mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-10 19:21:51 +00:00
b56dae8120
* update all but bun libraries Signed-off-by: kim <grufwub@gmail.com> * remove my personal build script changes Signed-off-by: kim <grufwub@gmail.com>
2987 lines
85 KiB
Go
2987 lines
85 KiB
Go
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
// Contains code shared by both encode and decode.
|
|
|
|
// Some shared ideas around encoding/decoding
|
|
// ------------------------------------------
|
|
//
|
|
// If an interface{} is passed, we first do a type assertion to see if it is
|
|
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
|
|
//
|
|
// If we start with a reflect.Value, we are already in reflect.Value land and
|
|
// will try to grab the function for the underlying Type and directly call that function.
|
|
// This is more performant than calling reflect.Value.Interface().
|
|
//
|
|
// This still helps us bypass many layers of reflection, and give best performance.
|
|
//
|
|
// Containers
|
|
// ------------
|
|
// Containers in the stream are either associative arrays (key-value pairs) or
|
|
// regular arrays (indexed by incrementing integers).
|
|
//
|
|
// Some streams support indefinite-length containers, and use a breaking
|
|
// byte-sequence to denote that the container has come to an end.
|
|
//
|
|
// Some streams also are text-based, and use explicit separators to denote the
|
|
// end/beginning of different values.
|
|
//
|
|
// Philosophy
|
|
// ------------
|
|
// On decode, this codec will update containers appropriately:
|
|
// - If struct, update fields from stream into fields of struct.
|
|
// If field in stream not found in struct, handle appropriately (based on option).
|
|
// If a struct field has no corresponding value in the stream, leave it AS IS.
|
|
// If nil in stream, set value to nil/zero value.
|
|
// - If map, update map from stream.
|
|
// If the stream value is NIL, set the map to nil.
|
|
// - if slice, try to update up to length of array in stream.
|
|
// if container len is less than stream array length,
|
|
// and container cannot be expanded, handled (based on option).
|
|
// This means you can decode 4-element stream array into 1-element array.
|
|
//
|
|
// ------------------------------------
|
|
// On encode, user can specify omitEmpty. This means that the value will be omitted
|
|
// if the zero value. The problem may occur during decode, where omitted values do not affect
|
|
// the value being decoded into. This means that if decoding into a struct with an
|
|
// int field with current value=5, and the field is omitted in the stream, then after
|
|
// decoding, the value will still be 5 (not 0).
|
|
// omitEmpty only works if you guarantee that you always decode into zero-values.
|
|
//
|
|
// ------------------------------------
|
|
// We could have truncated a map to remove keys not available in the stream,
|
|
// or set values in the struct which are not in the stream to their zero values.
|
|
// We decided against it because there is no efficient way to do it.
|
|
// We may introduce it as an option later.
|
|
// However, that will require enabling it for both runtime and code generation modes.
|
|
//
|
|
// To support truncate, we need to do 2 passes over the container:
|
|
// map
|
|
// - first collect all keys (e.g. in k1)
|
|
// - for each key in stream, mark k1 that the key should not be removed
|
|
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
|
|
// struct:
|
|
// - for each field, track the *typeInfo s1
|
|
// - iterate through all s1, and for each one not marked, set value to zero
|
|
// - this involves checking the possible anonymous fields which are nil ptrs.
|
|
// too much work.
|
|
//
|
|
// ------------------------------------------
|
|
// Error Handling is done within the library using panic.
|
|
//
|
|
// This way, the code doesn't have to keep checking if an error has happened,
|
|
// and we don't have to keep sending the error value along with each call
|
|
// or storing it in the En|Decoder and checking it constantly along the way.
|
|
//
|
|
// We considered storing the error is En|Decoder.
|
|
// - once it has its err field set, it cannot be used again.
|
|
// - panicing will be optional, controlled by const flag.
|
|
// - code should always check error first and return early.
|
|
//
|
|
// We eventually decided against it as it makes the code clumsier to always
|
|
// check for these error conditions.
|
|
//
|
|
// ------------------------------------------
|
|
// We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines.
|
|
// Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket.
|
|
//
|
|
// Also, GC is much better now, eliminating some of the reasons to use a shared pool structure.
|
|
// Instead, the short-lived objects use free-lists that live as long as the object exists.
|
|
//
|
|
// ------------------------------------------
|
|
// Performance is affected by the following:
|
|
// - Bounds Checking
|
|
// - Inlining
|
|
// - Pointer chasing
|
|
// This package tries hard to manage the performance impact of these.
|
|
//
|
|
// ------------------------------------------
|
|
// To alleviate performance due to pointer-chasing:
|
|
// - Prefer non-pointer values in a struct field
|
|
// - Refer to these directly within helper classes
|
|
// e.g. json.go refers directly to d.d.decRd
|
|
//
|
|
// We made the changes to embed En/Decoder in en/decDriver,
|
|
// but we had to explicitly reference the fields as opposed to using a function
|
|
// to get the better performance that we were looking for.
|
|
// For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn().
|
|
//
|
|
// ------------------------------------------
|
|
// Bounds Checking
|
|
// - Allow bytesDecReader to incur "bounds check error", and
|
|
// recover that as an io.EOF.
|
|
// This allows the bounds check branch to always be taken by the branch predictor,
|
|
// giving better performance (in theory), while ensuring that the code is shorter.
|
|
//
|
|
// ------------------------------------------
|
|
// Escape Analysis
|
|
// - Prefer to return non-pointers if the value is used right away.
|
|
// Newly allocated values returned as pointers will be heap-allocated as they escape.
|
|
//
|
|
// Prefer functions and methods that
|
|
// - take no parameters and
|
|
// - return no results and
|
|
// - do not allocate.
|
|
// These are optimized by the runtime.
|
|
// For example, in json, we have dedicated functions for ReadMapElemKey, etc
|
|
// which do not delegate to readDelim, as readDelim takes a parameter.
|
|
// The difference in runtime was as much as 5%.
|
|
//
|
|
// ------------------------------------------
|
|
// Handling Nil
|
|
// - In dynamic (reflection) mode, decodeValue and encodeValue handle nil at the top
|
|
// - Consequently, methods used with them as a parent in the chain e.g. kXXX
|
|
// methods do not handle nil.
|
|
// - Fastpath methods also do not handle nil.
|
|
// The switch called in (en|de)code(...) handles it so the dependent calls don't have to.
|
|
// - codecgen will handle nil before calling into the library for further work also.
|
|
//
|
|
// ------------------------------------------
|
|
// Passing reflect.Kind to functions that take a reflect.Value
|
|
// - Note that reflect.Value.Kind() is very cheap, as its fundamentally a binary AND of 2 numbers
|
|
//
|
|
// ------------------------------------------
|
|
// Transient values during decoding
|
|
//
|
|
// With reflection, the stack is not used. Consequently, values which may be stack-allocated in
|
|
// normal use will cause a heap allocation when using reflection.
|
|
//
|
|
// There are cases where we know that a value is transient, and we just need to decode into it
|
|
// temporarily so we can right away use its value for something else.
|
|
//
|
|
// In these situations, we can elide the heap allocation by being deliberate with use of a pre-cached
|
|
// scratch memory or scratch value.
|
|
//
|
|
// We use this for situations:
|
|
// - decode into a temp value x, and then set x into an interface
|
|
// - decode into a temp value, for use as a map key, to lookup up a map value
|
|
// - decode into a temp value, for use as a map value, to set into a map
|
|
// - decode into a temp value, for sending into a channel
|
|
//
|
|
// By definition, Transient values are NEVER pointer-shaped values,
|
|
// like pointer, func, map, chan. Using transient for pointer-shaped values
|
|
// can lead to data corruption when GC tries to follow what it saw as a pointer at one point.
|
|
//
|
|
// In general, transient values are values which can be decoded as an atomic value
|
|
// using a single call to the decDriver. This naturally includes bool or numeric types.
|
|
//
|
|
// Note that some values which "contain" pointers, specifically string and slice,
|
|
// can also be transient. In the case of string, it is decoded as an atomic value.
|
|
// In the case of a slice, decoding into its elements always uses an addressable
|
|
// value in memory ie we grow the slice, and then decode directly into the memory
|
|
// address corresponding to that index in the slice.
|
|
//
|
|
// To handle these string and slice values, we have to use a scratch value
|
|
// which has the same shape of a string or slice.
|
|
//
|
|
// Consequently, the full range of types which can be transient is:
|
|
// - numbers
|
|
// - bool
|
|
// - string
|
|
// - slice
|
|
//
|
|
// and whbut we MUST use a scratch space with that element
|
|
// being defined as an unsafe.Pointer to start with.
|
|
//
|
|
// We have to be careful with maps. Because we iterate map keys and values during a range,
|
|
// we must have 2 variants of the scratch space/value for maps and keys separately.
|
|
//
|
|
// These are the TransientAddrK and TransientAddr2K methods of decPerType.
|
|
|
|
import (
|
|
"encoding"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"reflect"
|
|
"runtime"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// if debugging is true, then
|
|
// - within Encode/Decode, do not recover from panic's
|
|
// - etc
|
|
//
|
|
// Note: Negative tests that check for errors will fail, so only use this
|
|
// when debugging, and run only one test at a time preferably.
|
|
//
|
|
// Note: RPC tests espeially fail, as they depend on getting the error from an Encode/Decode call.
|
|
const debugging = false
|
|
|
|
const (
|
|
// containerLenUnknown is length returned from Read(Map|Array)Len
|
|
// when a format doesn't know apiori.
|
|
// For example, json doesn't pre-determine the length of a container (sequence/map).
|
|
containerLenUnknown = -1
|
|
|
|
// containerLenNil is length returned from Read(Map|Array)Len
|
|
// when a 'nil' was encountered in the stream.
|
|
containerLenNil = math.MinInt32
|
|
|
|
// [N]byte is handled by converting to []byte first,
|
|
// and sending to the dedicated fast-path function for []byte.
|
|
//
|
|
// Code exists in case our understanding is wrong.
|
|
// keep the defensive code behind this flag, so we can remove/hide it if needed.
|
|
// For now, we enable the defensive code (ie set it to true).
|
|
handleBytesWithinKArray = true
|
|
|
|
// Support encoding.(Binary|Text)(Unm|M)arshaler.
|
|
// This constant flag will enable or disable it.
|
|
supportMarshalInterfaces = true
|
|
|
|
// bytesFreeListNoCache is used for debugging, when we want to skip using a cache of []byte.
|
|
bytesFreeListNoCache = false
|
|
|
|
// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
|
|
// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
|
|
cacheLineSize = 64
|
|
|
|
wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
|
|
wordSize = wordSizeBits / 8
|
|
|
|
// MARKER: determines whether to skip calling fastpath(En|De)codeTypeSwitch.
|
|
// Calling the fastpath switch in encode() or decode() could be redundant,
|
|
// as we still have to introspect it again within fnLoad
|
|
// to determine the function to use for values of that type.
|
|
skipFastpathTypeSwitchInDirectCall = false
|
|
)
|
|
|
|
const cpu32Bit = ^uint(0)>>32 == 0
|
|
|
|
type rkind byte
|
|
|
|
const (
|
|
rkindPtr = rkind(reflect.Ptr)
|
|
rkindString = rkind(reflect.String)
|
|
rkindChan = rkind(reflect.Chan)
|
|
)
|
|
|
|
type mapKeyFastKind uint8
|
|
|
|
const (
|
|
mapKeyFastKind32 = iota + 1
|
|
mapKeyFastKind32ptr
|
|
mapKeyFastKind64
|
|
mapKeyFastKind64ptr
|
|
mapKeyFastKindStr
|
|
)
|
|
|
|
var (
|
|
// use a global mutex to ensure each Handle is initialized.
|
|
// We do this, so we don't have to store the basicHandle mutex
|
|
// directly in BasicHandle, so it can be shallow-copied.
|
|
handleInitMu sync.Mutex
|
|
|
|
must mustHdl
|
|
halt panicHdl
|
|
|
|
digitCharBitset bitset256
|
|
numCharBitset bitset256
|
|
whitespaceCharBitset bitset256
|
|
asciiAlphaNumBitset bitset256
|
|
|
|
// numCharWithExpBitset64 bitset64
|
|
// numCharNoExpBitset64 bitset64
|
|
// whitespaceCharBitset64 bitset64
|
|
//
|
|
// // hasptrBitset sets bit for all kinds which always have internal pointers
|
|
// hasptrBitset bitset32
|
|
|
|
// refBitset sets bit for all kinds which are direct internal references
|
|
refBitset bitset32
|
|
|
|
// isnilBitset sets bit for all kinds which can be compared to nil
|
|
isnilBitset bitset32
|
|
|
|
// numBoolBitset sets bit for all number and bool kinds
|
|
numBoolBitset bitset32
|
|
|
|
// numBoolStrSliceBitset sets bits for all kinds which are numbers, bool, strings and slices
|
|
numBoolStrSliceBitset bitset32
|
|
|
|
// scalarBitset sets bit for all kinds which are scalars/primitives and thus immutable
|
|
scalarBitset bitset32
|
|
|
|
mapKeyFastKindVals [32]mapKeyFastKind
|
|
|
|
// codecgen is set to true by codecgen, so that tests, etc can use this information as needed.
