// Take a look at the license at the top of the repository in the LICENSE file. #![allow(clippy::upper_case_acronyms)] use glib::{Date, StaticType, ToValue}; use num_rational::Rational32; use serde::de; use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor}; use serde::ser; use serde::ser::{Serialize, SerializeTuple, Serializer}; use std::{fmt, mem}; use once_cell::sync::Lazy; use crate::Buffer; use crate::DateTime; use crate::List; use crate::Sample; use crate::Structure; use crate::date_time_serde; use crate::value::*; pub(crate) static ARRAY_OTHER_TYPE_ID: Lazy = Lazy::new(Array::static_type); pub(crate) static BITMASK_OTHER_TYPE_ID: Lazy = Lazy::new(Bitmask::static_type); pub(crate) static DATE_OTHER_TYPE_ID: Lazy = Lazy::new(Date::static_type); pub(crate) static DATE_TIME_OTHER_TYPE_ID: Lazy = Lazy::new(DateTime::static_type); pub(crate) static FRACTION_OTHER_TYPE_ID: Lazy = Lazy::new(Fraction::static_type); pub(crate) static FRACTION_RANGE_OTHER_TYPE_ID: Lazy = Lazy::new(FractionRange::static_type); pub(crate) static INT_RANGE_I32_OTHER_TYPE_ID: Lazy = Lazy::new(IntRange::::static_type); pub(crate) static INT_RANGE_I64_OTHER_TYPE_ID: Lazy = Lazy::new(IntRange::::static_type); pub(crate) static LIST_OTHER_TYPE_ID: Lazy = Lazy::new(List::static_type); pub(crate) static SAMPLE_OTHER_TYPE_ID: Lazy = Lazy::new(Sample::static_type); pub(crate) static BUFFER_OTHER_TYPE_ID: Lazy = Lazy::new(Buffer::static_type); pub(crate) static STRUCTURE_OTHER_TYPE_ID: Lazy = Lazy::new(Structure::static_type); impl Serialize for Fraction { fn serialize(&self, serializer: S) -> Result { self.0.serialize(serializer) } } impl<'de> Deserialize<'de> for Fraction { fn deserialize>(deserializer: D) -> Result { skip_assert_initialized!(); Rational32::deserialize(deserializer) .map(|rational| Fraction::new(*rational.numer(), *rational.denom())) } } macro_rules! ser_some_value ( ($value:expr, $t:ty, $ser_closure:expr) => ( { let value = $value.get::<$t>().expect("ser_some_value macro"); $ser_closure(stringify!($t), value) } ); ); macro_rules! ser_opt_value ( ($value:expr, $t:ty, $ser_closure:expr) => ( { let value = $value.get::>().expect("ser_opt_value macro"); $ser_closure(stringify!($t), value) } ); ); macro_rules! ser_value ( ($value:expr, $ser_closure:expr) => ( match $value.type_() { glib::Type::I8 => ser_some_value!($value, i8, $ser_closure), glib::Type::U8 => ser_some_value!($value, u8, $ser_closure), glib::Type::BOOL => ser_some_value!($value, bool, $ser_closure), glib::Type::I32 => ser_some_value!($value, i32, $ser_closure), glib::Type::U32 => ser_some_value!($value, u32, $ser_closure), glib::Type::I64 => ser_some_value!($value, i64, $ser_closure), glib::Type::U64 => ser_some_value!($value, u64, $ser_closure), glib::Type::F32 => ser_some_value!($value, f32, $ser_closure), glib::Type::F64 => ser_some_value!($value, f64, $ser_closure), glib::Type::STRING => ser_opt_value!($value, String, $ser_closure), type_id => { if *ARRAY_OTHER_TYPE_ID == type_id { ser_some_value!($value, Array, $ser_closure) } else if *BITMASK_OTHER_TYPE_ID == type_id { ser_some_value!($value, Bitmask, $ser_closure) } else if *STRUCTURE_OTHER_TYPE_ID == type_id { ser_some_value!($value, Structure, $ser_closure) } else if *DATE_OTHER_TYPE_ID == type_id { ser_opt_value!($value, Date, |type_, value: Option| { // Need to wrap the `glib::Date` in new type `date_time_serde::Date` first // See comment in `date_time_serde.rs` $ser_closure(type_, value.map(date_time_serde::Date::from)) }) } else if *DATE_TIME_OTHER_TYPE_ID == type_id { ser_opt_value!($value, DateTime, $ser_closure) } else if *FRACTION_OTHER_TYPE_ID == type_id { ser_some_value!($value, Fraction, $ser_closure) } else if *FRACTION_RANGE_OTHER_TYPE_ID == type_id { ser_some_value!