1
0
Fork 0
mirror of https://github.com/actix/actix-web.git synced 2024-06-02 13:29:24 +00:00
actix-web/actix-multipart/src/server.rs
2019-05-25 03:16:46 -07:00

1104 lines
35 KiB
Rust

//! Multipart payload support
use std::cell::{Cell, RefCell, UnsafeCell};
use std::marker::PhantomData;
use std::rc::Rc;
use std::{cmp, fmt};
use bytes::{Bytes, BytesMut};
use futures::task::{current as current_task, Task};
use futures::{Async, Poll, Stream};
use httparse;
use mime;
use actix_web::error::{ParseError, PayloadError};
use actix_web::http::header::{
self, ContentDisposition, HeaderMap, HeaderName, HeaderValue,
};
use actix_web::http::HttpTryFrom;
use crate::error::MultipartError;
const MAX_HEADERS: usize = 32;
/// The server-side implementation of `multipart/form-data` requests.
///
/// This will parse the incoming stream into `MultipartItem` instances via its
/// Stream implementation.
/// `MultipartItem::Field` contains multipart field. `MultipartItem::Multipart`
/// is used for nested multipart streams.
pub struct Multipart {
safety: Safety,
error: Option<MultipartError>,
inner: Option<Rc<RefCell<InnerMultipart>>>,
}
enum InnerMultipartItem {
None,
Field(Rc<RefCell<InnerField>>),
}
#[derive(PartialEq, Debug)]
enum InnerState {
/// Stream eof
Eof,
/// Skip data until first boundary
FirstBoundary,
/// Reading boundary
Boundary,
/// Reading Headers,
Headers,
}
struct InnerMultipart {
payload: PayloadRef,
boundary: String,
state: InnerState,
item: InnerMultipartItem,
}
impl Multipart {
/// Create multipart instance for boundary.
pub fn new<S>(headers: &HeaderMap, stream: S) -> Multipart
where
S: Stream<Item = Bytes, Error = PayloadError> + 'static,
{
match Self::boundary(headers) {
Ok(boundary) => Multipart {
error: None,
safety: Safety::new(),
inner: Some(Rc::new(RefCell::new(InnerMultipart {
boundary,
payload: PayloadRef::new(PayloadBuffer::new(Box::new(stream))),
state: InnerState::FirstBoundary,
item: InnerMultipartItem::None,
}))),
},
Err(err) => Multipart {
error: Some(err),
safety: Safety::new(),
inner: None,
},
}
}
/// Extract boundary info from headers.
fn boundary(headers: &HeaderMap) -> Result<String, MultipartError> {
if let Some(content_type) = headers.get(&header::CONTENT_TYPE) {
if let Ok(content_type) = content_type.to_str() {
if let Ok(ct) = content_type.parse::<mime::Mime>() {
if let Some(boundary) = ct.get_param(mime::BOUNDARY) {
Ok(boundary.as_str().to_owned())
} else {
Err(MultipartError::Boundary)
}
} else {
Err(MultipartError::ParseContentType)
}
} else {
Err(MultipartError::ParseContentType)
}
} else {
Err(MultipartError::NoContentType)
}
}
}
impl Stream for Multipart {
type Item = Field;
type Error = MultipartError;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
if let Some(err) = self.error.take() {
Err(err)
} else if self.safety.current() {
let mut inner = self.inner.as_mut().unwrap().borrow_mut();
if let Some(payload) = inner.payload.get_mut(&self.safety) {
payload.poll_stream()?;
}
inner.poll(&self.safety)
} else if !self.safety.is_clean() {
Err(MultipartError::NotConsumed)
} else {
Ok(Async::NotReady)
}
}
}
impl InnerMultipart {
fn read_headers(
payload: &mut PayloadBuffer,
) -> Result<Option<HeaderMap>, MultipartError> {
match payload.read_until(b"\r\n\r\n")? {
None => {
if payload.eof {
Err(MultipartError::Incomplete)
} else {
Ok(None)
}
}
Some(bytes) => {
let mut hdrs = [httparse::EMPTY_HEADER; MAX_HEADERS];
match httparse::parse_headers(&bytes, &mut hdrs) {
Ok(httparse::Status::Complete((_, hdrs))) => {
// convert headers
let mut headers = HeaderMap::with_capacity(hdrs.len());
for h in hdrs {
if let Ok(name) = HeaderName::try_from(h.name) {
if let Ok(value) = HeaderValue::try_from(h.value) {
headers.append(name, value);
} else {
return Err(ParseError::Header.into());
}
} else {
return Err(ParseError::Header.into());
}
}
Ok(Some(headers))
}