|
|
codecgen bool
|
|
|
|
oneByteArr [1]byte
|
|
zeroByteSlice = oneByteArr[:0:0]
|
|
|
|
eofReader devNullReader
|
|
)
|
|
|
|
var (
|
|
errMapTypeNotMapKind = errors.New("MapType MUST be of Map Kind")
|
|
errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind")
|
|
|
|
errExtFnWriteExtUnsupported = errors.New("BytesExt.WriteExt is not supported")
|
|
errExtFnReadExtUnsupported = errors.New("BytesExt.ReadExt is not supported")
|
|
errExtFnConvertExtUnsupported = errors.New("InterfaceExt.ConvertExt is not supported")
|
|
errExtFnUpdateExtUnsupported = errors.New("InterfaceExt.UpdateExt is not supported")
|
|
|
|
errPanicUndefined = errors.New("panic: undefined error")
|
|
|
|
errHandleInited = errors.New("cannot modify initialized Handle")
|
|
|
|
errNoFormatHandle = errors.New("no handle (cannot identify format)")
|
|
)
|
|
|
|
var pool4tiload = sync.Pool{
|
|
New: func() interface{} {
|
|
return &typeInfoLoad{
|
|
etypes: make([]uintptr, 0, 4),
|
|
sfis: make([]structFieldInfo, 0, 4),
|
|
sfiNames: make(map[string]uint16, 4),
|
|
}
|
|
},
|
|
}
|
|
|
|
func init() {
|
|
xx := func(f mapKeyFastKind, k ...reflect.Kind) {
|
|
for _, v := range k {
|
|
mapKeyFastKindVals[byte(v)&31] = f // 'v % 32' equal to 'v & 31'
|
|
}
|
|
}
|
|
|
|
var f mapKeyFastKind
|
|
|
|
f = mapKeyFastKind64
|
|
if wordSizeBits == 32 {
|
|
f = mapKeyFastKind32
|
|
}
|
|
xx(f, reflect.Int, reflect.Uint, reflect.Uintptr)
|
|
|
|
f = mapKeyFastKind64ptr
|
|
if wordSizeBits == 32 {
|
|
f = mapKeyFastKind32ptr
|
|
}
|
|
xx(f, reflect.Ptr)
|
|
|
|
xx(mapKeyFastKindStr, reflect.String)
|
|
xx(mapKeyFastKind32, reflect.Uint32, reflect.Int32, reflect.Float32)
|
|
xx(mapKeyFastKind64, reflect.Uint64, reflect.Int64, reflect.Float64)
|
|
|
|
numBoolBitset.
|
|
set(byte(reflect.Bool)).
|
|
set(byte(reflect.Int)).
|
|
set(byte(reflect.Int8)).
|
|
set(byte(reflect.Int16)).
|
|
set(byte(reflect.Int32)).
|
|
set(byte(reflect.Int64)).
|
|
set(byte(reflect.Uint)).
|
|
set(byte(reflect.Uint8)).
|
|
set(byte(reflect.Uint16)).
|
|
set(byte(reflect.Uint32)).
|
|
set(byte(reflect.Uint64)).
|
|
set(byte(reflect.Uintptr)).
|
|
set(byte(reflect.Float32)).
|
|
set(byte(reflect.Float64)).
|
|
set(byte(reflect.Complex64)).
|
|
set(byte(reflect.Complex128))
|
|
|
|
numBoolStrSliceBitset = numBoolBitset
|
|
|
|
numBoolStrSliceBitset.
|
|
set(byte(reflect.String)).
|
|
set(byte(reflect.Slice))
|
|
|
|
scalarBitset = numBoolBitset
|
|
|
|
scalarBitset.
|
|
set(byte(reflect.String))
|
|
|
|
// MARKER: reflect.Array is not a scalar, as its contents can be modified.
|
|
|
|
refBitset.
|
|
set(byte(reflect.Map)).
|
|
set(byte(reflect.Ptr)).
|
|
set(byte(reflect.Func)).
|
|
set(byte(reflect.Chan)).
|
|
set(byte(reflect.UnsafePointer))
|
|
|
|
isnilBitset = refBitset
|
|
|
|
isnilBitset.
|
|
set(byte(reflect.Interface)).
|
|
set(byte(reflect.Slice))
|
|
|
|
// hasptrBitset = isnilBitset
|
|
//
|
|
// hasptrBitset.
|
|
// set(byte(reflect.String))
|
|
|
|
for i := byte(0); i <= utf8.RuneSelf; i++ {
|
|
if (i >= '0' && i <= '9') || (i >= 'a' && i <= 'z') || (i >= 'A' && i <= 'Z') {
|
|
asciiAlphaNumBitset.set(i)
|
|
}
|
|
switch i {
|
|
case ' ', '\t', '\r', '\n':
|
|
whitespaceCharBitset.set(i)
|
|
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
|
|
digitCharBitset.set(i)
|
|
numCharBitset.set(i)
|
|
case '.', '+', '-':
|
|
numCharBitset.set(i)
|
|
case 'e', 'E':
|
|
numCharBitset.set(i)
|
|
}
|
|
}
|
|
}
|
|
|
|
// driverStateManager supports the runtime state of an (enc|dec)Driver.
|
|
//
|
|
// During a side(En|De)code call, we can capture the state, reset it,
|
|
// and then restore it later to continue the primary encoding/decoding.
|
|
type driverStateManager interface {
|
|
resetState()
|
|
captureState() interface{}
|
|
restoreState(state interface{})
|
|
}
|
|
|
|
type bdAndBdread struct {
|
|
bdRead bool
|
|
bd byte
|
|
}
|
|
|
|
func (x bdAndBdread) captureState() interface{} { return x }
|
|
func (x *bdAndBdread) resetState() { x.bd, x.bdRead = 0, false }
|
|
func (x *bdAndBdread) reset() { x.resetState() }
|
|
func (x *bdAndBdread) restoreState(v interface{}) { *x = v.(bdAndBdread) }
|
|
|
|
type clsErr struct {
|
|
err error // error on closing
|
|
closed bool // is it closed?
|
|
}
|
|
|
|
type charEncoding uint8
|
|
|
|
const (
|
|
_ charEncoding = iota // make 0 unset
|
|
cUTF8
|
|
cUTF16LE
|
|
cUTF16BE
|
|
cUTF32LE
|
|
cUTF32BE
|
|
// Deprecated: not a true char encoding value
|
|
cRAW charEncoding = 255
|
|
)
|
|
|
|
// valueType is the stream type
|
|
type valueType uint8
|
|
|
|
const (
|
|
valueTypeUnset valueType = iota
|
|
valueTypeNil
|
|
valueTypeInt
|
|
valueTypeUint
|
|
valueTypeFloat
|
|
valueTypeBool
|
|
valueTypeString
|
|
valueTypeSymbol
|
|
valueTypeBytes
|
|
valueTypeMap
|
|
valueTypeArray
|
|
valueTypeTime
|
|
valueTypeExt
|
|
|
|
// valueTypeInvalid = 0xff
|
|
)
|
|
|
|
var valueTypeStrings = [...]string{
|
|
"Unset",
|
|
"Nil",
|
|
"Int",
|
|
"Uint",
|
|
"Float",
|
|
"Bool",
|
|
"String",
|
|
"Symbol",
|
|
"Bytes",
|
|
"Map",
|
|
"Array",
|
|
"Timestamp",
|
|
"Ext",
|
|
}
|
|
|
|
func (x valueType) String() string {
|
|
if int(x) < len(valueTypeStrings) {
|
|
return valueTypeStrings[x]
|
|
}
|
|
return strconv.FormatInt(int64(x), 10)
|
|
}
|
|
|
|
// note that containerMapStart and containerArraySend are not sent.
|
|
// This is because the ReadXXXStart and EncodeXXXStart already does these.
|
|
type containerState uint8
|
|
|
|
const (
|
|
_ containerState = iota
|
|
|
|
containerMapStart
|
|
containerMapKey
|
|
containerMapValue
|
|
containerMapEnd
|
|
containerArrayStart
|
|
containerArrayElem
|
|
containerArrayEnd
|
|
)
|
|
|
|
// do not recurse if a containing type refers to an embedded type
|
|
// which refers back to its containing type (via a pointer).
|
|
// The second time this back-reference happens, break out,
|
|
// so as not to cause an infinite loop.
|
|
const rgetMaxRecursion = 2
|
|
|
|
// fauxUnion is used to keep track of the primitives decoded.
|
|
//
|
|
// Without it, we would have to decode each primitive and wrap it
|
|
// in an interface{}, causing an allocation.
|
|
// In this model, the primitives are decoded in a "pseudo-atomic" fashion,
|
|
// so we can rest assured that no other decoding happens while these
|
|
// primitives are being decoded.
|
|
//
|
|
// maps and arrays are not handled by this mechanism.
|
|
type fauxUnion struct {
|
|
// r RawExt // used for RawExt, uint, []byte.
|
|
|
|
// primitives below
|
|
u uint64
|
|
i int64
|
|
f float64
|
|
l []byte
|
|
s string
|
|
|
|
// ---- cpu cache line boundary?
|
|
t time.Time
|
|
b bool
|
|
|
|
// state
|
|
v valueType
|
|
}
|
|
|
|
// typeInfoLoad is a transient object used while loading up a typeInfo.
|
|
type typeInfoLoad struct {
|
|
etypes []uintptr
|
|
sfis []structFieldInfo
|
|
sfiNames map[string]uint16
|
|
}
|
|
|
|
func (x *typeInfoLoad) reset() {
|
|
x.etypes = x.etypes[:0]
|
|
x.sfis = x.sfis[:0]
|
|
for k := range x.sfiNames { // optimized to zero the map
|
|
delete(x.sfiNames, k)
|
|
}
|
|
}
|
|
|
|
// mirror json.Marshaler and json.Unmarshaler here,
|
|
// so we don't import the encoding/json package
|
|
|
|
type jsonMarshaler interface {
|
|
MarshalJSON() ([]byte, error)
|
|
}
|
|
type jsonUnmarshaler interface {
|
|
UnmarshalJSON([]byte) error
|
|
}
|
|
|
|
type isZeroer interface {
|
|
IsZero() bool
|
|
}
|
|
|
|
type isCodecEmptyer interface {
|
|
IsCodecEmpty() bool
|
|
}
|
|
|
|
type codecError struct {
|
|
err error
|
|
name string
|
|
pos int
|
|
encode bool
|
|
}
|
|
|
|
func (e *codecError) Cause() error {
|
|
return e.err
|
|
}
|
|
|
|
func (e *codecError) Error() string {
|
|
if e.encode {
|
|
return fmt.Sprintf("%s encode error: %v", e.name, e.err)
|
|
}
|
|
return fmt.Sprintf("%s decode error [pos %d]: %v", e.name, e.pos, e.err)
|
|
}
|
|
|
|
func wrapCodecErr(in error, name string, numbytesread int, encode bool) (out error) {
|
|
x, ok := in.(*codecError)
|
|
if ok && x.pos == numbytesread && x.name == name && x.encode == encode {
|
|
return in
|
|
}
|
|
return &codecError{in, name, numbytesread, encode}
|
|
}
|
|
|
|
var (
|
|
bigen bigenHelper
|
|
|
|
bigenstd = binary.BigEndian
|
|
|
|
structInfoFieldName = "_struct"
|
|
|
|
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
|
|
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
|
|
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
|
|
intfTyp = intfSliceTyp.Elem()
|
|
|
|
reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
|
|
|
|
stringTyp = reflect.TypeOf("")
|
|
timeTyp = reflect.TypeOf(time.Time{})
|
|
rawExtTyp = reflect.TypeOf(RawExt{})
|
|
rawTyp = reflect.TypeOf(Raw{})
|
|
uintptrTyp = reflect.TypeOf(uintptr(0))
|
|
uint8Typ = reflect.TypeOf(uint8(0))
|
|
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
|
|
uintTyp = reflect.TypeOf(uint(0))
|
|
intTyp = reflect.TypeOf(int(0))
|
|
|
|
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
|
|
|
|
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
|
|
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
|
|
|
|
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
|
|
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
|
|
|
|
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
|
|
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
|
|
|
|
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
|
|
missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem()
|
|
iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem()
|
|
isCodecEmptyerTyp = reflect.TypeOf((*isCodecEmptyer)(nil)).Elem()
|
|
isSelferViaCodecgenerTyp = reflect.TypeOf((*isSelferViaCodecgener)(nil)).Elem()
|
|
|
|
uint8TypId = rt2id(uint8Typ)
|
|
uint8SliceTypId = rt2id(uint8SliceTyp)
|
|
rawExtTypId = rt2id(rawExtTyp)
|
|
rawTypId = rt2id(rawTyp)
|
|
intfTypId = rt2id(intfTyp)
|
|
timeTypId = rt2id(timeTyp)
|
|
stringTypId = rt2id(stringTyp)
|
|
|
|
mapStrIntfTypId = rt2id(mapStrIntfTyp)
|
|
mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
|
|
intfSliceTypId = rt2id(intfSliceTyp)
|
|
// mapBySliceTypId = rt2id(mapBySliceTyp)
|
|
|
|
intBitsize = uint8(intTyp.Bits())
|
|
uintBitsize = uint8(uintTyp.Bits())
|
|
|
|
// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
|
|
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
|
|
|
|
chkOvf checkOverflow
|
|
)
|
|
|
|
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
|
|
|
|
// SelfExt is a sentinel extension signifying that types
|
|
// registered with it SHOULD be encoded and decoded
|
|
// based on the native mode of the format.
|
|
//
|
|
// This allows users to define a tag for an extension,
|
|
// but signify that the types should be encoded/decoded as the native encoding.
|
|
// This way, users need not also define how to encode or decode the extension.
|
|
var SelfExt = &extFailWrapper{}
|
|
|
|
// Selfer defines methods by which a value can encode or decode itself.
|
|
//
|
|
// Any type which implements Selfer will be able to encode or decode itself.
|
|
// Consequently, during (en|de)code, this takes precedence over
|
|
// (text|binary)(M|Unm)arshal or extension support.