($value, FractionRange, $ser_closure) } else if *INT_RANGE_I32_OTHER_TYPE_ID == type_id { ser_some_value!($value, IntRange, $ser_closure) } else if *INT_RANGE_I64_OTHER_TYPE_ID == type_id { ser_some_value!($value, IntRange, $ser_closure) } else if *LIST_OTHER_TYPE_ID == type_id { ser_some_value!($value, crate::List, $ser_closure) } else if *SAMPLE_OTHER_TYPE_ID == type_id { ser_opt_value!($value, Sample, $ser_closure) } else if *BUFFER_OTHER_TYPE_ID == type_id { ser_opt_value!($value, Buffer, $ser_closure) } else { Err( ser::Error::custom( format!("unimplemented `Value` serialization for type {}", type_id, ) ) ) } } } ); ); #[repr(transparent)] pub(crate) struct SendValue(glib::SendValue); impl SendValue { pub(crate) fn from(send_value: glib::SendValue) -> Self { skip_assert_initialized!(); SendValue(send_value) } } impl From for glib::SendValue { fn from(send_value: SendValue) -> Self { skip_assert_initialized!(); send_value.0 } } impl Serialize for SendValue { fn serialize(&self, serializer: S) -> Result { ser_value!(self.0, |type_, value| { let mut tup = serializer.serialize_tuple(2)?; tup.serialize_element(type_)?; tup.serialize_element(&value)?; tup.end() }) } } macro_rules! impl_ser_send_value_collection ( ($t:ident) => ( impl Serialize for $t { fn serialize(&self, serializer: S) -> Result { let send_value_vec = unsafe { &*(self.as_slice() as *const [glib::SendValue] as *const [SendValue]) }; send_value_vec.serialize(serializer) } } ); ); impl_ser_send_value_collection!(Array); impl_ser_send_value_collection!(List); macro_rules! de_some_send_value( ($type_name:expr, $seq:expr, $t:ty) => ( de_some_send_value!("Value", $type_name, $seq, $t) ); ($outer_type:expr, $type_name:expr, $seq:expr, $t:ty) => ( de_send_value!($outer_type, $type_name, $seq, $t, $t) ); ); macro_rules! de_opt_send_value( ($type_name:expr, $seq:expr, $t:ty) => ( de_opt_send_value!("Value", $type_name, $seq, $t) ); ($outer_type:expr, $type_name:expr, $seq:expr, $t:ty) => ( de_send_value!($outer_type, $type_name, $seq, Option<$t>, $t) ); ); macro_rules! de_send_value( ($outer_type:expr, $type_name:expr, $seq:expr, $elem_t:ty, $t:ty) => ( Ok(match $seq.next_element::<$elem_t>()? { Some(base_value) => { Some(SendValue::from(base_value .to_value() .try_into_send_value::<$t>() .map_err(|_| de::Error::custom(format!( "Failed to convert `{}` with type {:?} to `SendValue`", $outer_type, $type_name, )) )? )) } None => None }) ); ($type_name:expr, $seq:expr) => ( match $type_name.as_str() { "i8" => de_some_send_value!($type_name, $seq, i8), "u8" => de_some_send_value!($type_name, $seq, u8), "bool" => de_some_send_value!($type_name, $seq, bool), "i32" => de_some_send_value!($type_name, $seq, i32), "u32" => de_some_send_value!($type_name, $seq, u32), "i64" => de_some_send_value!($type_name, $seq, i64), "u64" => de_some_send_value!($type_name, $seq, u64), "f32" => de_some_send_value!($type_name, $seq, f32), "f64" => de_some_send_value!($type_name, $seq, f64), "String" => de_opt_send_value!($type_name, $seq, String), "Array" => de_some_send_value!($type_name, $seq, Array), "Bitmask" => de_some_send_value!($type_name, $seq, Bitmask), "Structure" => de_some_send_value!($type_name, $seq, Structure), "Date" => { // Need to deserialize as `date_time_serde::Date` new type // See comment in `date_time_serde.rs` de_send_value!( "Value", $type_name, $seq, Option, Date ) } "DateTime" => de_opt_send_value!($type_name, $seq, DateTime), "Fraction" => de_some_send_value!($type_name, $seq, Fraction), "FractionRange" => de_some_send_value!($type_name, $seq, FractionRange), "IntRange" => de_some_send_value!($type_name, $seq, IntRange), "IntRange" => de_some_send_value!($type_name, $seq, IntRange), "Sample" => de_opt_send_value!($type_name, $seq, Sample), "Buffer" => de_opt_send_value!