|
|
if sum != 0 {
|
|
for i := range tmp {
|
|
tmp[i].weight /= sum
|
|
}
|
|
}
|
|
|
|
out[v] = tmp
|
|
tmp = tmp[len(tmp):]
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// resampleLinear is the resample kernel func for linear filtering.
|
|
func resampleLinear(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 1.0 {
|
|
return 1.0 - x
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// scanner wraps an image.Image for
|
|
// easier size access and image type
|
|
// agnostic access to data at coords.
|
|
type scanner struct {
|
|
image image.Image
|
|
w, h int
|
|
palette []color.NRGBA
|
|
}
|
|
|
|
// newScanner wraps an image.Image in scanner{} type.
|
|
func newScanner(img image.Image) *scanner {
|
|
b := img.Bounds()
|
|
s := &scanner{
|
|
image: img,
|
|
|
|
w: b.Dx(),
|
|
h: b.Dy(),
|
|
}
|
|
if img, ok := img.(*image.Paletted); ok {
|
|
s.palette = make([]color.NRGBA, len(img.Palette))
|
|
for i := 0; i < len(img.Palette); i++ {
|
|
s.palette[i] = color.NRGBAModel.Convert(img.Palette[i]).(color.NRGBA)
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// scan scans the given rectangular region of the image into dst.
|
|
func (s *scanner) scan(x1, y1, x2, y2 int, dst []uint8) {
|
|
switch img := s.image.(type) {
|
|
case *image.NRGBA:
|
|
size := (x2 - x1) * 4
|
|
j := 0
|
|
i := y1*img.Stride + x1*4
|
|
if size == 4 {
|
|
for y := y1; y < y2; y++ {
|
|
d := dst[j : j+4 : j+4]
|
|
s := img.Pix[i : i+4 : i+4]
|
|
d[0] = s[0]
|
|
d[1] = s[1]
|
|
d[2] = s[2]
|
|
d[3] = s[3]
|
|
j += size
|
|
i += img.Stride
|
|
}
|
|
} else {
|
|
for y := y1; y < y2; y++ {
|
|
copy(dst[j:j+size], img.Pix[i:i+size])
|
|
j += size
|
|
i += img.Stride
|
|
}
|
|
}
|
|
|
|
case *image.NRGBA64:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1*8
|
|
for x := x1; x < x2; x++ {
|
|
s := img.Pix[i : i+8 : i+8]
|
|
d := dst[j : j+4 : j+4]
|
|
d[0] = s[0]
|
|
d[1] = s[2]
|
|
d[2] = s[4]
|
|
d[3] = s[6]
|
|
j += 4
|
|
i += 8
|
|
}
|
|
}
|
|
|
|
case *image.RGBA:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1*4
|
|
for x := x1; x < x2; x++ {
|
|
d := dst[j : j+4 : j+4]
|
|
a := img.Pix[i+3]
|
|
switch a {
|
|
case 0:
|
|
d[0] = 0
|
|
d[1] = 0
|
|
d[2] = 0
|
|
d[3] = a
|
|
case 0xff:
|
|
s := img.Pix[i : i+4 : i+4]
|
|
d[0] = s[0]
|
|
d[1] = s[1]
|
|
d[2] = s[2]
|
|
d[3] = a
|
|
default:
|
|
s := img.Pix[i : i+4 : i+4]
|
|
r16 := uint16(s[0])
|
|
g16 := uint16(s[1])
|
|
b16 := uint16(s[2])
|
|
a16 := uint16(a)
|
|
d[0] = uint8(r16 * 0xff / a16)
|
|
d[1] = uint8(g16 * 0xff / a16)
|
|
d[2] = uint8(b16 * 0xff / a16)
|
|
d[3] = a
|
|
}
|
|
j += 4
|
|
i += 4
|
|
}
|
|
}
|
|
|
|
case *image.RGBA64:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1*8
|
|
for x := x1; x < x2; x++ {
|
|
s := img.Pix[i : i+8 : i+8]
|
|
d := dst[j : j+4 : j+4]
|
|
a := s[6]
|
|
switch a {
|
|
case 0:
|
|
d[0] = 0
|
|
d[1] = 0
|
|
d[2] = 0
|
|
case 0xff:
|
|
d[0] = s[0]
|
|
d[1] = s[2]
|
|
d[2] = s[4]
|
|
default:
|
|
r32 := uint32(s[0])<<8 | uint32(s[1])
|
|
g32 := uint32(s[2])<<8 | uint32(s[3])
|
|
b32 := uint32(s[4])<<8 | uint32(s[5])
|
|
a32 := uint32(s[6])<<8 | uint32(s[7])
|
|
d[0] = uint8((r32 * 0xffff / a32) >> 8)
|
|
d[1] = uint8((g32 * 0xffff / a32) >> 8)
|
|
d[2] = uint8((b32 * 0xffff / a32) >> 8)
|
|
}
|
|
d[3] = a
|
|
j += 4
|
|
i += 8
|
|
}
|
|
}
|
|
|
|
case *image.Gray:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1
|
|
for x := x1; x < x2; x++ {
|
|
c := img.Pix[i]
|
|
d := dst[j : j+4 : j+4]
|
|
d[0] = c
