mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2024-11-05 08:52:02 +00:00
684b7a999f
* Dump: Use mholt/archive/v3 to support tar including many compressions Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Dump: Allow dump output to stdout Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Dump: Fixed bug present since #6677 where SessionConfig.Provider is never "file" Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Dump: never pack RepoRootPath, LFS.ContentPath and LogRootPath when they are below AppDataPath Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Dump: also dump LFS (fixes #10058) Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Dump: never dump CustomPath if CustomPath is a subdir of or equal to AppDataPath (fixes #10365) Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * Use log.Info instead of fmt.Fprintf Signed-off-by: Philipp Homann <homann.philipp@googlemail.com> * import ordering * make fmt Co-authored-by: zeripath <art27@cantab.net> Co-authored-by: techknowlogick <techknowlogick@gitea.io> Co-authored-by: Matti R <matti@mdranta.net>
653 lines
12 KiB
Go
Vendored
653 lines
12 KiB
Go
Vendored
package brotli
|
|
|
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* Utilities for building Huffman decoding tables. */
|
|
|
|
const huffmanMaxCodeLength = 15
|
|
|
|
/* Maximum possible Huffman table size for an alphabet size of (index * 32),
|
|
max code length 15 and root table bits 8. */
|
|
var kMaxHuffmanTableSize = []uint16{
|
|
256,
|
|
402,
|
|
436,
|
|
468,
|
|
500,
|
|
534,
|
|
566,
|
|
598,
|
|
630,
|
|
662,
|
|
694,
|
|
726,
|
|
758,
|
|
790,
|
|
822,
|
|
854,
|
|
886,
|
|
920,
|
|
952,
|
|
984,
|
|
1016,
|
|
1048,
|
|
1080,
|
|
1112,
|
|
1144,
|
|
1176,
|
|
1208,
|
|
1240,
|
|
1272,
|
|
1304,
|
|
1336,
|
|
1368,
|
|
1400,
|
|
1432,
|
|
1464,
|
|
1496,
|
|
1528,
|
|
}
|
|
|
|
/* BROTLI_NUM_BLOCK_LEN_SYMBOLS == 26 */
|
|
const huffmanMaxSize26 = 396
|
|
|
|
/* BROTLI_MAX_BLOCK_TYPE_SYMBOLS == 258 */
|
|
const huffmanMaxSize258 = 632
|
|
|
|
/* BROTLI_MAX_CONTEXT_MAP_SYMBOLS == 272 */
|
|
const huffmanMaxSize272 = 646
|
|
|
|
const huffmanMaxCodeLengthCodeLength = 5
|
|
|
|
/* Do not create this struct directly - use the ConstructHuffmanCode
|
|
* constructor below! */
|
|
type huffmanCode struct {
|
|
bits byte
|
|
value uint16
|
|
}
|
|
|
|
func constructHuffmanCode(bits byte, value uint16) huffmanCode {
|
|
var h huffmanCode
|
|
h.bits = bits
|
|
h.value = value
|
|
return h
|
|
}
|
|
|
|
/* Builds Huffman lookup table assuming code lengths are in symbol order. */
|
|
|
|
/* Builds Huffman lookup table assuming code lengths are in symbol order.