Ok(httparse::Status::Partial) => Err(ParseError::Header.into()),
Err(err) => Err(ParseError::from(err).into()),
}
}
}
}
fn read_boundary(
payload: &mut PayloadBuffer,
boundary: &str,
) -> Result<Option<bool>, MultipartError> {
// TODO: need to read epilogue
match payload.readline()? {
None => {
if payload.eof {
Ok(Some(true))
} else {
Ok(None)
}
}
Some(chunk) => {
if chunk.len() == boundary.len() + 4
&& &chunk[..2] == b"--"
&& &chunk[2..boundary.len() + 2] == boundary.as_bytes()
{
Ok(Some(false))
} else if chunk.len() == boundary.len() + 6
&& &chunk[..2] == b"--"
&& &chunk[2..boundary.len() + 2] == boundary.as_bytes()
&& &chunk[boundary.len() + 2..boundary.len() + 4] == b"--"
{
Ok(Some(true))
} else {
Err(MultipartError::Boundary)
}
}
}
}
fn skip_until_boundary(
payload: &mut PayloadBuffer,
boundary: &str,
) -> Result<Option<bool>, MultipartError> {
let mut eof = false;
loop {
match payload.readline()? {
Some(chunk) => {
if chunk.is_empty() {
return Err(MultipartError::Boundary);
}
if chunk.len() < boundary.len() {
continue;
}
if &chunk[..2] == b"--"
&& &chunk[2..chunk.len() - 2] == boundary.as_bytes()
{
break;
} else {
if chunk.len() < boundary.len() + 2 {
continue;
}
let b: &[u8] = boundary.as_ref();
if &chunk[..boundary.len()] == b
&& &chunk[boundary.len()..boundary.len() + 2] == b"--"
{
eof = true;
break;
}
}
}
None => {
return if payload.eof {
Err(MultipartError::Incomplete)
} else {
Ok(None)
};
}
}
}
Ok(Some(eof))
}
fn poll(&mut self, safety: &Safety) -> Poll<Option<Field>, MultipartError> {
if self.state == InnerState::Eof {
Ok(Async::Ready(None))
} else {
// release field
loop {
// Nested multipart streams of fields has to be consumed
// before switching to next
if safety.current() {
let stop = match self.item {
InnerMultipartItem::Field(ref mut field) => {
match field.borrow_mut().poll(safety)? {
Async::NotReady => return Ok(Async::NotReady),
Async::Ready(Some(_)) => continue,
Async::Ready(None) => true,
}
}
InnerMultipartItem::None => false,
};
if stop {
self.item = InnerMultipartItem::None;
}
if let InnerMultipartItem::None = self.item {
break;
}
}
}
let headers = if let Some(payload) = self.payload.get_mut(safety) {
match self.state {
// read until first boundary
InnerState::FirstBoundary => {
match InnerMultipart::skip_until_boundary(
payload,
&self.boundary,
)? {
Some(eof) => {
if eof {
self.state = InnerState::Eof;
return Ok(Async::Ready(None));
} else {
self.state = InnerState::Headers;
}
}
None => return Ok(Async::NotReady),
}
}
// read boundary
InnerState::Boundary => {
match InnerMultipart::read_boundary(payload, &self.boundary)? {
None => return Ok(Async::NotReady),
Some(eof) => {
if eof {
self.state = InnerState::Eof;
return Ok(Async::Ready(None));
} else {
self.state = InnerState::Headers;
}
}
}
}
_ => (),
}
// read field headers for next field
if self.state == InnerState::Headers {
if let Some(headers) = InnerMultipart::read_headers(payload)? {
self.state = InnerState::Boundary;
headers
} else {
return Ok(Async::NotReady);
}
} else {
unreachable!()
}
} else {
log::debug!("NotReady: field is in flight");
return Ok(Async::NotReady);
};
// content type
let mut mt = mime::APPLICATION_OCTET_STREAM;
if let Some(content_type) = headers.get(&header::CONTENT_TYPE) {
if let Ok(content_type) = content_type.to_str() {
if let Ok(ct) = content_type.parse::<mime::Mime>() {
mt = ct;
}
}
}
self.state = InnerState::Boundary;
// nested multipart stream
if mt.type_() == mime::MULTIPART {
Err(MultipartError::Nested)
} else {
let field = Rc::new(RefCell::new(InnerField::new(
self.payload.clone(),
self.boundary.clone(),
&headers,
)?));
self.item = InnerMultipartItem::Field(Rc::clone(&field));
Ok(Async::Ready(Some(Field::new(
safety.clone(),
headers,
mt,
field,
))))
}
}
}
}
impl Drop for InnerMultipart {
fn drop(&mut self) {
// InnerMultipartItem::Field has to be dropped first because of Safety.