($type_name, $seq, Buffer), _ => return Err( de::Error::custom( format!( "unimplemented deserialization for `Value` with type `{}`", $type_name, ), ) ), } ); ); struct SendValueVisitor; impl<'de> Visitor<'de> for SendValueVisitor { type Value = SendValue; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a tuple: (name, value)") } fn visit_seq>(self, mut seq: A) -> Result { let type_name = seq .next_element::()? .ok_or_else(|| de::Error::custom("Expected a value for `Value` type"))?; let send_value = de_send_value!(type_name, seq)? .ok_or_else(|| de::Error::custom("Expected a value for `Value`"))?; Ok(send_value) } } impl<'de> Deserialize<'de> for SendValue { fn deserialize>(deserializer: D) -> Result { skip_assert_initialized!(); deserializer.deserialize_tuple(2, SendValueVisitor {}) } } macro_rules! impl_de_send_value_collection ( ($t:ident) => { impl<'de> Deserialize<'de> for $t { fn deserialize>(deserializer: D) -> Result { skip_assert_initialized!(); let send_value_vec = Vec::::deserialize(deserializer)?; Ok($t::from_values(unsafe{ mem::transmute::, Vec>(send_value_vec) })) } } } ); impl_de_send_value_collection!(Array); impl_de_send_value_collection!(List); #[cfg(test)] mod tests { use crate::Array; use crate::Bitmask; use crate::DateTime; use crate::Fraction; use crate::FractionRange; use crate::IntRange; use crate::List; use crate::Structure; use glib::{Date, DateMonth}; #[test] fn test_serialize_simple() { crate::init().unwrap(); let pretty_config = ron::ser::PrettyConfig::new().new_line("".to_string()); // Fraction let fraction = Fraction::new(1, 3); let res = ron::ser::to_string_pretty(&fraction, pretty_config.clone()); assert_eq!(Ok("(1, 3)".to_owned()), res); let res = serde_json::to_string(&fraction).unwrap(); assert_eq!("[1,3]".to_owned(), res); // FractionRange let fraction_range = FractionRange::new(Fraction::new(1, 3), Fraction::new(1, 2)); let res = ron::ser::to_string_pretty(&fraction_range, pretty_config.clone()); assert_eq!(Ok("( min: (1, 3), max: (1, 2),)".to_owned()), res); let res = serde_json::to_string(&fraction_range).unwrap(); assert_eq!(r#"{"min":[1,3],"max":[1,2]}"#.to_owned(), res); // IntRange let int_range = IntRange::with_step(0, 42, 21); let res = ron::ser::to_string_pretty(&int_range, pretty_config.clone()); assert_eq!(Ok("( min: 0, max: 42, step: 21,)".to_owned()), res,); let res = serde_json::to_string(&int_range).unwrap(); assert_eq!(r#"{"min":0,"max":42,"step":21}"#.to_owned(), res); // Bitmask let bitmask = Bitmask::new(1024 + 128 + 32); let res = ron::ser::to_string_pretty(&bitmask, pretty_config.clone()); assert_eq!(Ok("(1184)".to_owned()), res); let res = serde_json::to_string(&bitmask).unwrap(); assert_eq!("1184".to_owned(), res); // Nested structure let s = Structure::builder("foobar") .field("foo", 42) .field("baz", Structure::builder("baz").field("foo", 43).build()) .build(); let res = ron::ser::to_string_pretty(&s, pretty_config); assert_eq!( Ok(r#"("foobar", [ ("foo", "i32", 42), ("baz", "Structure", ("baz", [ ("foo", "i32", 43), ])),])"#.to_owned()), res ); let res = serde_json::to_string(&s).unwrap(); assert_eq!( r#"["foobar",[["foo","i32",42],["baz","Structure",["baz",[["foo","i32",43]]]]]]"# .to_owned(), res ); } #[test] fn test_serialize_collections() { crate::init().unwrap(); let pretty_config = ron::ser::PrettyConfig::new().new_line("".to_string()); // Array let value_13 = Fraction::new(1, 3); let value_12 = Fraction::new(1, 2); let array = Array::new([value_13, value_12]); let res = ron::ser::to_string_pretty(&array, pretty_config.clone()); assert_eq!( Ok(concat!( r#"["#, r#" ("Fraction", (1, 3)),"#, r#" ("Fraction", (1, 2)),"#, r#"]"# ) .to_owned()), res, ); let res = serde_json::to_string(&array).unwrap(); assert_eq!