|
|
Returns size of resulting table. */
|
|
|
|
/* Builds a simple Huffman table. The |num_symbols| parameter is to be
|
|
interpreted as follows: 0 means 1 symbol, 1 means 2 symbols,
|
|
2 means 3 symbols, 3 means 4 symbols with lengths [2, 2, 2, 2],
|
|
4 means 4 symbols with lengths [1, 2, 3, 3]. */
|
|
|
|
/* Contains a collection of Huffman trees with the same alphabet size. */
|
|
/* max_symbol is needed due to simple codes since log2(alphabet_size) could be
|
|
greater than log2(max_symbol). */
|
|
type huffmanTreeGroup struct {
|
|
htrees [][]huffmanCode
|
|
codes []huffmanCode
|
|
alphabet_size uint16
|
|
max_symbol uint16
|
|
num_htrees uint16
|
|
}
|
|
|
|
const reverseBitsMax = 8
|
|
|
|
const reverseBitsBase = 0
|
|
|
|
var kReverseBits = [1 << reverseBitsMax]byte{
|
|
0x00,
|
|
0x80,
|
|
0x40,
|
|
0xC0,
|
|
0x20,
|
|
0xA0,
|
|
0x60,
|
|
0xE0,
|
|
0x10,
|
|
0x90,
|
|
0x50,
|
|
0xD0,
|
|
0x30,
|
|
0xB0,
|
|
0x70,
|
|
0xF0,
|
|
0x08,
|
|
0x88,
|
|
0x48,
|
|
0xC8,
|
|
0x28,
|
|
0xA8,
|
|
0x68,
|
|
0xE8,
|
|
0x18,
|
|
0x98,
|
|
0x58,
|
|
0xD8,
|
|
0x38,
|
|
0xB8,
|
|
0x78,
|
|
0xF8,
|
|
0x04,
|
|
0x84,
|
|
0x44,
|
|
0xC4,
|
|
0x24,
|
|
0xA4,
|
|
0x64,
|
|
0xE4,
|
|
0x14,
|
|
0x94,
|
|
0x54,
|
|
0xD4,
|
|
0x34,
|
|
0xB4,
|
|
0x74,
|
|
0xF4,
|
|
0x0C,
|
|
0x8C,
|
|
0x4C,
|
|
0xCC,
|
|
0x2C,
|
|
0xAC,
|
|
0x6C,
|
|
0xEC,
|
|
0x1C,
|
|
0x9C,
|
|
0x5C,
|
|
0xDC,
|
|
0x3C,
|
|
0xBC,
|
|
0x7C,
|
|
0xFC,
|
|
0x02,
|
|
0x82,
|
|
0x42,
|
|
0xC2,
|
|
0x22,
|
|
0xA2,
|
|
0x62,
|
|
0xE2,
|
|
0x12,
|
|
0x92,
|
|
0x52,
|
|
0xD2,
|
|
0x32,
|
|
0xB2,
|
|
0x72,
|
|
0xF2,
|
|
0x0A,
|
|
0x8A,
|
|
0x4A,
|
|
0xCA,
|
|
0x2A,
|
|
0xAA,
|
|
0x6A,
|
|
0xEA,
|
|
0x1A,
|
|
0x9A,
|
|
0x5A,
|
|
0xDA,
|
|
0x3A,
|
|
0xBA,
|
|
0x7A,
|
|
0xFA,
|
|
0x06,
|
|
0x86,
|
|
0x46,
|
|
0xC6,
|
|
0x26,
|
|
0xA6,
|
|
0x66,
|
|
0xE6,
|
|
0x16,
|
|
0x96,
|
|
0x56,
|
|
0xD6,
|
|
0x36,
|
|
0xB6,
|
|
0x76,
|
|
0xF6,
|
|
0x0E,
|
|
0x8E,
|
|
0x4E,
|
|
0xCE,
|
|
0x2E,
|
|
0xAE,
|
|
0x6E,
|
|
0xEE,
|
|
0x1E,
|
|
0x9E,
|
|
0x5E,
|
|
0xDE,
|
|
0x3E,
|
|
0xBE,
|
|
0x7E,
|
|
0xFE,
|
|
0x01,
|
|
0x81,
|
|
0x41,
|
|
0xC1,
|
|
0x21,
|
|
0xA1,
|
|
0x61,
|
|
0xE1,
|
|
0x11,
|
|
0x91,
|
|
0x51,
|
|
0xD1,
|
|
0x31,
|
|
0xB1,
|
|
0x71,
|
|
0xF1,
|
|
0x09,
|
|
0x89,
|
|
0x49,
|
|
0xC9,
|
|
0x29,
|
|
0xA9,
|
|
0x69,
|
|
0xE9,
|
|
0x19,
|
|
0x99,
|
|
0x59,
|
|
0xD9,
|
|
0x39,
|
|
0xB9,
|
|
0x79,
|
|
0xF9,
|
|
0x05,
|
|
0x85,
|
|
0x45,
|
|
0xC5,
|
|
0x25,
|
|
0xA5,
|
|
0x65,
|
|
0xE5,
|
|
0x15,
|
|
0x95,
|
|
0x55,
|
|
0xD5,
|
|
0x35,
|
|
0xB5,
|
|
0x75,
|
|
0xF5,
|
|
0x0D,
|
|
0x8D,
|
|
0x4D,
|
|
0xCD,
|
|
0x2D,
|
|
0xAD,
|
|
0x6D,
|
|
0xED,
|
|
0x1D,
|
|
0x9D,
|
|
0x5D,
|
|
0xDD,
|
|
0x3D,
|
|
0xBD,
|
|
0x7D,
|
|
0xFD,
|
|
0x03,
|
|
0x83,
|
|
0x43,
|
|
0xC3,
|
|
0x23,
|
|
0xA3,
|
|
0x63,
|
|
0xE3,
|
|
0x13,
|
|
0x93,
|
|
0x53,
|
|
0xD3,
|
|
0x33,
|
|
0xB3,
|
|
0x73,
|
|
0xF3,
|
|
0x0B,
|
|
0x8B,
|
|
0x4B,
|
|
0xCB,
|
|
0x2B,
|
|
0xAB,
|
|
0x6B,
|
|
0xEB,
|
|
0x1B,
|
|
0x9B,