self.item = InnerMultipartItem::None;
}
}
/// A single field in a multipart stream
pub struct Field {
ct: mime::Mime,
headers: HeaderMap,
inner: Rc<RefCell<InnerField>>,
safety: Safety,
}
impl Field {
fn new(
safety: Safety,
headers: HeaderMap,
ct: mime::Mime,
inner: Rc<RefCell<InnerField>>,
) -> Self {
Field {
ct,
headers,
inner,
safety,
}
}
/// Get a map of headers
pub fn headers(&self) -> &HeaderMap {
&self.headers
}
/// Get the content type of the field
pub fn content_type(&self) -> &mime::Mime {
&self.ct
}
/// Get the content disposition of the field, if it exists
pub fn content_disposition(&self) -> Option<ContentDisposition> {
// RFC 7578: 'Each part MUST contain a Content-Disposition header field
// where the disposition type is "form-data".'
if let Some(content_disposition) = self.headers.get(&header::CONTENT_DISPOSITION)
{
ContentDisposition::from_raw(content_disposition).ok()
} else {
None
}
}
}
impl Stream for Field {
type Item = Bytes;
type Error = MultipartError;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
if self.safety.current() {
let mut inner = self.inner.borrow_mut();
if let Some(payload) = inner.payload.as_ref().unwrap().get_mut(&self.safety)
{
payload.poll_stream()?;
}
inner.poll(&self.safety)
} else if !self.safety.is_clean() {
return Err(MultipartError::NotConsumed);
} else {
Ok(Async::NotReady)
}
}
}
impl fmt::Debug for Field {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "\nField: {}", self.ct)?;
writeln!(f, " boundary: {}", self.inner.borrow().boundary)?;
writeln!(f, " headers:")?;
for (key, val) in self.headers.iter() {
writeln!(f, " {:?}: {:?}", key, val)?;
}
Ok(())
}
}
struct InnerField {
payload: Option<PayloadRef>,
boundary: String,
eof: bool,
length: Option<u64>,
}
impl InnerField {
fn new(
payload: PayloadRef,
boundary: String,
headers: &HeaderMap,
) -> Result<InnerField, PayloadError> {
let len = if let Some(len) = headers.get(&header::CONTENT_LENGTH) {
if let Ok(s) = len.to_str() {
if let Ok(len) = s.parse::<u64>() {
Some(len)
} else {
return Err(PayloadError::Incomplete(None));
}
} else {
return Err(PayloadError::Incomplete(None));
}
} else {
None
};
Ok(InnerField {
boundary,
payload: Some(payload),
eof: false,
length: len,
})
}
/// Reads body part content chunk of the specified size.