|
|
//
|
|
// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
|
|
// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
|
|
// For example, the snippet below will cause such an error.
|
|
// type testSelferRecur struct{}
|
|
// func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
|
|
// func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
|
|
//
|
|
// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
|
|
// This is because, during each decode, we first check the the next set of bytes
|
|
// represent nil, and if so, we just set the value to nil.
|
|
type Selfer interface {
|
|
CodecEncodeSelf(*Encoder)
|
|
CodecDecodeSelf(*Decoder)
|
|
}
|
|
|
|
type isSelferViaCodecgener interface {
|
|
codecSelferViaCodecgen()
|
|
}
|
|
|
|
// MissingFielder defines the interface allowing structs to internally decode or encode
|
|
// values which do not map to struct fields.
|
|
//
|
|
// We expect that this interface is bound to a pointer type (so the mutation function works).
|
|
//
|
|
// A use-case is if a version of a type unexports a field, but you want compatibility between
|
|
// both versions during encoding and decoding.
|
|
//
|
|
// Note that the interface is completely ignored during codecgen.
|
|
type MissingFielder interface {
|
|
// CodecMissingField is called to set a missing field and value pair.
|
|
//
|
|
// It returns true if the missing field was set on the struct.
|
|
CodecMissingField(field []byte, value interface{}) bool
|
|
|
|
// CodecMissingFields returns the set of fields which are not struct fields.
|
|
//
|
|
// Note that the returned map may be mutated by the caller.
|
|
CodecMissingFields() map[string]interface{}
|
|
}
|
|
|
|
// MapBySlice is a tag interface that denotes the slice or array value should encode as a map
|
|
// in the stream, and can be decoded from a map in the stream.
|
|
//
|
|
// The slice or array must contain a sequence of key-value pairs.
|
|
// The length of the slice or array must be even (fully divisible by 2).
|
|
//
|
|
// This affords storing a map in a specific sequence in the stream.
|
|
//
|
|
// Example usage:
|
|
// type T1 []string // or []int or []Point or any other "slice" type
|
|
// func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
|
|
// type T2 struct { KeyValues T1 }
|
|
//
|
|
// var kvs = []string{"one", "1", "two", "2", "three", "3"}
|
|
// var v2 = T2{ KeyValues: T1(kvs) }
|
|
// // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
|
|
//
|
|
// The support of MapBySlice affords the following:
|
|
// - A slice or array type which implements MapBySlice will be encoded as a map
|
|
// - A slice can be decoded from a map in the stream
|
|
type MapBySlice interface {
|
|
MapBySlice()
|
|
}
|
|
|
|
// basicHandleRuntimeState holds onto all BasicHandle runtime and cached config information.
|
|
//
|
|
// Storing this outside BasicHandle allows us create shallow copies of a Handle,
|
|
// which can be used e.g. when we need to modify config fields temporarily.
|
|
// Shallow copies are used within tests, so we can modify some config fields for a test
|
|
// temporarily when running tests in parallel, without running the risk that a test executing
|
|
// in parallel with other tests does not see a transient modified values not meant for it.
|
|
type basicHandleRuntimeState struct {
|
|
// these are used during runtime.
|
|
// At init time, they should have nothing in them.
|
|
rtidFns atomicRtidFnSlice
|
|
rtidFnsNoExt atomicRtidFnSlice
|
|
|
|
// Note: basicHandleRuntimeState is not comparable, due to these slices here (extHandle, intf2impls).
|
|
// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
|
|
// Thses slices are used all the time, so keep as slices (not pointers).
|
|
|
|
extHandle
|
|
|
|
intf2impls
|
|
|
|
mu sync.Mutex
|
|
|
|
jsonHandle bool
|
|
binaryHandle bool
|
|
|
|
// timeBuiltin is initialized from TimeNotBuiltin, and used internally.
|
|
// once initialized, it cannot be changed, as the function for encoding/decoding time.Time
|
|
// will have been cached and the TimeNotBuiltin value will not be consulted thereafter.
|
|
timeBuiltin bool
|
|
_ bool // padding
|
|
}
|
|
|
|
// BasicHandle encapsulates the common options and extension functions.
|
|
//
|
|
// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
|
|
type BasicHandle struct {
|
|
// BasicHandle is always a part of a different type.
|
|
// It doesn't have to fit into it own cache lines.
|
|
|
|
// TypeInfos is used to get the type info for any type.
|
|
//
|
|
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
|
|
TypeInfos *TypeInfos
|
|
|
|
*basicHandleRuntimeState
|
|
|
|
// ---- cache line
|
|
|
|
DecodeOptions
|
|
|
|
// ---- cache line
|
|
|
|
EncodeOptions
|
|
|
|
RPCOptions
|
|
|
|
// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
|
|
//
|
|
// All Handlers should know how to encode/decode time.Time as part of the core
|
|
// format specification, or as a standard extension defined by the format.
|
|
//
|
|
// However, users can elect to handle time.Time as a custom extension, or via the
|
|
// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
|
|
// To elect this behavior, users can set TimeNotBuiltin=true.
|
|
//
|
|
// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
|
|
// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
|
|
//
|
|
// Note: DO NOT CHANGE AFTER FIRST USE.
|
|
//
|
|
// Once a Handle has been initialized (used), do not modify this option. It will be ignored.
|
|
TimeNotBuiltin bool
|
|
|
|
// ExplicitRelease configures whether Release() is implicitly called after an encode or
|
|
// decode call.
|
|
//
|
|
// If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...)
|
|
// on it or calling (Must)Encode repeatedly into a given []byte or io.Writer,
|
|
// then you do not want it to be implicitly closed after each Encode/Decode call.
|
|
// Doing so will unnecessarily return resources to the shared pool, only for you to
|
|
// grab them right after again to do another Encode/Decode call.
|
|
//
|
|
// Instead, you configure ExplicitRelease=true, and you explicitly call Release() when
|
|
// you are truly done.
|
|
//
|
|
// As an alternative, you can explicitly set a finalizer - so its resources
|
|
// are returned to the shared pool before it is garbage-collected. Do it as below:
|
|
// runtime.SetFinalizer(e, (*Encoder).Release)
|
|
// runtime.SetFinalizer(d, (*Decoder).Release)
|
|
//
|
|
// Deprecated: This is not longer used as pools are only used for long-lived objects
|
|
// which are shared across goroutines.
|
|
// Setting this value has no effect. It is maintained for backward compatibility.
|
|
ExplicitRelease bool
|
|
|
|
// ---- cache line
|
|
inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc)
|
|
|
|
}
|
|
|
|
// initHandle does a one-time initialization of the handle.
|
|
// After this is run, do not modify the Handle, as some modifications are ignored
|
|
// e.g. extensions, registered interfaces, TimeNotBuiltIn, etc
|
|
func initHandle(hh Handle) {
|
|
x := hh.getBasicHandle()
|
|
|
|
// MARKER: We need to simulate once.Do, to ensure no data race within the block.
|
|
// Consequently, below would not work.
|
|
//
|
|
// if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
|
|
// x.be = hh.isBinary()
|
|
// x.js = hh.isJson
|
|
// x.n = hh.Name()[0]
|
|
// }
|
|
|
|
// simulate once.Do using our own stored flag and mutex as a CompareAndSwap
|
|
// is not sufficient, since a race condition can occur within init(Handle) function.
|
|
// init is made noinline, so that this function can be inlined by its caller.
|
|
if atomic.LoadUint32(&x.inited) == 0 {
|
|
x.initHandle(hh)
|
|
}
|
|
}
|
|
|
|
func (x *BasicHandle) basicInit() {
|
|
x.rtidFns.store(nil)
|
|
x.rtidFnsNoExt.store(nil)
|
|
x.timeBuiltin = !x.TimeNotBuiltin
|
|
}
|
|
|
|
func (x *BasicHandle) init() {}
|
|
|
|
func (x *BasicHandle) isInited() bool {
|
|
return atomic.LoadUint32(&x.inited) != 0
|
|
}
|
|
|
|
// clearInited: DANGEROUS - only use in testing, etc
|
|
func (x *BasicHandle) clearInited() {
|
|
atomic.StoreUint32(&x.inited, 0)
|
|
}
|
|
|
|
// TimeBuiltin returns whether time.Time OOTB support is used,
|
|
// based on the initial configuration of TimeNotBuiltin
|
|
func (x *basicHandleRuntimeState) TimeBuiltin() bool {
|
|
return x.timeBuiltin
|
|
}
|
|
|
|
func (x *basicHandleRuntimeState) isJs() bool {
|
|
return x.jsonHandle
|
|
}
|
|
|
|
func (x *basicHandleRuntimeState) isBe() bool {
|
|
return x.binaryHandle
|
|
}
|
|
|
|
func (x *basicHandleRuntimeState) setExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
|
|
rk := rt.Kind()
|
|
for rk == reflect.Ptr {
|
|
rt = rt.Elem()
|
|
rk = rt.Kind()
|
|
}
|
|
|
|
if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
|
|
return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
|
|
}
|
|
|
|
rtid := rt2id(rt)
|
|
// handle all natively supported type appropriately, so they cannot have an extension.
|
|
// However, we do not return an error for these, as we do not document that.
|
|
// Instead, we silently treat as a no-op, and return.
|
|
switch rtid {
|
|
case rawTypId, rawExtTypId:
|
|
return
|
|
case timeTypId:
|
|
if x.timeBuiltin {
|
|
return
|
|
}
|
|
}
|
|
|
|
for i := range x.extHandle {
|
|
v := &x.extHandle[i]
|
|
if v.rtid == rtid {
|
|
v.tag, v.ext = tag, ext
|
|
return
|
|
}
|
|
}
|
|
rtidptr := rt2id(reflect.PtrTo(rt))
|
|
x.extHandle = append(x.extHandle, extTypeTagFn{rtid, rtidptr, rt, tag, ext})
|
|
return
|
|
}
|
|
|
|
// initHandle should be called only from codec.initHandle global function.
|
|
// make it uninlineable, as it is called at most once for each handle.
|
|
//go:noinline
|
|
func (x *BasicHandle) initHandle(hh Handle) {
|
|
handleInitMu.Lock()
|
|
defer handleInitMu.Unlock() // use defer, as halt may panic below
|
|
if x.inited == 0 {
|
|
if x.basicHandleRuntimeState == nil {
|
|
x.basicHandleRuntimeState = new(basicHandleRuntimeState)
|
|
}
|
|
x.jsonHandle = hh.isJson()
|
|
x.binaryHandle = hh.isBinary()
|
|
// ensure MapType and SliceType are of correct type
|
|
if x.MapType != nil && x.MapType.Kind() != reflect.Map {
|
|
halt.onerror(errMapTypeNotMapKind)
|
|
}
|
|
if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice {
|
|
halt.onerror(errSliceTypeNotSliceKind)
|
|
}
|
|
x.basicInit()
|
|
hh.init()
|
|
atomic.StoreUint32(&x.inited, 1)
|
|
}
|
|
}
|
|
|
|
func (x *BasicHandle) getBasicHandle() *BasicHandle {
|
|
return x
|
|
}
|
|
|
|
func (x *BasicHandle) typeInfos() *TypeInfos {
|
|
if x.TypeInfos != nil {
|
|
return x.TypeInfos
|
|
}
|
|
return defTypeInfos
|
|
}
|
|
|
|
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
|
return x.typeInfos().get(rtid, rt)
|
|
}
|
|
|
|
func findRtidFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
|
|
// binary search. adapted from sort/search.go.
|
|
// Note: we use goto (instead of for loop) so this can be inlined.
|
|
|
|
// h, i, j := 0, 0, len(s)
|
|
var h uint // var h, i uint
|
|
var j = uint(len(s))
|
|
LOOP:
|
|
if i < j {
|
|
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
|
|
if s[h].rtid < rtid {
|
|
i = h + 1
|
|
} else {
|
|
j = h
|
|
}
|
|
goto LOOP
|
|
}
|
|
if i < uint(len(s)) && s[i].rtid == rtid {
|
|
fn = s[i].fn
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) {
|
|
return x.fnVia(rt, x.typeInfos(), &x.rtidFns, x.CheckCircularRef, true)
|
|
}
|
|
|
|
func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) {
|
|
return x.fnVia(rt, x.typeInfos(), &x.rtidFnsNoExt, x.CheckCircularRef, false)
|
|
}
|
|
|
|
func (x *basicHandleRuntimeState) fnVia(rt reflect.Type, tinfos *TypeInfos, fs *atomicRtidFnSlice, checkCircularRef, checkExt bool) (fn *codecFn) {
|
|
rtid := rt2id(rt)
|
|
sp := fs.load()
|
|
if sp != nil {
|
|
if _, fn = findRtidFn(sp, rtid); fn != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
fn = x.fnLoad(rt, rtid, tinfos, checkCircularRef, checkExt)
|
|
x.mu.Lock()
|
|
sp = fs.load()
|
|
// since this is an atomic load/store, we MUST use a different array each time,
|
|
// else we have a data race when a store is happening simultaneously with a findRtidFn call.
