mirror of
https://github.com/pseudoku/PseudoMakeMeKeyCapProfiles.git
synced 2025-01-07 12:15:24 +00:00
187 lines
6.1 KiB
OpenSCAD
187 lines
6.1 KiB
OpenSCAD
|
use <scad-utils/morphology.scad> //for cheaper minwoski
|
||
|
use <scad-utils/transformations.scad>
|
||
|
use <scad-utils/shapes.scad>
|
||
|
use <scad-utils/trajectory.scad>
|
||
|
use <scad-utils/trajectory_path.scad>
|
||
|
use <sweep.scad>
|
||
|
use <skin.scad>
|
||
|
use <Switch.scad>
|
||
|
//TODO: Make Alias for key[n]
|
||
|
wallthickness = 2.5;
|
||
|
topthickness = 3.0;
|
||
|
key =
|
||
|
//[
|
||
|
// BotWid, BotLen, TopWDif, TopLDif, height, WShift, LShift XAngSkew, YAngSkew, ZAngSkew LExpo, WExpo, CapRadIn, CapRadFn, CapRadExpd
|
||
|
[18.16*1.25, 18.16, 5, 5, 13, 0, 0, -6, -5, 0, 2.5, 2.5, .2, 3, 2];
|
||
|
//];
|
||
|
|
||
|
step = 2;
|
||
|
function ellipse(a, b, d = 0, rot1 = 0, rot2 = 360) = [for (t = [rot1:step:rot2]) [a*cos(t)+a, b*sin(t)*(1+d*cos(t))]]; //Centered at a apex to avoid inverted face
|
||
|
|
||
|
function DishShape (a,b,c,d) =
|
||
|
concat(
|
||
|
// [[c+a,b]],
|
||
|
ellipse(a, b, d = 0,rot1 = 90, rot2 = 270)
|
||
|
// [[c+a,-b]]
|
||
|
);
|
||
|
|
||
|
function oval_path(theta, phi, a, b, c, deform = 0) = [
|
||
|
a*cos(theta)*cos(phi), //x
|
||
|
c*sin(theta)*(1+deform*cos(theta)) , //
|
||
|
b*sin(phi),
|
||
|
];
|
||
|
|
||
|
path_trans2 = [for (t=[0:step:180]) translation(oval_path(t,0,10,15,2,0))*rotation([0,90,0])];
|
||
|
|
||
|
//------------Define the trajectory of the dish shsape cuts
|
||
|
FrontTraj = [
|
||
|
trajectory(forward = 6, pitch = 12),
|
||
|
trajectory(forward = 3, pitch = -50)
|
||
|
];
|
||
|
|
||
|
BackTraj = [
|
||
|
trajectory(forward = 6, pitch = 10),
|
||
|
trajectory(forward = 4, pitch = -30),
|
||
|
// trajectory(forward = 10, pitch = -20, roll = 0)
|
||
|
];
|
||
|
|
||
|
//quantized trajectory to be fed into transform
|
||
|
stepsize = 50;
|
||
|
fn=60;
|
||
|
|
||
|
FrontPath = quantize_trajectories(FrontTraj, steps = stepsize, loop=false, start_position= $t*4);
|
||
|
BackPath = quantize_trajectories(BackTraj, steps = stepsize, loop=false, start_position= $t*4);
|
||
|
|
||
|
FrontCurve = [ for(i=[0:len(FrontPath)-1]) transform(FrontPath[i], DishShape(2.5, 12, 1, d = 0)) ];
|
||
|
BackCurve = [ for(i=[0:len(BackPath)-1]) transform(BackPath[i], DishShape(2.5, 12, 1, d = 0)) ];
|
||
|
|
||
|
FrontCurve2 = [ for(i=[0:len(FrontPath)-1]) transform(FrontPath[i], DishShape(2+2, 10+2, 2, d = 0)) ];
|
||
|
|
||
|
//--------------For Cap
|
||
|
layers = 50;
|
||
|
|
||
|
function CapTranslation(t) =
|
||
|
[
|
||
|
((1-t)/layers*key[5]), //X shift
|
||
|
((1-t)/layers*key[6]), //Y shift
|
||
|
(t/layers*key[4]) //Z shift
|
||
|
];
|
||
|
|
||
|
function InnerTranslation(t) =
|
||
|
[
|
||
|
((1-t)/layers*key[5]), //X shift
|
||
|
((1-t)/layers*key[6]), //Y shift
|
||
|
(t/layers*(key[4]-topthickness)) //Z shift
|
||
|
];
|
||
|
|
||
|
function CapRotation(t) =
|
||
|
[
|
||
|
((1-t)/layers*key[7]), //X shift
|
||
|
((1-t)/layers*key[8]), //Y shift
|
||
|
((1-t)/layers*key[9]) //Z shift
|
||
|
];
|
||
|
|
||
|
function CapTransform(t) =
|
||
|
[
|
||
|
pow(t/layers, key[10])*(key[0]-key[2]) + (1-pow(t/layers, key[10]))*key[0],
|
||
|
pow(t/layers, key[11])*(key[1]-key[3]) + (1-pow(t/layers, key[11]))*key[1]
|
||
|
];
|
||
|
|
||
|
function InnerTransform(t) =
|
||
|
[
|
||
|
pow(t/layers, key[10])*(key[0]-key[2]-wallthickness) + (1-pow(t/layers, key[10]))*(key[0]-wallthickness),