/// The body part must has `Content-Length` header with proper value.
fn read_len(
payload: &mut PayloadBuffer,
size: &mut u64,
) -> Poll<Option<Bytes>, MultipartError> {
if *size == 0 {
Ok(Async::Ready(None))
} else {
match payload.read_max(*size)? {
Some(mut chunk) => {
let len = cmp::min(chunk.len() as u64, *size);
*size -= len;
let ch = chunk.split_to(len as usize);
if !chunk.is_empty() {
payload.unprocessed(chunk);
}
Ok(Async::Ready(Some(ch)))
}
None => {
if payload.eof && (*size != 0) {
Err(MultipartError::Incomplete)
} else {
Ok(Async::NotReady)
}
}
}
}
}
/// Reads content chunk of body part with unknown length.
/// The `Content-Length` header for body part is not necessary.
fn read_stream(
payload: &mut PayloadBuffer,
boundary: &str,
) -> Poll<Option<Bytes>, MultipartError> {
let mut pos = 0;
let len = payload.buf.len();
if len == 0 {
return if payload.eof {
Err(MultipartError::Incomplete)
} else {
Ok(Async::NotReady)
};
}
// check boundary
if len > 4 && payload.buf[0] == b'\r' {
let b_len = if &payload.buf[..2] == b"\r\n" && &payload.buf[2..4] == b"--" {
Some(4)
} else if &payload.buf[1..3] == b"--" {
Some(3)
} else {
None
};
if let Some(b_len) = b_len {
let b_size = boundary.len() + b_len;
if len < b_size {
return Ok(Async::NotReady);
} else {
if &payload.buf[b_len..b_size] == boundary.as_bytes() {
// found boundary
return Ok(Async::Ready(None));
} else {
pos = b_size;
}
}
}
}
loop {
return if let Some(idx) = twoway::find_bytes(&payload.buf[pos..], b"\r") {
let cur = pos + idx;
// check if we have enough data for boundary detection
if cur + 4 > len {
if cur > 0 {
Ok(Async::Ready(Some(payload.buf.split_to(cur).freeze())))
} else {
Ok(Async::NotReady)
}
} else {
// check boundary
if (&payload.buf[cur..cur + 2] == b"\r\n"
&& &payload.buf[cur + 2..cur + 4] == b"--")
|| (&payload.buf[cur..cur + 1] == b"\r"
&& &payload.buf[cur + 1..cur + 3] == b"--")
{
if cur != 0 {
// return buffer
Ok(Async::Ready(Some(payload.buf.split_to(cur).freeze())))
} else {
pos = cur + 1;
continue;
}
} else {
// not boundary
pos = cur + 1;
continue;
}
}
} else {
return Ok(Async::Ready(Some(payload.buf.take().freeze())));
};
}
}
fn poll(&mut self, s: &Safety) -> Poll<Option<Bytes>, MultipartError> {
if self.payload.is_none() {
return Ok(Async::Ready(None));
}
let result = if let Some(payload) = self.payload.as_ref().unwrap().get_mut(s) {
if !self.eof {
let res = if let Some(ref mut len) = self.length {
InnerField::read_len(payload, len)?
} else {
InnerField::read_stream(payload, &self.boundary)?
};
match res {
Async::NotReady => return Ok(Async::NotReady),
Async::Ready(Some(bytes)) => return Ok(Async::Ready(Some(bytes))),
Async::Ready(None) => self.eof = true,
}
}
match payload.readline()? {
None => Async::Ready(None),
Some(line) => {
if line.as_ref() != b"\r\n" {
log::warn!("multipart field did not read all the data or it is malformed");
}
Async::Ready(None)
}
}
} else {
Async::NotReady
};
if Async::Ready(None) == result {
self.payload.take();
}
Ok(result)
}
}
struct PayloadRef {
payload: Rc<UnsafeCell<PayloadBuffer>>,
}
impl PayloadRef {
fn new(payload: PayloadBuffer) -> PayloadRef {
PayloadRef {
payload: Rc::new(payload.into()),
}
}
fn get_mut<'a, 'b>(&'a self, s: &'b Safety) -> Option<&'a mut PayloadBuffer>
where
'a: 'b,
{
// Unsafe: Invariant is inforced by Safety Safety is used as ref counter,
// only top most ref can have mutable access to payload.
if s.current() {
let payload: &mut PayloadBuffer = unsafe { &mut *self.payload.get() };
Some(payload)
} else {
None
}
}
}
impl Clone for PayloadRef {
fn clone(&self) -> PayloadRef {
PayloadRef {
payload: Rc::clone(&self.payload),
}
}
}
/// Counter. It tracks of number of clones of payloads and give access to
/// payload only to top most task panics if Safety get destroyed and it not top
/// most task.