|
|
if sp == nil {
|
|
sp = []codecRtidFn{{rtid, fn}}
|
|
fs.store(sp)
|
|
} else {
|
|
idx, fn2 := findRtidFn(sp, rtid)
|
|
if fn2 == nil {
|
|
sp2 := make([]codecRtidFn, len(sp)+1)
|
|
copy(sp2[idx+1:], sp[idx:])
|
|
copy(sp2, sp[:idx])
|
|
sp2[idx] = codecRtidFn{rtid, fn}
|
|
fs.store(sp2)
|
|
}
|
|
}
|
|
x.mu.Unlock()
|
|
return
|
|
}
|
|
|
|
func fnloadFastpathUnderlying(ti *typeInfo) (f *fastpathE, u reflect.Type) {
|
|
var rtid uintptr
|
|
var idx int
|
|
rtid = rt2id(ti.fastpathUnderlying)
|
|
idx = fastpathAvIndex(rtid)
|
|
if idx == -1 {
|
|
return
|
|
}
|
|
f = &fastpathAv[idx]
|
|
if uint8(reflect.Array) == ti.kind {
|
|
u = reflectArrayOf(ti.rt.Len(), ti.elem)
|
|
} else {
|
|
u = f.rt
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *basicHandleRuntimeState) fnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, checkCircularRef, checkExt bool) (fn *codecFn) {
|
|
fn = new(codecFn)
|
|
fi := &(fn.i)
|
|
ti := tinfos.get(rtid, rt)
|
|
fi.ti = ti
|
|
rk := reflect.Kind(ti.kind)
|
|
|
|
// anything can be an extension except the built-in ones: time, raw and rawext.
|
|
// ensure we check for these types, then if extension, before checking if
|
|
// it implementes one of the pre-declared interfaces.
|
|
|
|
fi.addrDf = true
|
|
// fi.addrEf = true
|
|
|
|
if rtid == timeTypId && x.timeBuiltin {
|
|
fn.fe = (*Encoder).kTime
|
|
fn.fd = (*Decoder).kTime
|
|
} else if rtid == rawTypId {
|
|
fn.fe = (*Encoder).raw
|
|
fn.fd = (*Decoder).raw
|
|
} else if rtid == rawExtTypId {
|
|
fn.fe = (*Encoder).rawExt
|
|
fn.fd = (*Decoder).rawExt
|
|
fi.addrD = true
|
|
fi.addrE = true
|
|
} else if xfFn := x.getExt(rtid, checkExt); xfFn != nil {
|
|
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
|
|
fn.fe = (*Encoder).ext
|
|
fn.fd = (*Decoder).ext
|
|
fi.addrD = true
|
|
if rk == reflect.Struct || rk == reflect.Array {
|
|
fi.addrE = true
|
|
}
|
|
} else if (ti.flagSelfer || ti.flagSelferPtr) &&
|
|
!(checkCircularRef && ti.flagSelferViaCodecgen && ti.kind == byte(reflect.Struct)) {
|
|
// do not use Selfer generated by codecgen if it is a struct and CheckCircularRef=true
|
|
fn.fe = (*Encoder).selferMarshal
|
|
fn.fd = (*Decoder).selferUnmarshal
|
|
fi.addrD = ti.flagSelferPtr
|
|
fi.addrE = ti.flagSelferPtr
|
|
} else if supportMarshalInterfaces && x.isBe() &&
|
|
(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
|
|
(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
|
|
fn.fe = (*Encoder).binaryMarshal
|
|
fn.fd = (*Decoder).binaryUnmarshal
|
|
fi.addrD = ti.flagBinaryUnmarshalerPtr
|
|
fi.addrE = ti.flagBinaryMarshalerPtr
|
|
} else if supportMarshalInterfaces && !x.isBe() && x.isJs() &&
|
|
(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
|
|
(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
|
|
//If JSON, we should check JSONMarshal before textMarshal
|
|
fn.fe = (*Encoder).jsonMarshal
|
|
fn.fd = (*Decoder).jsonUnmarshal
|
|
fi.addrD = ti.flagJsonUnmarshalerPtr
|
|
fi.addrE = ti.flagJsonMarshalerPtr
|
|
} else if supportMarshalInterfaces && !x.isBe() &&
|
|
(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
|
|
(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
|
|
fn.fe = (*Encoder).textMarshal
|
|
fn.fd = (*Decoder).textUnmarshal
|
|
fi.addrD = ti.flagTextUnmarshalerPtr
|
|
fi.addrE = ti.flagTextMarshalerPtr
|
|
} else {
|
|
if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
|
|
// by default (without using unsafe),
|
|
// if an array is not addressable, converting from an array to a slice
|
|
// requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array).
|
|
//
|
|
// (Non-addressable arrays mostly occur as keys/values from a map).
|
|
//
|
|
// However, fastpath functions are mostly for slices of numbers or strings,
|
|
// which are small by definition and thus allocation should be fast/cheap in time.
|
|
//
|
|
// Consequently, the value of doing this quick allocation to elide the overhead cost of
|
|
// non-optimized (not-unsafe) reflection is a fair price.
|
|
var rtid2 uintptr
|
|
if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
|
|
rtid2 = rtid
|
|
if rk == reflect.Array {
|
|
rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
|
|
}
|
|
if idx := fastpathAvIndex(rtid2); idx != -1 {
|
|
fn.fe = fastpathAv[idx].encfn
|
|
fn.fd = fastpathAv[idx].decfn
|
|
fi.addrD = true
|
|
fi.addrDf = false
|
|
if rk == reflect.Array {
|
|
fi.addrD = false // decode directly into array value (slice made from it)
|
|
}
|
|
}
|
|
} else { // named type (with underlying type of map or slice or array)
|
|
// try to use mapping for underlying type
|
|
xfe, xrt := fnloadFastpathUnderlying(ti)
|
|
if xfe != nil {
|
|
xfnf := xfe.encfn
|
|
xfnf2 := xfe.decfn
|
|
if rk == reflect.Array {
|
|
fi.addrD = false // decode directly into array value (slice made from it)
|
|
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
|
|
xfnf2(d, xf, rvConvert(xrv, xrt))
|
|
}
|
|
} else {
|
|
fi.addrD = true
|
|
fi.addrDf = false // meaning it can be an address(ptr) or a value
|
|
xptr2rt := reflect.PtrTo(xrt)
|
|
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
|
|
if xrv.Kind() == reflect.Ptr {
|
|
xfnf2(d, xf, rvConvert(xrv, xptr2rt))
|
|
} else {
|
|
xfnf2(d, xf, rvConvert(xrv, xrt))
|
|
}
|
|
}
|
|
}
|
|
fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
|
|
xfnf(e, xf, rvConvert(xrv, xrt))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if fn.fe == nil && fn.fd == nil {
|
|
switch rk {
|
|
case reflect.Bool:
|
|
fn.fe = (*Encoder).kBool
|
|
fn.fd = (*Decoder).kBool
|
|
case reflect.String:
|
|
// Do not use different functions based on StringToRaw option, as that will statically
|
|
// set the function for a string type, and if the Handle is modified thereafter,
|
|
// behaviour is non-deterministic
|
|
// i.e. DO NOT DO:
|
|
// if x.StringToRaw {
|
|
// fn.fe = (*Encoder).kStringToRaw
|
|
// } else {
|
|
// fn.fe = (*Encoder).kStringEnc
|
|
// }
|
|
|
|
fn.fe = (*Encoder).kString
|
|
fn.fd = (*Decoder).kString
|
|
case reflect.Int:
|
|
fn.fd = (*Decoder).kInt
|
|
fn.fe = (*Encoder).kInt
|
|
case reflect.Int8:
|
|
fn.fe = (*Encoder).kInt8
|
|
fn.fd = (*Decoder).kInt8
|
|
case reflect.Int16:
|
|
fn.fe = (*Encoder).kInt16
|
|
fn.fd = (*Decoder).kInt16
|
|
case reflect.Int32:
|
|
fn.fe = (*Encoder).kInt32
|
|
fn.fd = (*Decoder).kInt32
|
|
case reflect.Int64:
|
|
fn.fe = (*Encoder).kInt64
|
|
fn.fd = (*Decoder).kInt64
|
|
case reflect.Uint:
|
|
fn.fd = (*Decoder).kUint
|
|
fn.fe = (*Encoder).kUint
|
|
case reflect.Uint8:
|
|
fn.fe = (*Encoder).kUint8
|
|
fn.fd = (*Decoder).kUint8
|
|
case reflect.Uint16:
|
|
fn.fe = (*Encoder).kUint16
|
|
fn.fd = (*Decoder).kUint16
|
|
case reflect.Uint32:
|
|
fn.fe = (*Encoder).kUint32
|
|
fn.fd = (*Decoder).kUint32
|
|
case reflect.Uint64:
|
|
fn.fe = (*Encoder).kUint64
|
|
fn.fd = (*Decoder).kUint64
|
|
case reflect.Uintptr:
|
|
fn.fe = (*Encoder).kUintptr
|
|
fn.fd = (*Decoder).kUintptr
|
|
case reflect.Float32:
|
|
fn.fe = (*Encoder).kFloat32
|
|
fn.fd = (*Decoder).kFloat32
|
|
case reflect.Float64:
|
|
fn.fe = (*Encoder).kFloat64
|
|
fn.fd = (*Decoder).kFloat64
|
|
case reflect.Complex64:
|
|
fn.fe = (*Encoder).kComplex64
|
|
fn.fd = (*Decoder).kComplex64
|
|
case reflect.Complex128:
|
|
fn.fe = (*Encoder).kComplex128
|
|
fn.fd = (*Decoder).kComplex128
|
|
case reflect.Chan:
|
|
fn.fe = (*Encoder).kChan
|
|
fn.fd = (*Decoder).kChan
|
|
case reflect.Slice:
|
|
fn.fe = (*Encoder).kSlice
|
|
fn.fd = (*Decoder).kSlice
|
|
case reflect.Array:
|
|
fi.addrD = false // decode directly into array value (slice made from it)
|
|
fn.fe = (*Encoder).kArray
|
|
fn.fd = (*Decoder).kArray
|
|
case reflect.Struct:
|
|
if ti.anyOmitEmpty ||
|
|
ti.flagMissingFielder ||
|
|
ti.flagMissingFielderPtr {
|
|
fn.fe = (*Encoder).kStruct
|
|
} else {
|
|
fn.fe = (*Encoder).kStructNoOmitempty
|
|
}
|
|
fn.fd = (*Decoder).kStruct
|
|
case reflect.Map:
|
|
fn.fe = (*Encoder).kMap
|
|
fn.fd = (*Decoder).kMap
|
|
case reflect.Interface:
|
|
// encode: reflect.Interface are handled already by preEncodeValue
|
|
fn.fd = (*Decoder).kInterface
|
|
fn.fe = (*Encoder).kErr
|
|
default:
|
|
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
|
|
fn.fe = (*Encoder).kErr
|
|
fn.fd = (*Decoder).kErr
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Handle defines a specific encoding format. It also stores any runtime state
|
|
// used during an Encoding or Decoding session e.g. stored state about Types, etc.
|
|
//
|
|
// Once a handle is configured, it can be shared across multiple Encoders and Decoders.
|
|
//
|
|
// Note that a Handle is NOT safe for concurrent modification.
|
|
//
|
|
// A Handle also should not be modified after it is configured and has
|
|
// been used at least once. This is because stored state may be out of sync with the
|
|
// new configuration, and a data race can occur when multiple goroutines access it.
|
|
// i.e. multiple Encoders or Decoders in different goroutines.
|
|
//
|
|
// Consequently, the typical usage model is that a Handle is pre-configured
|
|
// before first time use, and not modified while in use.
|
|
// Such a pre-configured Handle is safe for concurrent access.
|
|
type Handle interface {
|
|
Name() string
|
|
getBasicHandle() *BasicHandle
|
|
newEncDriver() encDriver
|
|
newDecDriver() decDriver
|
|
isBinary() bool
|
|
isJson() bool // json is special for now, so track it
|
|
// desc describes the current byte descriptor, or returns "unknown[XXX]" if not understood.
|
|
desc(bd byte) string
|
|
// init initializes the handle based on handle-specific info (beyond what is in BasicHandle)
|
|
init()
|
|
}
|
|
|
|
// Raw represents raw formatted bytes.
|
|
// We "blindly" store it during encode and retrieve the raw bytes during decode.
|
|
// Note: it is dangerous during encode, so we may gate the behaviour
|
|
// behind an Encode flag which must be explicitly set.
|
|
type Raw []byte
|
|
|
|
// RawExt represents raw unprocessed extension data.
|
|
// Some codecs will decode extension data as a *RawExt
|
|
// if there is no registered extension for the tag.
|
|
//
|
|
// Only one of Data or Value is nil.
|
|
// If Data is nil, then the content of the RawExt is in the Value.
|
|
type RawExt struct {
|
|
Tag uint64
|
|
// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
|
|
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
|
|
Data []byte
|
|
// Value represents the extension, if Data is nil.
|
|
// Value is used by codecs (e.g. cbor, json) which leverage the format to do
|
|
// custom serialization of the types.
|
|
Value interface{}
|
|
}
|
|
|
|
func (re *RawExt) setData(xbs []byte, zerocopy bool) {
|
|
if zerocopy {
|
|
re.Data = xbs
|
|
} else {
|
|
re.Data = append(re.Data[:0], xbs...)
|
|
}
|
|
}
|
|
|
|
// BytesExt handles custom (de)serialization of types to/from []byte.
|
|
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
|
|
type BytesExt interface {
|
|
// WriteExt converts a value to a []byte.
|
|
//
|
|
// Note: v is a pointer iff the registered extension type is a struct or array kind.
|
|
WriteExt(v interface{}) []byte
|
|
|
|
// ReadExt updates a value from a []byte.
|
|
//
|
|
// Note: dst is always a pointer kind to the registered extension type.
|
|
ReadExt(dst interface{}, src []byte)
|
|
}
|
|
|
|
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
|
|
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
|
|
//
|
|
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
|
|
type InterfaceExt interface {
|
|
// ConvertExt converts a value into a simpler interface for easy encoding
|
|
// e.g. convert time.Time to int64.
|
|
//
|
|
// Note: v is a pointer iff the registered extension type is a struct or array kind.