|
|
0x5B,
|
|
0xDB,
|
|
0x3B,
|
|
0xBB,
|
|
0x7B,
|
|
0xFB,
|
|
0x07,
|
|
0x87,
|
|
0x47,
|
|
0xC7,
|
|
0x27,
|
|
0xA7,
|
|
0x67,
|
|
0xE7,
|
|
0x17,
|
|
0x97,
|
|
0x57,
|
|
0xD7,
|
|
0x37,
|
|
0xB7,
|
|
0x77,
|
|
0xF7,
|
|
0x0F,
|
|
0x8F,
|
|
0x4F,
|
|
0xCF,
|
|
0x2F,
|
|
0xAF,
|
|
0x6F,
|
|
0xEF,
|
|
0x1F,
|
|
0x9F,
|
|
0x5F,
|
|
0xDF,
|
|
0x3F,
|
|
0xBF,
|
|
0x7F,
|
|
0xFF,
|
|
}
|
|
|
|
const reverseBitsLowest = (uint64(1) << (reverseBitsMax - 1 + reverseBitsBase))
|
|
|
|
/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
|
|
where reverse(value, len) is the bit-wise reversal of the len least
|
|
significant bits of value. */
|
|
func reverseBits8(num uint64) uint64 {
|
|
return uint64(kReverseBits[num])
|
|
}
|
|
|
|
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
|
|
/* Assumes that end is an integer multiple of step */
|
|
func replicateValue(table []huffmanCode, step int, end int, code huffmanCode) {
|
|
for {
|
|
end -= step
|
|
table[end] = code
|
|
if end <= 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns the table width of the next 2nd level table. |count| is the histogram
|
|
of bit lengths for the remaining symbols, |len| is the code length of the
|
|
next processed symbol. */
|
|
func nextTableBitSize(count []uint16, len int, root_bits int) int {
|
|
var left int = 1 << uint(len-root_bits)
|
|
for len < huffmanMaxCodeLength {
|
|
left -= int(count[len])
|
|
if left <= 0 {
|
|
break
|
|
}
|
|
len++
|
|
left <<= 1
|
|
}
|
|
|
|
return len - root_bits
|
|
}
|
|
|
|
func buildCodeLengthsHuffmanTable(table []huffmanCode, code_lengths []byte, count []uint16) {
|
|
var code huffmanCode /* current table entry */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* step size to replicate values in current table */ /* size of current table */ /* symbols sorted by code length */
|
|
var symbol int
|
|
var key uint64
|
|
var key_step uint64
|
|
var step int
|
|
var table_size int
|
|
var sorted [codeLengthCodes]int
|
|
var offset [huffmanMaxCodeLengthCodeLength + 1]int
|
|
var bits int
|
|
var bits_count int
|
|
/* offsets in sorted table for each length */
|
|
assert(huffmanMaxCodeLengthCodeLength <= reverseBitsMax)
|
|
|
|
/* Generate offsets into sorted symbol table by code length. */
|
|
symbol = -1
|
|
|
|
bits = 1
|
|
var i int
|
|
for i = 0; i < huffmanMaxCodeLengthCodeLength; i++ {
|
|
symbol += int(count[bits])
|
|
offset[bits] = symbol
|
|
bits++
|
|
}
|
|
|
|
/* Symbols with code length 0 are placed after all other symbols. */
|
|
offset[0] = codeLengthCodes - 1
|
|
|
|
/* Sort symbols by length, by symbol order within each length. */
|
|
symbol = codeLengthCodes
|
|
|
|
for {
|
|
var i int
|
|
for i = 0; i < 6; i++ {
|
|
symbol--
|
|
sorted[offset[code_lengths[symbol]]] = symbol
|
|
offset[code_lengths[symbol]]--
|
|
}
|
|
if symbol == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
table_size = 1 << huffmanMaxCodeLengthCodeLength
|
|
|
|
/* Special case: all symbols but one have 0 code length. */