#[derive(Debug)]
struct Safety {
task: Option<Task>,
level: usize,
payload: Rc<PhantomData<bool>>,
clean: Rc<Cell<bool>>,
}
impl Safety {
fn new() -> Safety {
let payload = Rc::new(PhantomData);
Safety {
task: None,
level: Rc::strong_count(&payload),
clean: Rc::new(Cell::new(true)),
payload,
}
}
fn current(&self) -> bool {
Rc::strong_count(&self.payload) == self.level && self.clean.get()
}
fn is_clean(&self) -> bool {
self.clean.get()
}
}
impl Clone for Safety {
fn clone(&self) -> Safety {
let payload = Rc::clone(&self.payload);
Safety {
task: Some(current_task()),
level: Rc::strong_count(&payload),
clean: self.clean.clone(),
payload,
}
}
}
impl Drop for Safety {
fn drop(&mut self) {
// parent task is dead
if Rc::strong_count(&self.payload) != self.level {
self.clean.set(true);
}
if let Some(task) = self.task.take() {
task.notify()
}
}
}
/// Payload buffer
struct PayloadBuffer {
eof: bool,
buf: BytesMut,
stream: Box<dyn Stream<Item = Bytes, Error = PayloadError>>,
}
impl PayloadBuffer {
/// Create new `PayloadBuffer` instance
fn new<S>(stream: S) -> Self
where
S: Stream<Item = Bytes, Error = PayloadError> + 'static,
{
PayloadBuffer {
eof: false,
buf: BytesMut::new(),
stream: Box::new(stream),
}
}
fn poll_stream(&mut self) -> Result<(), PayloadError> {
loop {
match self.stream.poll()? {
Async::Ready(Some(data)) => self.buf.extend_from_slice(&data),
Async::Ready(None) => {
self.eof = true;
return Ok(());
}
Async::NotReady => return Ok(()),
}
}
}
/// Read exact number of bytes
#[cfg(test)]
fn read_exact(&mut self, size: usize) -> Option<Bytes> {
if size <= self.buf.len() {
Some(self.buf.split_to(size).freeze())
} else {
None
}
}
fn read_max(&mut self, size: u64) -> Result<Option<Bytes>, MultipartError> {
if !self.buf.is_empty() {
let size = std::cmp::min(self.buf.len() as u64, size) as usize;
Ok(Some(self.buf.split_to(size).freeze()))
} else if self.eof {
Err(MultipartError::Incomplete)
} else {
Ok(None)
}
}
/// Read until specified ending
pub fn read_until(&mut self, line: &[u8]) -> Result<Option<Bytes>, MultipartError> {
let res = twoway::find_bytes(&self.buf, line)
.map(|idx| self.buf.split_to(idx + line.len()).freeze());
if res.is_none() && self.eof {
Err(MultipartError::Incomplete)
} else {
Ok(res)
}
}
/// Read bytes until new line delimiter
pub fn readline(&mut self) -> Result<Option<Bytes>, MultipartError> {
self.read_until(b"\n")
}
/// Put unprocessed data back to the buffer
pub fn unprocessed(&mut self, data: Bytes) {
let buf = BytesMut::from(data);
let buf = std::mem::replace(&mut self.buf, buf);
self.buf.extend_from_slice(&buf);
}
}
#[cfg(test)]
mod tests {
use actix_http::h1::Payload;
use bytes::Bytes;
use futures::unsync::mpsc;
use super::*;
use actix_web::http::header::{DispositionParam, DispositionType};
use actix_web::test::run_on;
#[test]
fn test_boundary() {
let headers = HeaderMap::new();
match Multipart::boundary(&headers) {
Err(MultipartError::NoContentType) => (),
_ => unreachable!("should not happen"),
}
let mut headers = HeaderMap::new();
headers.insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static("test"),
);
match Multipart::boundary(&headers) {
Err(MultipartError::ParseContentType) => (),
_ => unreachable!("should not happen"),
}
let mut headers = HeaderMap::new();
headers.insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static("multipart/mixed"),