|
|
ConvertExt(v interface{}) interface{}
|
|
|
|
// UpdateExt updates a value from a simpler interface for easy decoding
|
|
// e.g. convert int64 to time.Time.
|
|
//
|
|
// Note: dst is always a pointer kind to the registered extension type.
|
|
UpdateExt(dst interface{}, src interface{})
|
|
}
|
|
|
|
// Ext handles custom (de)serialization of custom types / extensions.
|
|
type Ext interface {
|
|
BytesExt
|
|
InterfaceExt
|
|
}
|
|
|
|
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
|
|
type addExtWrapper struct {
|
|
encFn func(reflect.Value) ([]byte, error)
|
|
decFn func(reflect.Value, []byte) error
|
|
}
|
|
|
|
func (x addExtWrapper) WriteExt(v interface{}) []byte {
|
|
bs, err := x.encFn(reflect.ValueOf(v))
|
|
halt.onerror(err)
|
|
return bs
|
|
}
|
|
|
|
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
|
|
halt.onerror(x.decFn(reflect.ValueOf(v), bs))
|
|
}
|
|
|
|
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
|
|
return x.WriteExt(v)
|
|
}
|
|
|
|
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
|
|
x.ReadExt(dest, v.([]byte))
|
|
}
|
|
|
|
type bytesExtFailer struct{}
|
|
|
|
func (bytesExtFailer) WriteExt(v interface{}) []byte {
|
|
halt.onerror(errExtFnWriteExtUnsupported)
|
|
return nil
|
|
}
|
|
func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
|
|
halt.onerror(errExtFnReadExtUnsupported)
|
|
}
|
|
|
|
type interfaceExtFailer struct{}
|
|
|
|
func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
|
|
halt.onerror(errExtFnConvertExtUnsupported)
|
|
return nil
|
|
}
|
|
func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
|
|
halt.onerror(errExtFnUpdateExtUnsupported)
|
|
}
|
|
|
|
type bytesExtWrapper struct {
|
|
interfaceExtFailer
|
|
BytesExt
|
|
}
|
|
|
|
type interfaceExtWrapper struct {
|
|
bytesExtFailer
|
|
InterfaceExt
|
|
}
|
|
|
|
type extFailWrapper struct {
|
|
bytesExtFailer
|
|
interfaceExtFailer
|
|
}
|
|
|
|
type binaryEncodingType struct{}
|
|
|
|
func (binaryEncodingType) isBinary() bool { return true }
|
|
func (binaryEncodingType) isJson() bool { return false }
|
|
|
|
type textEncodingType struct{}
|
|
|
|
func (textEncodingType) isBinary() bool { return false }
|
|
func (textEncodingType) isJson() bool { return false }
|
|
|
|
type notJsonType struct{}
|
|
|
|
func (notJsonType) isJson() bool { return false }
|
|
|
|
// noBuiltInTypes is embedded into many types which do not support builtins
|
|
// e.g. msgpack, simple, cbor.
|
|
|
|
type noBuiltInTypes struct{}
|
|
|
|
func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
|
|
func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
|
|
|
|
// bigenHelper handles ByteOrder operations directly using
|
|
// arrays of bytes (not slice of bytes).
|
|
//
|
|
// Since byteorder operations are very common for encoding and decoding
|
|
// numbers, lengths, etc - it is imperative that this operation is as
|
|
// fast as possible. Removing indirection (pointer chasing) to look
|
|
// at up to 8 bytes helps a lot here.
|
|
//
|
|
// For times where it is expedient to use a slice, delegate to the
|
|
// bigenstd (equal to the binary.BigEndian value).
|
|
//
|
|
// retrofitted from stdlib: encoding/binary/BigEndian (ByteOrder)
|
|
type bigenHelper struct{}
|
|
|
|
func (z bigenHelper) PutUint16(v uint16) (b [2]byte) {
|
|
return [...]byte{
|
|
byte(v >> 8),
|
|
byte(v),
|
|
}
|
|
}
|
|
|
|
func (z bigenHelper) PutUint32(v uint32) (b [4]byte) {
|
|
return [...]byte{
|
|
byte(v >> 24),
|
|
byte(v >> 16),
|
|
byte(v >> 8),
|
|
byte(v),
|
|
}
|
|
}
|
|
|
|
func (z bigenHelper) PutUint64(v uint64) (b [8]byte) {
|
|
return [...]byte{
|
|
byte(v >> 56),
|
|
byte(v >> 48),
|
|
byte(v >> 40),
|
|
byte(v >> 32),
|
|
byte(v >> 24),
|
|
byte(v >> 16),
|
|
byte(v >> 8),
|
|
byte(v),
|
|
}
|
|
}
|
|
|
|
func (z bigenHelper) Uint16(b [2]byte) (v uint16) {
|
|
return uint16(b[1]) |
|
|
uint16(b[0])<<8
|
|
}
|
|
|
|
func (z bigenHelper) Uint32(b [4]byte) (v uint32) {
|
|
return uint32(b[3]) |
|
|
uint32(b[2])<<8 |
|
|
uint32(b[1])<<16 |
|
|
uint32(b[0])<<24
|
|
}
|
|
|
|
func (z bigenHelper) Uint64(b [8]byte) (v uint64) {
|
|
return uint64(b[7]) |
|
|
uint64(b[6])<<8 |
|
|
uint64(b[5])<<16 |
|
|
uint64(b[4])<<24 |
|
|
uint64(b[3])<<32 |
|
|
uint64(b[2])<<40 |
|
|
uint64(b[1])<<48 |
|
|
uint64(b[0])<<56
|
|
}
|
|
|
|
func (z bigenHelper) writeUint16(w *encWr, v uint16) {
|
|
x := z.PutUint16(v)
|
|
w.writen2(x[0], x[1])
|
|
}
|
|
|
|
func (z bigenHelper) writeUint32(w *encWr, v uint32) {
|
|
w.writen4(z.PutUint32(v))
|
|
}
|
|
|
|
func (z bigenHelper) writeUint64(w *encWr, v uint64) {
|
|
w.writen8(z.PutUint64(v))
|
|
}
|
|
|
|
type extTypeTagFn struct {
|
|
rtid uintptr
|
|
rtidptr uintptr
|
|
rt reflect.Type
|
|
tag uint64
|
|
ext Ext
|
|
}
|
|
|
|
type extHandle []extTypeTagFn
|
|
|
|
// AddExt registes an encode and decode function for a reflect.Type.
|
|
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
|
|
//
|
|
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
|
func (x *BasicHandle) AddExt(rt reflect.Type, tag byte,
|
|
encfn func(reflect.Value) ([]byte, error),
|
|
decfn func(reflect.Value, []byte) error) (err error) {
|
|
if encfn == nil || decfn == nil {
|
|
return x.SetExt(rt, uint64(tag), nil)
|
|
}
|
|
return x.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
|
|
}
|
|
|
|
// SetExt will set the extension for a tag and reflect.Type.
|
|
// Note that the type must be a named type, and specifically not a pointer or Interface.
|
|
// An error is returned if that is not honored.
|
|
// To Deregister an ext, call SetExt with nil Ext.
|
|
//
|
|
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
|
func (x *BasicHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
|
|
if x.isInited() {
|
|
return errHandleInited
|
|
}
|
|
if x.basicHandleRuntimeState == nil {
|
|
x.basicHandleRuntimeState = new(basicHandleRuntimeState)
|
|
}
|
|
return x.basicHandleRuntimeState.setExt(rt, tag, ext)
|
|
}
|
|
|
|
func (o extHandle) getExtForI(x interface{}) (v *extTypeTagFn) {
|
|
if len(o) > 0 {
|
|
v = o.getExt(i2rtid(x), true)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) {
|
|
if !check {
|
|
return
|
|
}
|
|
for i := range o {
|
|
v = &o[i]
|
|
if v.rtid == rtid || v.rtidptr == rtid {
|
|
return
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
|
|
for i := range o {
|
|
v = &o[i]
|
|
if v.tag == tag {
|
|
return
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type intf2impl struct {
|
|
rtid uintptr // for intf
|
|
impl reflect.Type
|
|
}
|
|
|
|
type intf2impls []intf2impl
|
|
|
|
// Intf2Impl maps an interface to an implementing type.
|
|
// This allows us support infering the concrete type
|
|
// and populating it when passed an interface.
|
|
// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
|
|
//
|
|
// Passing a nil impl will clear the mapping.
|
|
func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
|
|
if impl != nil && !impl.Implements(intf) {
|
|
return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
|
|
}
|
|
rtid := rt2id(intf)
|
|
o2 := *o
|
|
for i := range o2 {
|
|
v := &o2[i]
|
|
if v.rtid == rtid {
|
|
v.impl = impl
|
|
return
|
|
}
|
|
}
|
|
*o = append(o2, intf2impl{rtid, impl})
|
|
return
|
|
}
|
|
|
|
func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
|
|
for i := range o {
|
|
v := &o[i]
|
|
if v.rtid == rtid {
|
|
if v.impl == nil {
|
|
return
|
|
}
|
|
vkind := v.impl.Kind()
|
|
if vkind == reflect.Ptr {
|
|
return reflect.New(v.impl.Elem())
|
|
}
|
|
return rvZeroAddrK(v.impl, vkind)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// structFieldinfopathNode is a node in a tree, which allows us easily
|
|
// walk the anonymous path.
|
|
//
|
|
// In the typical case, the node is not embedded/anonymous, and thus the parent
|
|
// will be nil and this information becomes a value (not needing any indirection).
|
|
type structFieldInfoPathNode struct {
|
|
parent *structFieldInfoPathNode
|
|
|
|
offset uint16
|
|
index uint16
|
|
kind uint8
|
|
numderef uint8
|
|
|
|
// encNameAsciiAlphaNum and omitEmpty should be in structFieldInfo,
|
|
// but are kept here for tighter packaging.
|
|
|
|
encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
|
|
omitEmpty bool
|
|
|
|
typ reflect.Type
|
|
}
|
|
|
|
// depth returns number of valid nodes in the hierachy
|
|
func (path *structFieldInfoPathNode) depth() (d int) {
|
|
TOP:
|
|
if path != nil {
|
|
d++
|
|
path = path.parent
|
|
goto TOP
|
|
}
|
|
return
|
|
}
|
|
|
|
// field returns the field of the struct.
|
|
func (path *structFieldInfoPathNode) field(v reflect.Value) (rv2 reflect.Value) {
|
|
if parent := path.parent; parent != nil {
|
|
v = parent.field(v)
|
|
for j, k := uint8(0), parent.numderef; j < k; j++ {
|
|
if rvIsNil(v) {
|
|
return
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
}
|
|
return path.rvField(v)
|
|
}
|
|
|
|
// fieldAlloc returns the field of the struct.
|
|
// It allocates if a nil value was seen while searching.
|
|
func (path *structFieldInfoPathNode) fieldAlloc(v reflect.Value) (rv2 reflect.Value) {
|
|
if parent := path.parent; parent != nil {
|
|
v = parent.fieldAlloc(v)
|
|
for j, k := uint8(0), parent.numderef; j < k; j++ {
|
|
if rvIsNil(v) {
|
|
rvSetDirect(v, reflect.New(rvType(v).Elem()))
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
}
|
|
return path.rvField(v)
|
|
}
|
|
|
|
type structFieldInfo struct {
|
|
encName string // encode name
|
|
|
|
// encNameHash uintptr
|
|
|
|
// fieldName string // currently unused
|
|
|
|
// encNameAsciiAlphaNum and omitEmpty should be here,
|
|
// but are stored in structFieldInfoPathNode for tighter packaging.
|
|
|
|
path structFieldInfoPathNode
|
|
}
|
|
|
|
func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
|
|
keytype = valueTypeString // default
|
|
if stag == "" {
|
|
return
|
|
}
|
|
ss := strings.Split(stag, ",")
|
|
if len(ss) < 2 {
|
|
return
|
|
}
|
|
for _, s := range ss[1:] {
|
|
switch s {
|
|
case "omitempty":
|
|
omitEmpty = true
|
|
case "toarray":
|
|
toArray = true
|
|
case "int":
|
|
keytype = valueTypeInt
|
|
case "uint":
|
|
keytype = valueTypeUint
|
|
case "float":
|
|
keytype = valueTypeFloat
|
|
// case "bool":
|
|
// keytype = valueTypeBool
|
|
case "string":
|
|
keytype = valueTypeString
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (si *structFieldInfo) parseTag(stag string) {
|
|
if stag == "" {
|
|
return
|
|
}
|
|
for i, s := range strings.Split(stag, ",") {
|
|
if i == 0 {
|
|
if s != "" {
|
|
si.encName = s
|
|
}
|
|
} else {
|
|
switch s {
|
|
case "omitempty":
|
|
si.path.omitEmpty = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
type sfiSortedByEncName []*structFieldInfo
|
|
|
|
func (p sfiSortedByEncName) Len() int { return len(p) }
|
|
func (p sfiSortedByEncName) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
|
|
func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
|
|
|
|
// typeInfo4Container holds information that is only available for
|
|
// containers like map, array, chan, slice.
|
|
type typeInfo4Container struct {
|
|
elem reflect.Type
|
|
// key is:
|
|
// - if map kind: map key
|
|
// - if array kind: sliceOf(elem)
|
|
// - if chan kind: sliceof(elem)
|
|
key reflect.Type
|
|
|
|
// fastpathUnderlying is underlying type of a named slice/map/array, as defined by go spec,
|
|
// that is used by fastpath where we defined fastpath functions for the underlying type.
|
|
//
|
|
// for a map, it's a map; for a slice or array, it's a slice; else its nil.