|
|
if offset[0] == 0 {
|
|
code = constructHuffmanCode(0, uint16(sorted[0]))
|
|
for key = 0; key < uint64(table_size); key++ {
|
|
table[key] = code
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
/* Fill in table. */
|
|
key = 0
|
|
|
|
key_step = reverseBitsLowest
|
|
symbol = 0
|
|
bits = 1
|
|
step = 2
|
|
for {
|
|
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
|
|
code = constructHuffmanCode(byte(bits), uint16(sorted[symbol]))
|
|
symbol++
|
|
replicateValue(table[reverseBits8(key):], step, table_size, code)
|
|
key += key_step
|
|
}
|
|
|
|
step <<= 1
|
|
key_step >>= 1
|
|
bits++
|
|
if bits > huffmanMaxCodeLengthCodeLength {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func buildHuffmanTable(root_table []huffmanCode, root_bits int, symbol_lists symbolList, count []uint16) uint32 {
|
|
var code huffmanCode /* current table entry */ /* next available space in table */ /* current code length */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* 2nd level table prefix code */ /* 2nd level table prefix code addend */ /* step size to replicate values in current table */ /* key length of current table */ /* size of current table */ /* sum of root table size and 2nd level table sizes */
|
|
var table []huffmanCode
|
|
var len int
|
|
var symbol int
|
|
var key uint64
|
|
var key_step uint64
|
|
var sub_key uint64
|
|
var sub_key_step uint64
|
|
var step int
|
|
var table_bits int
|
|
var table_size int
|
|
var total_size int
|
|
var max_length int = -1
|
|
var bits int
|
|
var bits_count int
|
|
|
|
assert(root_bits <= reverseBitsMax)
|
|
assert(huffmanMaxCodeLength-root_bits <= reverseBitsMax)
|
|
|
|
for symbolListGet(symbol_lists, max_length) == 0xFFFF {
|
|
max_length--
|
|
}
|
|
max_length += huffmanMaxCodeLength + 1
|
|
|
|
table = root_table
|
|
table_bits = root_bits
|
|
table_size = 1 << uint(table_bits)
|
|
total_size = table_size
|
|
|
|
/* Fill in the root table. Reduce the table size to if possible,
|
|
and create the repetitions by memcpy. */
|
|
if table_bits > max_length {
|
|
table_bits = max_length
|
|
table_size = 1 << uint(table_bits)
|
|
}
|
|
|
|
key = 0
|
|
key_step = reverseBitsLowest
|
|
bits = 1
|
|
step = 2
|
|
for {
|
|
symbol = bits - (huffmanMaxCodeLength + 1)
|
|
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
|
|
symbol = int(symbolListGet(symbol_lists, symbol))
|
|
code = constructHuffmanCode(byte(bits), uint16(symbol))
|
|
replicateValue(table[reverseBits8(key):], step, table_size, code)
|
|
key += key_step
|
|
}
|
|
|
|
step <<= 1
|
|
key_step >>= 1
|
|
bits++
|
|
if bits > table_bits {
|
|
break
|
|
}
|
|
}
|
|
|
|
/* If root_bits != table_bits then replicate to fill the remaining slots. */
|
|
for total_size != table_size {
|
|
copy(table[table_size:], table[:uint(table_size)])
|
|
table_size <<= 1
|
|
}
|
|
|
|
/* Fill in 2nd level tables and add pointers to root table. */
|
|
key_step = reverseBitsLowest >> uint(root_bits-1)
|