);
match Multipart::boundary(&headers) {
Err(MultipartError::Boundary) => (),
_ => unreachable!("should not happen"),
}
let mut headers = HeaderMap::new();
headers.insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static(
"multipart/mixed; boundary=\"5c02368e880e436dab70ed54e1c58209\"",
),
);
assert_eq!(
Multipart::boundary(&headers).unwrap(),
"5c02368e880e436dab70ed54e1c58209"
);
}
fn create_stream() -> (
mpsc::UnboundedSender<Result<Bytes, PayloadError>>,
impl Stream<Item = Bytes, Error = PayloadError>,
) {
let (tx, rx) = mpsc::unbounded();
(tx, rx.map_err(|_| panic!()).and_then(|res| res))
}
#[test]
fn test_multipart() {
run_on(|| {
let (sender, payload) = create_stream();
let bytes = Bytes::from(
"testasdadsad\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0\r\n\
Content-Disposition: form-data; name=\"file\"; filename=\"fn.txt\"\r\n\
Content-Type: text/plain; charset=utf-8\r\nContent-Length: 4\r\n\r\n\
test\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0\r\n\
Content-Type: text/plain; charset=utf-8\r\nContent-Length: 4\r\n\r\n\
data\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0--\r\n",
);
sender.unbounded_send(Ok(bytes)).unwrap();
let mut headers = HeaderMap::new();
headers.insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static(
"multipart/mixed; boundary=\"abbc761f78ff4d7cb7573b5a23f96ef0\"",
),
);
let mut multipart = Multipart::new(&headers, payload);
match multipart.poll().unwrap() {
Async::Ready(Some(mut field)) => {
let cd = field.content_disposition().unwrap();
assert_eq!(cd.disposition, DispositionType::FormData);
assert_eq!(cd.parameters[0], DispositionParam::Name("file".into()));
assert_eq!(field.content_type().type_(), mime::TEXT);
assert_eq!(field.content_type().subtype(), mime::PLAIN);
match field.poll().unwrap() {
Async::Ready(Some(chunk)) => assert_eq!(chunk, "test"),
_ => unreachable!(),
}
match field.poll().unwrap() {
Async::Ready(None) => (),
_ => unreachable!(),
}
}
_ => unreachable!(),
}
match multipart.poll().unwrap() {
Async::Ready(Some(mut field)) => {
assert_eq!(field.content_type().type_(), mime::TEXT);
assert_eq!(field.content_type().subtype(), mime::PLAIN);
match field.poll() {
Ok(Async::Ready(Some(chunk))) => assert_eq!(chunk, "data"),
_ => unreachable!(),
}
match field.poll() {
Ok(Async::Ready(None)) => (),
_ => unreachable!(),
}
}
_ => unreachable!(),
}
match multipart.poll().unwrap() {
Async::Ready(None) => (),
_ => unreachable!(),
}
});
}
#[test]
fn test_stream() {
run_on(|| {
let (sender, payload) = create_stream();
let bytes = Bytes::from(
"testasdadsad\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0\r\n\
Content-Disposition: form-data; name=\"file\"; filename=\"fn.txt\"\r\n\
Content-Type: text/plain; charset=utf-8\r\n\r\n\
test\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0\r\n\
Content-Type: text/plain; charset=utf-8\r\n\r\n\
data\r\n\
--abbc761f78ff4d7cb7573b5a23f96ef0--\r\n",
);
sender.unbounded_send(Ok(bytes)).unwrap();
let mut headers = HeaderMap::new();
headers.insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static(
"multipart/mixed; boundary=\"abbc761f78ff4d7cb7573b5a23f96ef0\"",
),
);
let mut multipart = Multipart::new(&headers, payload);
match multipart.poll().unwrap() {
Async::Ready(Some(mut field)) => {