|
|
fastpathUnderlying reflect.Type
|
|
|
|
tikey *typeInfo
|
|
tielem *typeInfo
|
|
}
|
|
|
|
// typeInfo keeps static (non-changing readonly)information
|
|
// about each (non-ptr) type referenced in the encode/decode sequence.
|
|
//
|
|
// During an encode/decode sequence, we work as below:
|
|
// - If base is a built in type, en/decode base value
|
|
// - If base is registered as an extension, en/decode base value
|
|
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
|
|
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
|
|
// - Else decode appropriately based on the reflect.Kind
|
|
type typeInfo struct {
|
|
rt reflect.Type
|
|
ptr reflect.Type
|
|
|
|
// pkgpath string
|
|
|
|
rtid uintptr
|
|
|
|
numMeth uint16 // number of methods
|
|
kind uint8
|
|
chandir uint8
|
|
|
|
anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty"
|
|
toArray bool // whether this (struct) type should be encoded as an array
|
|
keyType valueType // if struct, how is the field name stored in a stream? default is string
|
|
mbs bool // base type (T or *T) is a MapBySlice
|
|
|
|
sfi4Name map[string]*structFieldInfo // map. used for finding sfi given a name
|
|
|
|
*typeInfo4Container
|
|
|
|
// ---- cpu cache line boundary?
|
|
|
|
size, keysize, elemsize uint32
|
|
|
|
keykind, elemkind uint8
|
|
|
|
flagHasPkgPath bool // Type.PackagePath != ""
|
|
flagCustom bool // does this have custom implementation?
|
|
flagComparable bool
|
|
flagCanTransient bool
|
|
|
|
flagSelferViaCodecgen bool
|
|
|
|
// custom implementation flags
|
|
flagIsZeroer bool
|
|
flagIsZeroerPtr bool
|
|
|
|
flagIsCodecEmptyer bool
|
|
flagIsCodecEmptyerPtr bool
|
|
|
|
flagBinaryMarshaler bool
|
|
flagBinaryMarshalerPtr bool
|
|
|
|
flagBinaryUnmarshaler bool
|
|
flagBinaryUnmarshalerPtr bool
|
|
|
|
flagTextMarshaler bool
|
|
flagTextMarshalerPtr bool
|
|
|
|
flagTextUnmarshaler bool
|
|
flagTextUnmarshalerPtr bool
|
|
|
|
flagJsonMarshaler bool
|
|
flagJsonMarshalerPtr bool
|
|
|
|
flagJsonUnmarshaler bool
|
|
flagJsonUnmarshalerPtr bool
|
|
|
|
flagSelfer bool
|
|
flagSelferPtr bool
|
|
|
|
flagMissingFielder bool
|
|
flagMissingFielderPtr bool
|
|
|
|
infoFieldOmitempty bool
|
|
|
|
sfi structFieldInfos
|
|
}
|
|
|
|
func (ti *typeInfo) siForEncName(name []byte) (si *structFieldInfo) {
|
|
return ti.sfi4Name[string(name)]
|
|
}
|
|
|
|
func (ti *typeInfo) resolve(x []structFieldInfo, ss map[string]uint16) (n int) {
|
|
n = len(x)
|
|
|
|
for i := range x {
|
|
ui := uint16(i)
|
|
xn := x[i].encName
|
|
j, ok := ss[xn]
|
|
if ok {
|
|
i2clear := ui // index to be cleared
|
|
if x[i].path.depth() < x[j].path.depth() { // this one is shallower
|
|
ss[xn] = ui
|
|
i2clear = j
|
|
}
|
|
if x[i2clear].encName != "" {
|
|
x[i2clear].encName = ""
|
|
n--
|
|
}
|
|
} else {
|
|
ss[xn] = ui
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (ti *typeInfo) init(x []structFieldInfo, n int) {
|
|
var anyOmitEmpty bool
|
|
|
|
// remove all the nils (non-ready)
|
|
m := make(map[string]*structFieldInfo, n)
|
|
w := make([]structFieldInfo, n)
|
|
y := make([]*structFieldInfo, n+n)
|
|
z := y[n:]
|
|
y = y[:n]
|
|
n = 0
|
|
for i := range x {
|
|
if x[i].encName == "" {
|
|
continue
|
|
}
|
|
if !anyOmitEmpty && x[i].path.omitEmpty {
|
|
anyOmitEmpty = true
|
|
}
|
|
w[n] = x[i]
|
|
y[n] = &w[n]
|
|
m[x[i].encName] = &w[n]
|
|
n++
|
|
}
|
|
if n != len(y) {
|
|
halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", ti.rt, len(y), len(x), n)
|
|
}
|
|
|
|
copy(z, y)
|
|
sort.Sort(sfiSortedByEncName(z))
|
|
|
|
ti.anyOmitEmpty = anyOmitEmpty
|
|
ti.sfi.load(y, z)
|
|
ti.sfi4Name = m
|
|
}
|
|
|
|
// Handling flagCanTransient
|
|
//
|
|
// We support transient optimization if the kind of the type is
|
|
// a number, bool, string, or slice (of number/bool).
|
|
// In addition, we also support if the kind is struct or array,
|
|
// and the type does not contain any pointers recursively).
|
|
//
|
|
// Noteworthy that all reference types (string, slice, func, map, ptr, interface, etc) have pointers.
|
|
//
|
|
// If using transient for a type with a pointer, there is the potential for data corruption
|
|
// when GC tries to follow a "transient" pointer which may become a non-pointer soon after.
|
|
//
|
|
|
|
func transientBitsetFlags() *bitset32 {
|
|
if transientValueHasStringSlice {
|
|
return &numBoolStrSliceBitset
|
|
}
|
|
return &numBoolBitset
|
|
}
|
|
|
|
func isCanTransient(t reflect.Type, k reflect.Kind) (v bool) {
|
|
var bs = transientBitsetFlags()
|
|
if bs.isset(byte(k)) {
|
|
v = true
|
|
} else if k == reflect.Slice {
|
|
elem := t.Elem()
|
|
v = numBoolBitset.isset(byte(elem.Kind()))
|
|
} else if k == reflect.Array {
|
|
elem := t.Elem()
|
|
v = isCanTransient(elem, elem.Kind())
|
|
} else if k == reflect.Struct {
|
|
v = true
|
|
for j, jlen := 0, t.NumField(); j < jlen; j++ {
|
|
f := t.Field(j)
|
|
if !isCanTransient(f.Type, f.Type.Kind()) {
|
|
v = false
|
|
return
|
|
}
|
|
}
|
|
} else {
|
|
v = false
|
|
}
|
|
return
|
|
}
|
|
|
|
func (ti *typeInfo) doSetFlagCanTransient() {
|
|
if transientSizeMax > 0 {
|
|
ti.flagCanTransient = ti.size <= transientSizeMax
|
|
} else {
|
|
ti.flagCanTransient = true
|
|
}
|
|
if ti.flagCanTransient {
|
|
if !transientBitsetFlags().isset(ti.kind) {
|
|
ti.flagCanTransient = isCanTransient(ti.rt, reflect.Kind(ti.kind))
|
|
}
|
|
}
|
|
}
|
|
|
|
type rtid2ti struct {
|
|
rtid uintptr
|
|
ti *typeInfo
|
|
}
|
|
|
|
// TypeInfos caches typeInfo for each type on first inspection.
|
|
//
|
|
// It is configured with a set of tag keys, which are used to get
|
|
// configuration for the type.
|
|
type TypeInfos struct {
|
|
infos atomicTypeInfoSlice
|
|
mu sync.Mutex
|
|
_ uint64 // padding (cache-aligned)
|
|
tags []string
|
|
_ uint64 // padding (cache-aligned)
|
|
}
|
|
|
|
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
|
|
//
|
|
// This allows users customize the struct tag keys which contain configuration
|
|
// of their types.
|
|
func NewTypeInfos(tags []string) *TypeInfos {
|
|
return &TypeInfos{tags: tags}
|
|
}
|
|
|
|
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
|
|
// check for tags: codec, json, in that order.
|
|
// this allows seamless support for many configured structs.
|
|
for _, x := range x.tags {
|
|
s = t.Get(x)
|
|
if s != "" {
|
|
return s
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
|
|
// binary search. adapted from sort/search.go.
|
|
// Note: we use goto (instead of for loop) so this can be inlined.
|
|
|
|
var h uint
|
|
var j = uint(len(s))
|
|
LOOP:
|
|
if i < j {
|
|
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
|
|
if s[h].rtid < rtid {
|
|
i = h + 1
|
|
} else {
|
|
j = h
|
|
}
|
|
goto LOOP
|
|
}
|
|
if i < uint(len(s)) && s[i].rtid == rtid {
|
|
ti = s[i].ti
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
|
if pti = x.find(rtid); pti == nil {
|
|
pti = x.load(rt)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) find(rtid uintptr) (pti *typeInfo) {
|
|
sp := x.infos.load()
|
|
if sp != nil {
|
|
_, pti = findTypeInfo(sp, rtid)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) load(rt reflect.Type) (pti *typeInfo) {
|
|
rk := rt.Kind()
|
|
|
|
if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
|
|
halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
|
|
}
|
|
|
|
rtid := rt2id(rt)
|
|
|
|
// do not hold lock while computing this.
|
|
// it may lead to duplication, but that's ok.
|
|
ti := typeInfo{
|
|
rt: rt,
|
|
ptr: reflect.PtrTo(rt),
|
|
rtid: rtid,
|
|
kind: uint8(rk),
|
|
size: uint32(rt.Size()),
|
|
numMeth: uint16(rt.NumMethod()),
|
|
keyType: valueTypeString, // default it - so it's never 0
|
|
|
|
// pkgpath: rt.PkgPath(),
|
|
flagHasPkgPath: rt.PkgPath() != "",
|
|
}
|
|
|
|
// bset sets custom implementation flags
|
|
bset := func(when bool, b *bool) {
|
|
if when {
|
|
*b = true
|
|
ti.flagCustom = true
|
|
}
|
|
}
|
|
|
|
var b1, b2 bool
|
|
|
|
b1, b2 = implIntf(rt, binaryMarshalerTyp)
|
|
bset(b1, &ti.flagBinaryMarshaler)
|
|
bset(b2, &ti.flagBinaryMarshalerPtr)
|
|
b1, b2 = implIntf(rt, binaryUnmarshalerTyp)
|
|
bset(b1, &ti.flagBinaryUnmarshaler)
|
|
bset(b2, &ti.flagBinaryUnmarshalerPtr)
|
|
b1, b2 = implIntf(rt, textMarshalerTyp)
|
|
bset(b1, &ti.flagTextMarshaler)
|
|
bset(b2, &ti.flagTextMarshalerPtr)
|
|
b1, b2 = implIntf(rt, textUnmarshalerTyp)
|
|
bset(b1, &ti.flagTextUnmarshaler)
|
|
bset(b2, &ti.flagTextUnmarshalerPtr)
|
|
b1, b2 = implIntf(rt, jsonMarshalerTyp)
|
|
bset(b1, &ti.flagJsonMarshaler)
|
|
bset(b2, &ti.flagJsonMarshalerPtr)
|
|
b1, b2 = implIntf(rt, jsonUnmarshalerTyp)
|
|
bset(b1, &ti.flagJsonUnmarshaler)
|
|
bset(b2, &ti.flagJsonUnmarshalerPtr)
|
|
b1, b2 = implIntf(rt, selferTyp)
|
|
bset(b1, &ti.flagSelfer)
|
|
bset(b2, &ti.flagSelferPtr)
|
|
b1, b2 = implIntf(rt, missingFielderTyp)
|
|
bset(b1, &ti.flagMissingFielder)
|
|
bset(b2, &ti.flagMissingFielderPtr)
|
|
b1, b2 = implIntf(rt, iszeroTyp)
|
|
bset(b1, &ti.flagIsZeroer)
|
|
bset(b2, &ti.flagIsZeroerPtr)
|
|
b1, b2 = implIntf(rt, isCodecEmptyerTyp)
|
|
bset(b1, &ti.flagIsCodecEmptyer)
|
|
bset(b2, &ti.flagIsCodecEmptyerPtr)
|
|
|
|
b1, b2 = implIntf(rt, isSelferViaCodecgenerTyp)
|
|
ti.flagSelferViaCodecgen = b1 || b2
|
|
|
|
b1 = rt.Comparable()
|
|
// bset(b1, &ti.flagComparable)
|
|
ti.flagComparable = b1
|
|
|
|
ti.doSetFlagCanTransient()
|
|
|
|
var tt reflect.Type
|
|
switch rk {
|
|
case reflect.Struct:
|
|
var omitEmpty bool
|
|
if f, ok := rt.FieldByName(structInfoFieldName); ok {
|
|
ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
|
|
ti.infoFieldOmitempty = omitEmpty
|
|
} else {
|
|
ti.keyType = valueTypeString
|
|
}
|
|
pp, pi := &pool4tiload, pool4tiload.Get()
|
|
pv := pi.(*typeInfoLoad)
|
|
pv.reset()
|
|
pv.etypes = append(pv.etypes, ti.rtid)
|
|
x.rget(rt, rtid, nil, pv, omitEmpty)
|
|
n := ti.resolve(pv.sfis, pv.sfiNames)
|
|
ti.init(pv.sfis, n)
|
|
pp.Put(pi)
|
|
case reflect.Map:
|
|
ti.typeInfo4Container = new(typeInfo4Container)
|
|
ti.elem = rt.Elem()
|
|
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
|
|
}
|
|
ti.tielem = x.get(rt2id(tt), tt)
|
|
ti.elemkind = uint8(ti.elem.Kind())
|
|
ti.elemsize = uint32(ti.elem.Size())
|
|
ti.key = rt.Key()
|
|
for tt = ti.key; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
|
|
}
|
|
ti.tikey = x.get(rt2id(tt), tt)
|
|
ti.keykind = uint8(ti.key.Kind())
|
|
ti.keysize = uint32(ti.key.Size())
|
|
if ti.flagHasPkgPath {
|
|
ti.fastpathUnderlying = reflect.MapOf(ti.key, ti.elem)
|
|
}
|
|
case reflect.Slice:
|
|
ti.typeInfo4Container = new(typeInfo4Container)
|
|
ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
|
|
if !ti.mbs && b2 {
|
|
ti.mbs = b2
|
|
}
|
|
ti.elem = rt.Elem()
|
|
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
|
|
}
|
|
ti.tielem = x.get(rt2id(tt), tt)
|
|
ti.elemkind = uint8(ti.elem.Kind())
|
|
ti.elemsize = uint32(ti.elem.Size())
|
|
if ti.flagHasPkgPath {
|
|
ti.fastpathUnderlying = reflect.SliceOf(ti.elem)
|
|
}
|
|
case reflect.Chan:
|
|
ti.typeInfo4Container = new(typeInfo4Container)
|
|
ti.elem = rt.Elem()
|
|
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
|
|
}
|
|
ti.tielem = x.get(rt2id(tt), tt)
|
|
ti.elemkind = uint8(ti.elem.Kind())
|
|
ti.elemsize = uint32(ti.elem.Size())
|
|
ti.chandir = uint8(rt.ChanDir())
|
|
ti.key = reflect.SliceOf(ti.elem)
|
|
ti.keykind = uint8(reflect.Slice)
|
|
case reflect.Array:
|
|
ti.typeInfo4Container = new(typeInfo4Container)
|
|
ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
|
|
if !ti.mbs && b2 {
|
|
ti.mbs = b2
|
|
}
|
|
ti.elem = rt.Elem()
|
|
ti.elemkind = uint8(ti.elem.Kind())
|
|
ti.elemsize = uint32(ti.elem.Size())
|
|
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
|
|
}
|
|
ti.tielem = x.get(rt2id(tt), tt)
|
|
ti.key = reflect.SliceOf(ti.elem)
|
|
ti.keykind = uint8(reflect.Slice)
|
|
ti.keysize = uint32(ti.key.Size())
|
|
if ti.flagHasPkgPath {
|
|
ti.fastpathUnderlying = ti.key
|
|
}
|
|
|
|
// MARKER: reflect.Ptr cannot happen here, as we halt early if reflect.Ptr passed in
|
|
// case reflect.Ptr:
|
|
// ti.elem = rt.Elem()
|
|
// ti.elemkind = uint8(ti.elem.Kind())
|
|
// ti.elemsize = uint32(ti.elem.Size())
|
|
}
|
|
|
|
x.mu.Lock()
|
|
sp := x.infos.load()
|
|
// since this is an atomic load/store, we MUST use a different array each time,
|
|
// else we have a data race when a store is happening simultaneously with a findRtidFn call.
