mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-22 05:58:08 +00:00
98 lines
3.7 KiB
Go
98 lines
3.7 KiB
Go
|
// Copyright 2017 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
// WedgeRel enumerates the possible relation between two wedges A and B.
|
||
|
type WedgeRel int
|
||
|
|
||
|
// Define the different possible relationships between two wedges.
|
||
|
//
|
||
|
// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the
|
||
|
// left of the edges. More precisely, it is the set of all rays from x1x0
|
||
|
// (inclusive) to x1x2 (exclusive) in the *clockwise* direction.
|
||
|
const (
|
||
|
WedgeEquals WedgeRel = iota // A and B are equal.
|
||
|
WedgeProperlyContains // A is a strict superset of B.
|
||
|
WedgeIsProperlyContained // A is a strict subset of B.
|
||
|
WedgeProperlyOverlaps // A-B, B-A, and A intersect B are non-empty.
|
||
|
WedgeIsDisjoint // A and B are disjoint.
|
||
|
)
|
||
|
|
||
|
// WedgeRelation reports the relation between two non-empty wedges
|
||
|
// A=(a0, ab1, a2) and B=(b0, ab1, b2).
|
||
|
func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel {
|
||
|
// There are 6 possible edge orderings at a shared vertex (all
|
||
|
// of these orderings are circular, i.e. abcd == bcda):
|
||
|
//
|
||
|
// (1) a2 b2 b0 a0: A contains B
|
||
|
// (2) a2 a0 b0 b2: B contains A
|
||
|
// (3) a2 a0 b2 b0: A and B are disjoint
|
||
|
// (4) a2 b0 a0 b2: A and B intersect in one wedge
|
||
|
// (5) a2 b2 a0 b0: A and B intersect in one wedge
|
||
|
// (6) a2 b0 b2 a0: A and B intersect in two wedges
|
||
|
//
|
||
|
// We do not distinguish between 4, 5, and 6.
|
||
|
// We pay extra attention when some of the edges overlap. When edges
|
||
|
// overlap, several of these orderings can be satisfied, and we take
|
||
|
// the most specific.
|
||
|
if a0 == b0 && a2 == b2 {
|
||
|
return WedgeEquals
|
||
|
}
|
||
|
|
||
|
// Cases 1, 2, 5, and 6
|
||
|
if OrderedCCW(a0, a2, b2, ab1) {
|
||
|
// The cases with this vertex ordering are 1, 5, and 6,
|
||
|
if OrderedCCW(b2, b0, a0, ab1) {
|
||
|
return WedgeProperlyContains
|
||
|
}
|
||
|
|
||
|
// We are in case 5 or 6, or case 2 if a2 == b2.
|
||
|
if a2 == b2 {
|
||
|
return WedgeIsProperlyContained
|
||
|
}
|
||
|
return WedgeProperlyOverlaps
|
||
|
|
||
|
}
|
||
|
// We are in case 2, 3, or 4.
|
||
|
if OrderedCCW(a0, b0, b2, ab1) {
|
||
|
return WedgeIsProperlyContained
|
||
|
}
|
||
|
|
||
|
if OrderedCCW(a0, b0, a2, ab1) {
|
||
|
return WedgeIsDisjoint
|
||
|
}
|
||
|
return WedgeProperlyOverlaps
|
||
|
}
|
||
|
|
||
|
// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2).
|
||
|
// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals.
|
||
|
func WedgeContains(a0, ab1, a2, b0, b2 Point) bool {
|
||
|
// For A to contain B (where each loop interior is defined to be its left
|
||
|
// side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split
|
||
|
// this test into two parts that test three vertices each.
|
||
|
return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1)
|
||
|
}
|
||
|
|
||
|
// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2).
|
||
|
// Equivalent but faster than WedgeRelation != WedgeIsDisjoint
|
||
|
func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool {
|
||
|
// For A not to intersect B (where each loop interior is defined to be
|
||
|
// its left side), the CCW edge order around ab1 must be a0 b2 b0 a2.
|
||
|
// Note that it's important to write these conditions as negatives
|
||
|
// (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct
|
||
|
// results when two vertices are the same.
|
||
|
return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1))
|
||
|
}
|