|
|
|
sub_key = reverseBitsLowest << 1
|
|
sub_key_step = reverseBitsLowest
|
|
len = root_bits + 1
|
|
step = 2
|
|
for ; len <= max_length; len++ {
|
|
symbol = len - (huffmanMaxCodeLength + 1)
|
|
for ; count[len] != 0; count[len]-- {
|
|
if sub_key == reverseBitsLowest<<1 {
|
|
table = table[table_size:]
|
|
table_bits = nextTableBitSize(count, int(len), root_bits)
|
|
table_size = 1 << uint(table_bits)
|
|
total_size += table_size
|
|
sub_key = reverseBits8(key)
|
|
key += key_step
|
|
root_table[sub_key] = constructHuffmanCode(byte(table_bits+root_bits), uint16(uint64(uint(-cap(table)+cap(root_table)))-sub_key))
|
|
sub_key = 0
|
|
}
|
|
|
|
symbol = int(symbolListGet(symbol_lists, symbol))
|
|
code = constructHuffmanCode(byte(len-root_bits), uint16(symbol))
|
|
replicateValue(table[reverseBits8(sub_key):], step, table_size, code)
|
|
sub_key += sub_key_step
|
|
}
|
|
|
|
step <<= 1
|
|
sub_key_step >>= 1
|
|
}
|
|
|
|
return uint32(total_size)
|
|
}
|
|
|
|
func buildSimpleHuffmanTable(table []huffmanCode, root_bits int, val []uint16, num_symbols uint32) uint32 {
|
|
var table_size uint32 = 1
|
|
var goal_size uint32 = 1 << uint(root_bits)
|
|
switch num_symbols {
|
|
case 0:
|
|
table[0] = constructHuffmanCode(0, val[0])
|
|
|
|
case 1:
|
|
if val[1] > val[0] {
|
|
table[0] = constructHuffmanCode(1, val[0])
|
|
table[1] = constructHuffmanCode(1, val[1])
|
|
} else {
|
|
table[0] = constructHuffmanCode(1, val[1])
|
|
table[1] = constructHuffmanCode(1, val[0])
|
|
}
|
|
|
|
table_size = 2
|
|
|
|
case 2:
|
|
table[0] = constructHuffmanCode(1, val[0])
|
|
table[2] = constructHuffmanCode(1, val[0])
|
|
if val[2] > val[1] {
|
|
table[1] = constructHuffmanCode(2, val[1])
|
|
table[3] = constructHuffmanCode(2, val[2])
|
|
} else {
|
|
table[1] = constructHuffmanCode(2, val[2])
|
|
table[3] = constructHuffmanCode(2, val[1])
|
|
}
|
|
|
|
table_size = 4
|
|
|
|
case 3:
|
|
var i int
|
|
var k int
|
|
for i = 0; i < 3; i++ {
|
|
for k = i + 1; k < 4; k++ {
|
|
if val[k] < val[i] {
|
|
var t uint16 = val[k]
|
|
val[k] = val[i]
|
|
val[i] = t
|
|
}
|
|
}
|
|
}
|
|
|
|
table[0] = constructHuffmanCode(2, val[0])
|
|
table[2] = constructHuffmanCode(2, val[1])
|
|
table[1] = constructHuffmanCode(2, val[2])
|
|
table[3] = constructHuffmanCode(2, val[3])
|
|
table_size = 4
|
|
|
|
case 4:
|
|
if val[3] < val[2] {
|
|
var t uint16 = val[3]
|
|
val[3] = val[2]
|
|
val[2] = t
|
|
}
|
|
|
|
table[0] = constructHuffmanCode(1, val[0])
|
|
table[1] = constructHuffmanCode(2, val[1])
|
|
table[2] = constructHuffmanCode(1, val[0])
|
|
table[3] = constructHuffmanCode(3, val[2])
|
|
table[4] = constructHuffmanCode(1, val[0])
|
|
table[5] = constructHuffmanCode(2, val[1])
|
|
table[6] = constructHuffmanCode(1, val[0])
|
|
table[7] = constructHuffmanCode(3, val[3])
|
|
table_size = 8
|
|
}
|
|
|
|
for table_size != goal_size {
|
|
copy(table[table_size:], table[:uint(table_size)])
|
|
table_size <<= 1
|
|
}
|
|
|
|
return goal_size
|
|
}
|