|
|
if sp == nil {
|
|
pti = &ti
|
|
sp = []rtid2ti{{rtid, pti}}
|
|
x.infos.store(sp)
|
|
} else {
|
|
var idx uint
|
|
idx, pti = findTypeInfo(sp, rtid)
|
|
if pti == nil {
|
|
pti = &ti
|
|
sp2 := make([]rtid2ti, len(sp)+1)
|
|
copy(sp2[idx+1:], sp[idx:])
|
|
copy(sp2, sp[:idx])
|
|
sp2[idx] = rtid2ti{rtid, pti}
|
|
x.infos.store(sp2)
|
|
}
|
|
}
|
|
x.mu.Unlock()
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
|
|
path *structFieldInfoPathNode, pv *typeInfoLoad, omitEmpty bool) {
|
|
// Read up fields and store how to access the value.
|
|
//
|
|
// It uses go's rules for message selectors,
|
|
// which say that the field with the shallowest depth is selected.
|
|
//
|
|
// Note: we consciously use slices, not a map, to simulate a set.
|
|
// Typically, types have < 16 fields,
|
|
// and iteration using equals is faster than maps there
|
|
flen := rt.NumField()
|
|
LOOP:
|
|
for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
|
|
f := rt.Field(int(j))
|
|
fkind := f.Type.Kind()
|
|
|
|
// skip if a func type, or is unexported, or structTag value == "-"
|
|
switch fkind {
|
|
case reflect.Func, reflect.UnsafePointer:
|
|
continue LOOP
|
|
}
|
|
|
|
isUnexported := f.PkgPath != ""
|
|
if isUnexported && !f.Anonymous {
|
|
continue
|
|
}
|
|
stag := x.structTag(f.Tag)
|
|
if stag == "-" {
|
|
continue
|
|
}
|
|
var si structFieldInfo
|
|
|
|
var numderef uint8 = 0
|
|
for xft := f.Type; xft.Kind() == reflect.Ptr; xft = xft.Elem() {
|
|
numderef++
|
|
}
|
|
|
|
var parsed bool
|
|
// if anonymous and no struct tag (or it's blank),
|
|
// and a struct (or pointer to struct), inline it.
|
|
if f.Anonymous && fkind != reflect.Interface {
|
|
// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
|
|
ft := f.Type
|
|
isPtr := ft.Kind() == reflect.Ptr
|
|
for ft.Kind() == reflect.Ptr {
|
|
ft = ft.Elem()
|
|
}
|
|
isStruct := ft.Kind() == reflect.Struct
|
|
|
|
// Ignore embedded fields of unexported non-struct types.
|
|
// Also, from go1.10, ignore pointers to unexported struct types
|
|
// because unmarshal cannot assign a new struct to an unexported field.
|
|
// See https://golang.org/issue/21357
|
|
if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
|
|
continue
|
|
}
|
|
doInline := stag == ""
|
|
if !doInline {
|
|
si.parseTag(stag)
|
|
parsed = true
|
|
doInline = si.encName == "" // si.isZero()
|
|
}
|
|
if doInline && isStruct {
|
|
// if etypes contains this, don't call rget again (as fields are already seen here)
|
|
ftid := rt2id(ft)
|
|
// We cannot recurse forever, but we need to track other field depths.
|
|
// So - we break if we see a type twice (not the first time).
|
|
// This should be sufficient to handle an embedded type that refers to its
|
|
// owning type, which then refers to its embedded type.
|
|
processIt := true
|
|
numk := 0
|
|
for _, k := range pv.etypes {
|
|
if k == ftid {
|
|
numk++
|
|
if numk == rgetMaxRecursion {
|
|
processIt = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if processIt {
|
|
pv.etypes = append(pv.etypes, ftid)
|
|
path2 := &structFieldInfoPathNode{
|
|
parent: path,
|
|
typ: f.Type,
|
|
offset: uint16(f.Offset),
|
|
index: j,
|
|
kind: uint8(fkind),
|
|
numderef: numderef,
|
|
}
|
|
x.rget(ft, ftid, path2, pv, omitEmpty)
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
|
|
// after the anonymous dance: if an unexported field, skip
|
|
if isUnexported || f.Name == "" { // f.Name cannot be "", but defensively handle it
|
|
continue
|
|
}
|
|
|
|
si.path = structFieldInfoPathNode{
|
|
parent: path,
|
|
typ: f.Type,
|
|
offset: uint16(f.Offset),
|
|
index: j,
|
|
kind: uint8(fkind),
|
|
numderef: numderef,
|
|
// set asciiAlphaNum to true (default); checked and may be set to false below
|
|
encNameAsciiAlphaNum: true,
|
|
// note: omitEmpty might have been set in an earlier parseTag call, etc - so carry it forward
|
|
omitEmpty: si.path.omitEmpty,
|
|
}
|
|
|
|
if !parsed {
|
|
si.encName = f.Name
|
|
si.parseTag(stag)
|
|
parsed = true
|
|
} else if si.encName == "" {
|
|
si.encName = f.Name
|
|
}
|
|
|
|
// si.encNameHash = maxUintptr() // hashShortString(bytesView(si.encName))
|
|
|
|
if omitEmpty {
|
|
si.path.omitEmpty = true
|
|
}
|
|
|
|
for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
|
|
if !asciiAlphaNumBitset.isset(si.encName[i]) {
|
|
si.path.encNameAsciiAlphaNum = false
|
|
break
|
|
}
|
|
}
|
|
|
|
pv.sfis = append(pv.sfis, si)
|
|
}
|
|
}
|
|
|
|
func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
|
|
// return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
|
|
|
|
// if I's method is defined on T (ie T implements I), then *T implements I.
|
|
// The converse is not true.
|
|
|
|
// Type.Implements can be expensive, as it does a simulataneous linear search across 2 lists
|
|
// with alphanumeric string comparisons.
|
|
// If we can avoid running one of these 2 calls, we should.
|
|
|
|
base = rt.Implements(iTyp)
|
|
if base {
|
|
indir = true
|
|
} else {
|
|
indir = reflect.PtrTo(rt).Implements(iTyp)
|
|
}
|
|
return
|
|
}
|
|
|
|
func isSliceBoundsError(s string) bool {
|
|
return strings.Contains(s, "index out of range") ||
|
|
strings.Contains(s, "slice bounds out of range")
|
|
}
|
|
|
|
func sprintf(format string, v ...interface{}) string {
|
|
return fmt.Sprintf(format, v...)
|
|
}
|
|
|
|
func panicValToErr(h errDecorator, v interface{}, err *error) {
|
|
if v == *err {
|
|
return
|
|
}
|
|
switch xerr := v.(type) {
|
|
case nil:
|
|
case runtime.Error:
|
|
d, dok := h.(*Decoder)
|
|
if dok && d.bytes && isSliceBoundsError(xerr.Error()) {
|
|
*err = io.EOF
|
|
} else {
|
|
h.wrapErr(xerr, err)
|
|
}
|
|
case error:
|
|
switch xerr {
|
|
case nil:
|
|
case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
|
|
// treat as special (bubble up)
|
|
*err = xerr
|
|
default:
|
|
h.wrapErr(xerr, err)
|
|
}
|
|
default:
|
|
// we don't expect this to happen (as this library always panics with an error)
|
|
h.wrapErr(fmt.Errorf("%v", v), err)
|
|
}
|
|
}
|
|
|
|
func usableByteSlice(bs []byte, slen int) (out []byte, changed bool) {
|
|
const maxCap = 1024 * 1024 * 64 // 64MB
|
|
const skipMaxCap = false // allow to test
|
|
if slen <= 0 {
|
|
return []byte{}, true
|
|
}
|
|
if slen <= cap(bs) {
|
|
return bs[:slen], false
|
|
}
|
|
// slen > cap(bs) ... handle memory overload appropriately
|
|
if skipMaxCap || slen <= maxCap {
|
|
return make([]byte, slen), true
|
|
}
|
|
return make([]byte, maxCap), true
|
|
}
|
|
|
|
func mapKeyFastKindFor(k reflect.Kind) mapKeyFastKind {
|
|
return mapKeyFastKindVals[k&31]
|
|
}
|
|
|
|
// ----
|
|
|
|
type codecFnInfo struct {
|
|
ti *typeInfo
|
|
xfFn Ext
|
|
xfTag uint64
|
|
addrD bool
|
|
addrDf bool // force: if addrD, then decode function MUST take a ptr
|
|
addrE bool
|
|
// addrEf bool // force: if addrE, then encode function MUST take a ptr
|
|
}
|
|
|
|
// codecFn encapsulates the captured variables and the encode function.
|
|
// This way, we only do some calculations one times, and pass to the
|
|
// code block that should be called (encapsulated in a function)
|
|
// instead of executing the checks every time.
|
|
type codecFn struct {
|
|
i codecFnInfo
|
|
fe func(*Encoder, *codecFnInfo, reflect.Value)
|
|
fd func(*Decoder, *codecFnInfo, reflect.Value)
|
|
// _ [1]uint64 // padding (cache-aligned)
|
|
}
|
|
|
|
type codecRtidFn struct {
|
|
rtid uintptr
|
|
fn *codecFn
|
|
}
|
|
|
|
func makeExt(ext interface{}) Ext {
|
|
switch t := ext.(type) {
|
|
case Ext:
|
|
return t
|
|
case BytesExt:
|
|
return &bytesExtWrapper{BytesExt: t}
|
|
case InterfaceExt:
|
|
return &interfaceExtWrapper{InterfaceExt: t}
|
|
}
|
|
return &extFailWrapper{}
|
|
}
|
|
|
|
func baseRV(v interface{}) (rv reflect.Value) {
|
|
// use reflect.ValueOf, not rv4i, as of go 1.16beta, rv4i was not inlineable
|
|
for rv = reflect.ValueOf(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() {
|
|
}
|
|
return
|
|
}
|
|
|
|
// ----
|
|
|
|
// these "checkOverflow" functions must be inlinable, and not call anybody.
|
|
// Overflow means that the value cannot be represented without wrapping/overflow.
|
|
// Overflow=false does not mean that the value can be represented without losing precision
|
|
// (especially for floating point).