|
|
d[1] = c
|
|
d[2] = c
|
|
d[3] = 0xff
|
|
j += 4
|
|
i++
|
|
}
|
|
}
|
|
|
|
case *image.Gray16:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1*2
|
|
for x := x1; x < x2; x++ {
|
|
c := img.Pix[i]
|
|
d := dst[j : j+4 : j+4]
|
|
d[0] = c
|
|
d[1] = c
|
|
d[2] = c
|
|
d[3] = 0xff
|
|
j += 4
|
|
i += 2
|
|
}
|
|
}
|
|
|
|
case *image.YCbCr:
|
|
j := 0
|
|
x1 += img.Rect.Min.X
|
|
x2 += img.Rect.Min.X
|
|
y1 += img.Rect.Min.Y
|
|
y2 += img.Rect.Min.Y
|
|
|
|
hy := img.Rect.Min.Y / 2
|
|
hx := img.Rect.Min.X / 2
|
|
for y := y1; y < y2; y++ {
|
|
iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X)
|
|
|
|
var yBase int
|
|
switch img.SubsampleRatio {
|
|
case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio422:
|
|
yBase = (y - img.Rect.Min.Y) * img.CStride
|
|
case image.YCbCrSubsampleRatio420, image.YCbCrSubsampleRatio440:
|
|
yBase = (y/2 - hy) * img.CStride
|
|
}
|
|
|
|
for x := x1; x < x2; x++ {
|
|
var ic int
|
|
switch img.SubsampleRatio {
|
|
case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio440:
|
|
ic = yBase + (x - img.Rect.Min.X)
|
|
case image.YCbCrSubsampleRatio422, image.YCbCrSubsampleRatio420:
|
|
ic = yBase + (x/2 - hx)
|
|
default:
|
|
ic = img.COffset(x, y)
|
|
}
|
|
|
|
yy1 := int32(img.Y[iy]) * 0x10101
|
|
cb1 := int32(img.Cb[ic]) - 128
|
|
cr1 := int32(img.Cr[ic]) - 128
|
|
|
|
r := yy1 + 91881*cr1
|
|
if uint32(r)&0xff000000 == 0 {
|
|
r >>= 16
|
|
} else {
|
|
r = ^(r >> 31)
|
|
}
|
|
|
|
g := yy1 - 22554*cb1 - 46802*cr1
|
|
if uint32(g)&0xff000000 == 0 {
|
|
g >>= 16
|
|
} else {
|
|
g = ^(g >> 31)
|
|
}
|
|
|
|
b := yy1 + 116130*cb1
|
|
if uint32(b)&0xff000000 == 0 {
|
|
b >>= 16
|
|
} else {
|
|
b = ^(b >> 31)
|
|
}
|
|
|
|
d := dst[j : j+4 : j+4]
|
|
d[0] = uint8(r)
|
|
d[1] = uint8(g)
|
|
d[2] = uint8(b)
|
|
d[3] = 0xff
|
|
|
|
iy++
|
|
j += 4
|
|
}
|
|
}
|
|
|
|
case *image.Paletted:
|
|
j := 0
|
|
for y := y1; y < y2; y++ {
|
|
i := y*img.Stride + x1
|
|
for x := x1; x < x2; x++ {
|
|
c := s.palette[img.Pix[i]]
|
|
d := dst[j : j+4 : j+4]
|
|
d[0] = c.R
|
|
d[1] = c.G
|
|
d[2] = c.B
|
|
d[3] = c.A
|
|
j += 4
|
|
i++
|
|
}
|
|
}
|
|
|
|
default:
|
|
j := 0
|
|
b := s.image.Bounds()
|
|
x1 += b.Min.X
|
|
x2 += b.Min.X
|
|
y1 += b.Min.Y
|
|
y2 += b.Min.Y
|
|
for y := y1; y < y2; y++ {
|
|
for x := x1; x < x2; x++ {
|
|
r16, g16, b16, a16 := s.image.At(x, y).RGBA()
|
|
d := dst[j : j+4 : j+4]
|
|
switch a16 {
|
|
case 0xffff:
|
|
d[0] = uint8(r16 >> 8)
|
|
d[1] = uint8(g16 >> 8)
|
|
d[2] = uint8(b16 >> 8)
|
|
d[3] = 0xff
|
|
case 0:
|
|
d[0] = 0
|
|
d[1] = 0
|
|
d[2] = 0
|
|
d[3] = 0
|
|
default:
|
|
d[0] = uint8(((r16 * 0xffff) / a16) >> 8)
|
|
d[1] = uint8(((g16 * 0xffff) / a16) >> 8)
|
|
d[2] = uint8(((b16 * 0xffff) / a16) >> 8)
|
|
d[3] = uint8(a16 >> 8)
|
|
}
|
|
j += 4
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// reverse reverses the data
|
|
// in contained pixel slice.
|
|
func reverse(pix []uint8) {
|
|
if len(pix) <= 4 {
|
|
return
|
|
}
|
|
i := 0
|
|
j := len(pix) - 4
|
|
for i < j {
|
|
pi := pix[i : i+4 : i+4]
|
|
pj := pix[j : j+4 : j+4]
|
|
pi[0], pj[0] = pj[0], pi[0]
|
|
pi[1], pj[1] = pj[1], pi[1]
|
|
pi[2], pj[2] = pj[2], pi[2]
|
|
pi[3], pj[3] = pj[3], pi[3]
|
|
i += 4
|
|
j -= 4
|
|
}
|
|
}
|
|
|
|
// clampFloat rounds and clamps float64 value to fit into uint8.
|
|
func clampFloat(x float64) uint8 {
|
|
v := int64(x + 0.5)
|
|
if v > 255 {
|
|
return 255
|
|
}
|
|
if v > 0 {
|
|
return uint8(v)
|
|
}
|
|
return 0
|
|
}
|