let cd = field.content_disposition().unwrap();
assert_eq!(cd.disposition, DispositionType::FormData);
assert_eq!(cd.parameters[0], DispositionParam::Name("file".into()));
assert_eq!(field.content_type().type_(), mime::TEXT);
assert_eq!(field.content_type().subtype(), mime::PLAIN);
match field.poll().unwrap() {
Async::Ready(Some(chunk)) => assert_eq!(chunk, "test"),
_ => unreachable!(),
}
match field.poll().unwrap() {
Async::Ready(None) => (),
_ => unreachable!(),
}
}
_ => unreachable!(),
}
match multipart.poll().unwrap() {
Async::Ready(Some(mut field)) => {
assert_eq!(field.content_type().type_(), mime::TEXT);
assert_eq!(field.content_type().subtype(), mime::PLAIN);
match field.poll() {
Ok(Async::Ready(Some(chunk))) => assert_eq!(chunk, "data"),
_ => unreachable!(),
}
match field.poll() {
Ok(Async::Ready(None)) => (),
_ => unreachable!(),
}
}
_ => unreachable!(),
}
match multipart.poll().unwrap() {
Async::Ready(None) => (),
_ => unreachable!(),
}
});
}
#[test]
fn test_basic() {
run_on(|| {
let (_, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
assert_eq!(payload.buf.len(), 0);
payload.poll_stream().unwrap();
assert_eq!(None, payload.read_max(1).unwrap());
})
}
#[test]
fn test_eof() {
run_on(|| {
let (mut sender, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
assert_eq!(None, payload.read_max(4).unwrap());
sender.feed_data(Bytes::from("data"));
sender.feed_eof();
payload.poll_stream().unwrap();
assert_eq!(Some(Bytes::from("data")), payload.read_max(4).unwrap());
assert_eq!(payload.buf.len(), 0);
assert!(payload.read_max(1).is_err());
assert!(payload.eof);
})
}
#[test]
fn test_err() {
run_on(|| {
let (mut sender, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
assert_eq!(None, payload.read_max(1).unwrap());
sender.set_error(PayloadError::Incomplete(None));
payload.poll_stream().err().unwrap();
})
}
#[test]
fn test_readmax() {
run_on(|| {
let (mut sender, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
sender.feed_data(Bytes::from("line1"));
sender.feed_data(Bytes::from("line2"));
payload.poll_stream().unwrap();
assert_eq!(payload.buf.len(), 10);
assert_eq!(Some(Bytes::from("line1")), payload.read_max(5).unwrap());
assert_eq!(payload.buf.len(), 5);
assert_eq!(Some(Bytes::from("line2")), payload.read_max(5).unwrap());
assert_eq!(payload.buf.len(), 0);
})
}
#[test]
fn test_readexactly() {
run_on(|| {
let (mut sender, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
assert_eq!(None, payload.read_exact(2));
sender.feed_data(Bytes::from("line1"));
sender.feed_data(Bytes::from("line2"));
payload.poll_stream().unwrap();
assert_eq!(Some(Bytes::from_static(b"li")), payload.read_exact(2));
assert_eq!(payload.buf.len(), 8);
assert_eq!(Some(Bytes::from_static(b"ne1l")), payload.read_exact(4));
assert_eq!(payload.buf.len(), 4);
})
}
#[test]
fn test_readuntil() {
run_on(|| {
let (mut sender, payload) = Payload::create(false);
let mut payload = PayloadBuffer::new(payload);
assert_eq!(None, payload.read_until(b"ne").unwrap());
sender.feed_data(Bytes::from("line1"));
sender.feed_data(Bytes::from("line2"));
payload.poll_stream().unwrap();
assert_eq!(
Some(Bytes::from("line")),
payload.read_until(b"ne").unwrap()
);
assert_eq!(payload.buf.len(), 6);
assert_eq!(
Some(Bytes::from("1line2")),
payload.read_until(b"2").unwrap()
);
assert_eq!(payload.buf.len(), 0);
})
}
}