|
||
|
pow(t/layers, key[11])*(key[1]-key[3]-wallthickness) + (1-pow(t/layers, key[11]))*(key[1]-wallthickness)
|
||
|
];
|
||
|
|
||
|
function CapRadius(t) = pow(t/layers, key[14])*key[13] + (1-pow(t/layers, key[14]))*key[12];
|
||
|
|
||
|
|
||
|
///KEY Build
|
||
|
difference(){
|
||
|
union(){
|
||
|
difference(){
|
||
|
skin([for (i=[0:layers-1])transform(translation(CapTranslation(i)) * rotation(CapRotation(i)), rounded_rectangle_profile(CapTransform(i),fn=fn,r=CapRadius(i)))]);
|
||
|
|
||
|
//use intersection with stem here?
|
||
|
translate([0,0,-.001])skin([for (i=[0:layers-1])transform(translation(InnerTranslation(i)) * rotation(CapRotation(i)), rounded_rectangle_profile(InnerTransform(i),fn=fn,r=CapRadius(i)))]);
|
||
|
}
|
||
|
rotate([0,0,stemRot])cherry_stem(10, slop);
|
||
|
|
||
|
//cut for fonts and extra pattern for light?
|
||
|
}
|
||
|
// #rotate([-key[7],key[8],key[9]])translate([0,4,key[4]-2.5])linear_extrude(height = 0.5)text( text = "Why?", font = "Constantia:style=Bold", size = 3, valign = "center", halign = "center" );
|
||
|
|
||
|
translate([0,.00001,key[4]-1.5])rotate([0,-key[8],0])rotate([0,-90+key[7],90-key[9]])skin(FrontCurve);
|
||
|
translate([0,0,key[4]-1.5])rotate([0,-key[8],0])rotate([0,-90-key[7],270-key[9]])skin(BackCurve);
|
||
|
#translate([0,-6.6,7.8])rotate([72,0,0])Keyhole(.1, clipLength = -3, cutThickness = 0);
|
||
|
// translate([0,0,-.1])cube([15,15,15]);
|
||
|
|
||
|
}
|
||
|
|
||
|
//------------------stems
|
||
|
$fn = 32;
|
||
|
slop = 0.3;
|
||
|
stemRot = 0;
|
||
|
extra_vertical = 0.6;
|
||
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
||
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
||
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
||
|
|
||
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
||
|
function cherry_cross(slop, extra_vertical = 0) = [
|
||
|
// horizontal tine
|
||
|
[4.03 + slop, 1.15 + slop / 3],
|
||
|
// vertical tine
|
||
|
[1.25 + slop / 3, 4.23 + extra_vertical + slop / 3 + .005],
|
||
|
];
|
||
|
module inside_cherry_cross(slop) {
|
||
|
// inside cross
|
||
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
||
|
translate([0,0,-0.005]) {
|
||
|
linear_extrude(height = 4) {
|
||
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
||
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Guides to assist insertion and mitigate first layer squishing
|
||
|
{
|
||
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
||
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
||
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module cherry_stem(depth, slop) {
|
||
|
difference(){
|
||
|
// outside shape
|
||
|
linear_extrude(height = depth) {
|
||
|
offset(r=1){
|
||
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
||
|
}
|
||
|
}
|
||
|
inside_cherry_cross(slop);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// ----- helper functions
|
||
|
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
|
||
|
for (index = [0:fn-1])
|
||
|
let(a = index/fn*360)
|
||
|
r * [cos(a), sin(a)]
|
||
|
+ sign_x(index, fn) * [size[0]/2-r,0]
|
||
|
+ sign_y(index, fn) * [0,size[1]/2-r]
|
||
|
];
|
||
|
|
||
|
function sign_x(i,n) =
|
||
|
i < n/4 || i > n-n/4 ? 1 :
|
||
|
i > n/4 && i < n-n/4 ? -1 :
|
||
|
0;
|
||
|
|
||
|
function sign_y(i,n) =
|
||
|
i > 0 && i < n/2 ? 1 :
|
||
|
i > n/2 ? -1 :
|
||
|
0;
|