|
|
|
|
type checkOverflow struct{}
|
|
|
|
func (checkOverflow) Float32(v float64) (overflow bool) {
|
|
if v < 0 {
|
|
v = -v
|
|
}
|
|
return math.MaxFloat32 < v && v <= math.MaxFloat64
|
|
}
|
|
func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
|
|
if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
|
|
overflow = true
|
|
}
|
|
return
|
|
}
|
|
func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
|
|
if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
|
|
overflow = true
|
|
}
|
|
return
|
|
}
|
|
|
|
func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) {
|
|
return (neg && v > 1<<63) || (!neg && v >= 1<<63)
|
|
}
|
|
|
|
func (checkOverflow) SignedInt(v uint64) (overflow bool) {
|
|
//e.g. -127 to 128 for int8
|
|
pos := (v >> 63) == 0
|
|
ui2 := v & 0x7fffffffffffffff
|
|
if pos {
|
|
if ui2 > math.MaxInt64 {
|
|
overflow = true
|
|
}
|
|
} else {
|
|
if ui2 > math.MaxInt64-1 {
|
|
overflow = true
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x checkOverflow) Float32V(v float64) float64 {
|
|
if x.Float32(v) {
|
|
halt.errorf("float32 overflow: %v", v)
|
|
}
|
|
return v
|
|
}
|
|
func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
|
|
if x.Uint(v, bitsize) {
|
|
halt.errorf("uint64 overflow: %v", v)
|
|
}
|
|
return v
|
|
}
|
|
func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
|
|
if x.Int(v, bitsize) {
|
|
halt.errorf("int64 overflow: %v", v)
|
|
}
|
|
return v
|
|
}
|
|
func (x checkOverflow) SignedIntV(v uint64) int64 {
|
|
if x.SignedInt(v) {
|
|
halt.errorf("uint64 to int64 overflow: %v", v)
|
|
}
|
|
return int64(v)
|
|
}
|
|
|
|
// ------------------ FLOATING POINT -----------------
|
|
|
|
func isNaN64(f float64) bool { return f != f }
|
|
|
|
func isWhitespaceChar(v byte) bool {
|
|
// these are in order of speed below ...
|
|
|
|
return v < 33
|
|
// return v < 33 && whitespaceCharBitset64.isset(v)
|
|
// return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r')
|
|
// return v == ' ' || v == '\n' || v == '\t' || v == '\r'
|
|
// return whitespaceCharBitset.isset(v)
|
|
}
|
|
|
|
func isNumberChar(v byte) bool {
|
|
// these are in order of speed below ...
|
|
|
|
return numCharBitset.isset(v)
|
|
// return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E'
|
|
// return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42)
|
|
}
|
|
|
|
// -----------------------
|
|
|
|
type ioFlusher interface {
|
|
Flush() error
|
|
}
|
|
|
|
type ioBuffered interface {
|
|
Buffered() int
|
|
}
|
|
|
|
// -----------------------
|
|
|
|
type sfiRv struct {
|
|
v *structFieldInfo
|
|
r reflect.Value
|
|
}
|
|
|
|
// ------
|
|
|
|
// bitset types are better than [256]bool, because they permit the whole
|
|
// bitset array being on a single cache line and use less memory.
|
|
//
|
|
// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
|
|
//
|
|
// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
|
|
// bounds checking, so we discarded them, and everyone uses bitset256.
|
|
//
|
|
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
|
|
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
|
|
//
|
|
// Note that using >> or & is faster than using / or %, as division is quite expensive if not optimized.
|
|
|
|
// MARKER:
|
|
// We noticed a little performance degradation when using bitset256 as [32]byte (or bitset32 as uint32).
|
|
// For example, json encoding went from 188K ns/op to 168K ns/op (~ 10% reduction).
|
|
// Consequently, we are using a [NNN]bool for bitsetNNN.
|
|
// To eliminate bounds-checking, we use x % v as that is guaranteed to be within bounds.
|
|
|
|
// ----
|
|
type bitset32 [32]bool
|
|
|
|
func (x *bitset32) set(pos byte) *bitset32 {
|
|
x[pos&31] = true // x[pos%32] = true
|
|
return x
|
|
}
|
|
func (x *bitset32) isset(pos byte) bool {
|
|
return x[pos&31] // x[pos%32]
|
|
}
|
|
|
|
type bitset256 [256]bool
|
|
|
|
func (x *bitset256) set(pos byte) *bitset256 {
|
|
x[pos] = true
|
|
return x
|
|
}
|
|
func (x *bitset256) isset(pos byte) bool {
|
|
return x[pos]
|
|
}
|
|
|
|
// ------------
|
|
|
|
type panicHdl struct{}
|
|
|
|
// errorv will panic if err is defined (not nil)
|
|
func (panicHdl) onerror(err error) {
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
|
|
// errorf will always panic, using the parameters passed.
|
|
//
|
|
// Note: it is ok to pass in a stringView, as it will just pass it directly
|
|
// to a fmt.Sprintf call and not hold onto it.
|
|
//
|
|
//go:noinline
|
|
func (panicHdl) errorf(format string, params ...interface{}) {
|
|
if format == "" {
|
|
panic(errPanicUndefined)
|
|
}
|
|
if len(params) == 0 {
|
|
panic(errors.New(format))
|
|
}
|
|
panic(fmt.Errorf(format, params...))
|
|
}
|
|
|
|
// ----------------------------------------------------
|
|
|
|
type errDecorator interface {
|
|
wrapErr(in error, out *error)
|
|
}
|
|
|
|
type errDecoratorDef struct{}
|
|
|
|
func (errDecoratorDef) wrapErr(v error, e *error) { *e = v }
|
|
|
|
// ----------------------------------------------------
|
|
|
|
type mustHdl struct{}
|
|
|
|
func (mustHdl) String(s string, err error) string {
|
|
halt.onerror(err)
|
|
return s
|
|
}
|
|
func (mustHdl) Int(s int64, err error) int64 {
|
|
halt.onerror(err)
|
|
return s
|
|
}
|
|
func (mustHdl) Uint(s uint64, err error) uint64 {
|
|
halt.onerror(err)
|
|
return s
|
|
}
|
|
func (mustHdl) Float(s float64, err error) float64 {
|
|
halt.onerror(err)
|
|
return s
|
|
}
|
|
|
|
// -------------------
|
|
|
|
func freelistCapacity(length int) (capacity int) {
|
|
for capacity = 8; capacity <= length; capacity *= 2 {
|
|
}
|
|
return
|
|
}
|
|
|
|
// bytesFreelist is a list of byte buffers, sorted by cap.
|
|
//
|
|
// In anecdotal testing (running go test -tsd 1..6), we couldn't get
|
|
// the length ofthe list > 4 at any time. So we believe a linear search
|
|
// without bounds checking is sufficient.
|
|
//
|
|
// Typical usage model:
|
|
// peek may go together with put, iff pop=true. peek gets largest byte slice temporarily.
|
|
// check is used to switch a []byte if necessary
|
|
// get/put go together
|
|
//
|
|
// Given that folks may get a []byte, and then append to it a lot which may re-allocate
|
|
// a new []byte, we should try to return both (one received from blist and new one allocated).
|
|
//
|
|
// Typical usage model for get/put, when we don't know whether we may need more than requested
|
|
// v0 := blist.get()
|
|
// v1 := v0
|
|
// ... use v1 ...
|
|
// blist.put(v1)
|
|
// if byteSliceAddr(v0) != byteSliceAddr(v1) {
|
|
// blist.put(v0)
|
|
// }
|
|
//
|
|
type bytesFreelist [][]byte
|
|
|
|
// peek returns a slice of possibly non-zero'ed bytes, with len=0,
|
|
// and with the largest capacity from the list.
|
|
func (x *bytesFreelist) peek(length int, pop bool) (out []byte) {
|
|
if bytesFreeListNoCache {
|
|
return make([]byte, 0, freelistCapacity(length))
|
|
}
|
|
y := *x
|
|
if len(y) > 0 {
|
|
out = y[len(y)-1]
|
|
}
|
|
// start buf with a minimum of 64 bytes
|
|
const minLenBytes = 64
|
|
if length < minLenBytes {
|
|
length = minLenBytes
|
|
}
|
|
if cap(out) < length {
|
|
out = make([]byte, 0, freelistCapacity(length))
|
|
y = append(y, out)
|
|
*x = y
|
|
}
|
|
if pop && len(y) > 0 {
|
|
y = y[:len(y)-1]
|
|
*x = y
|
|
}
|
|
return
|
|
}
|
|
|
|
// get returns a slice of possibly non-zero'ed bytes, with len=0,
|
|
// and with cap >= length requested.
|
|
func (x *bytesFreelist) get(length int) (out []byte) {
|
|
if bytesFreeListNoCache {
|
|
return make([]byte, 0, freelistCapacity(length))
|
|
}
|
|
y := *x
|
|
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
|
|
// for i, v := range y {
|
|
for i := 0; i < len(y); i++ {
|
|
v := y[i]
|
|
if cap(v) >= length {
|
|
// *x = append(y[:i], y[i+1:]...)
|
|
copy(y[i:], y[i+1:])
|
|
*x = y[:len(y)-1]
|
|
return v
|
|
}
|
|
}
|
|
return make([]byte, 0, freelistCapacity(length))
|
|
}
|
|
|
|
func (x *bytesFreelist) put(v []byte) {
|
|
if bytesFreeListNoCache || cap(v) == 0 {
|
|
return
|
|
}
|
|
if len(v) != 0 {
|
|
v = v[:0]
|
|
}
|
|
// append the new value, then try to put it in a better position
|
|
y := append(*x, v)
|
|
*x = y
|
|
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
|
|
// for i, z := range y[:len(y)-1] {
|
|
for i := 0; i < len(y)-1; i++ {
|
|
z := y[i]
|
|
if cap(z) > cap(v) {
|
|
copy(y[i+1:], y[i:])
|
|
y[i] = v
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (x *bytesFreelist) check(v []byte, length int) (out []byte) {
|
|
// ensure inlineable, by moving slow-path out to its own function
|
|
if cap(v) >= length {
|
|
return v[:0]
|
|
}
|
|
return x.checkPutGet(v, length)
|
|
}
|
|
|
|
func (x *bytesFreelist) checkPutGet(v []byte, length int) []byte {
|
|
// checkPutGet broken out into its own function, so check is inlineable in general case
|
|
const useSeparateCalls = false
|
|
|
|
if useSeparateCalls {
|
|
x.put(v)
|
|
return x.get(length)
|
|
}
|
|
|
|
if bytesFreeListNoCache {
|
|
return make([]byte, 0, freelistCapacity(length))
|
|
}
|
|
|
|
// assume cap(v) < length, so put must happen before get
|
|
y := *x
|
|
var put = cap(v) == 0 // if empty, consider it already put
|
|
if !put {
|
|
y = append(y, v)
|
|
*x = y
|
|
}
|
|
for i := 0; i < len(y); i++ {
|
|
z := y[i]
|
|
if put {
|
|
if cap(z) >= length {
|
|
copy(y[i:], y[i+1:])
|
|
y = y[:len(y)-1]
|
|
*x = y
|
|
return z
|
|
}
|
|
} else {
|
|
if cap(z) > cap(v) {
|
|
copy(y[i+1:], y[i:])
|
|
y[i] = v
|
|
put = true
|
|
}
|
|
}
|
|
}
|
|
return make([]byte, 0, freelistCapacity(length))
|
|
}
|
|
|
|
// -------------------------
|
|
|
|
// sfiRvFreelist is used by Encoder for encoding structs,
|
|
// where we have to gather the fields first and then
|
|
// analyze them for omitEmpty, before knowing the length of the array/map to encode.
|
|
//
|
|
// Typically, the length here will depend on the number of cycles e.g.
|
|
// if type T1 has reference to T1, or T1 has reference to type T2 which has reference to T1.
|
|
//
|
|
// In the general case, the length of this list at most times is 1,
|
|
// so linear search is fine.
|
|
type sfiRvFreelist [][]sfiRv
|
|
|
|
func (x *sfiRvFreelist) get(length int) (out []sfiRv) {
|
|
y := *x
|
|
|
|
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
|
|
// for i, v := range y {
|
|
for i := 0; i < len(y); i++ {
|
|
v := y[i]
|
|
if cap(v) >= length {
|
|
// *x = append(y[:i], y[i+1:]...)
|
|
copy(y[i:], y[i+1:])
|
|
*x = y[:len(y)-1]
|
|
return v
|
|
}
|
|
}
|
|
return make([]sfiRv, 0, freelistCapacity(length))
|
|
}
|
|
|
|
func (x *sfiRvFreelist) put(v []sfiRv) {
|
|
if len(v) != 0 {
|
|
v = v[:0]
|
|
}
|
|
// append the new value, then try to put it in a better position
|
|
y := append(*x, v)
|
|
*x = y
|
|
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
|
|
// for i, z := range y[:len(y)-1] {
|
|
for i := 0; i < len(y)-1; i++ {
|
|
z := y[i]
|
|
if cap(z) > cap(v) {
|
|
copy(y[i+1:], y[i:])
|
|
y[i] = v
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---- multiple interner implementations ----
|
|
|
|
// Hard to tell which is most performant:
|
|
// - use a map[string]string - worst perf, no collisions, and unlimited entries
|
|
// - use a linear search with move to front heuristics - no collisions, and maxed at 64 entries
|
|
// - use a computationally-intensive hash - best performance, some collisions, maxed at 64 entries
|
|
|
|
const (
|
|
internMaxStrLen = 16 // if more than 16 bytes, faster to copy than compare bytes
|
|
internCap = 64 * 2 // 64 uses 1K bytes RAM, so 128 (anecdotal sweet spot) uses 2K bytes
|
|
)
|
|
|
|
type internerMap map[string]string
|
|
|
|
func (x *internerMap) init() {
|
|
*x = make(map[string]string, internCap)
|
|
}
|
|
|
|
func (x internerMap) string(v []byte) (s string) {
|
|
s, ok := x[string(v)] // no allocation here, per go implementation
|
|
if !ok {
|
|
s = string(v) // new allocation here
|
|
x[s] = s
|
|
}
|
|
return
|
|
}
|