(r#"[["Fraction",[1,3]],["Fraction",[1,2]]]"#.to_owned(), res); // List let value_12 = Fraction::new(1, 2); let list = List::new([value_12]); let res = ron::ser::to_string_pretty(&list, pretty_config); assert_eq!( Ok(concat!(r#"["#, r#" ("Fraction", (1, 2)),"#, r#"]"#).to_owned()), res, ); } #[test] fn test_deserialize_simple() { crate::init().unwrap(); // Fraction let fraction_ron = "(1, 3)"; let fraction: Fraction = ron::de::from_str(fraction_ron).unwrap(); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &3); let fraction_json = "[1,3]"; let fraction: Fraction = serde_json::from_str(fraction_json).unwrap(); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &3); // FractionRange let fraction_range_ron = "(min: (1, 3), max: (1, 2))"; let fraction_range: FractionRange = ron::de::from_str(fraction_range_ron).unwrap(); assert_eq!(fraction_range.min().0.denom(), &3); assert_eq!(fraction_range.max().0.denom(), &2); let fraction_range_json = r#"{"min":[1,3],"max":[1,2]}"#; let fraction_range: FractionRange = serde_json::from_str(fraction_range_json).unwrap(); assert_eq!(fraction_range.min().0.denom(), &3); assert_eq!(fraction_range.max().0.denom(), &2); // IntRange let int_range_ron = "(min: 0, max: 42, step: 21)"; let int_range: IntRange = ron::de::from_str(int_range_ron).unwrap(); assert_eq!(int_range.min(), 0); assert_eq!(int_range.max(), 42); assert_eq!(int_range.step(), 21); let int_range_json = r#"{"min":0,"max":42,"step":21}"#; let int_range: IntRange = serde_json::from_str(int_range_json).unwrap(); assert_eq!(int_range.min(), 0); assert_eq!(int_range.max(), 42); assert_eq!(int_range.step(), 21); // Bitmask let bitmask_ref = Bitmask::new(1024 + 128 + 32); let bitmask_ron = "(1184)"; let bitmask: Bitmask = ron::de::from_str(bitmask_ron).unwrap(); assert_eq!(bitmask_ref, bitmask); let bitmask_json = "1184"; let bitmask: Bitmask = serde_json::from_str(bitmask_json).unwrap(); assert_eq!(bitmask_ref, bitmask); // Nested structure let s_ref = Structure::builder("foobar") .field("foo", 42) .field("baz", Structure::builder("baz").field("foo", 43).build()) .build(); let s_ron = r#"("foobar", [ ("foo", "i32", 42), ("baz", "Structure", ("baz", [ ("foo", "i32", 43), ])),])"#; let s: Structure = ron::de::from_str(s_ron).unwrap(); assert_eq!(s_ref, s); let s_json = r#"["foobar",[["foo","i32",42],["baz","Structure",["baz",[["foo","i32",43]]]]]]"#; let s: Structure = serde_json::from_str(s_json).unwrap(); assert_eq!(s_ref, s); } #[test] fn test_serde_roundtrip_simple() { crate::init().unwrap(); // Fraction let fraction = Fraction::new(1, 3); let fraction_ser = ron::ser::to_string(&fraction).unwrap(); let fraction_de: Fraction = ron::de::from_str(fraction_ser.as_str()).unwrap(); assert_eq!(fraction_de.0.numer(), fraction.0.numer()); assert_eq!(fraction_de.0.denom(), fraction.0.denom()); // FractionRange let fraction_range = FractionRange::new(Fraction::new(1, 3), Fraction::new(1, 2)); let fraction_range_ser = ron::ser::to_string(&fraction_range).unwrap(); let fraction_range_de: FractionRange = ron::de::from_str(fraction_range_ser.as_str()).unwrap(); assert_eq!( fraction_range_de.min().0.denom(), fraction_range.min().0.denom() ); assert_eq!( fraction_range_de.max().0.denom(), fraction_range.max().0.denom() ); // IntRange let int_range = IntRange::with_step(0, 42, 21); let int_range_ser = ron::ser::to_string(&int_range).unwrap(); let int_range_de: IntRange = ron::de::from_str(int_range_ser.as_str()).unwrap(); assert_eq!(int_range_de.min(), int_range.min()); assert_eq!(int_range_de.max(), int_range.max()); assert_eq!(int_range_de.step(), int_range.step()); // Bitmask let bitmask = Bitmask::new(1024 + 128 + 32); let bitmask_ser = ron::ser::to_string(&bitmask).unwrap(); let bitmask_de: Bitmask = ron::de::from_str(bitmask_ser.as_str()).unwrap(); assert_eq!(bitmask_de, bitmask); // Nested structure let s = Structure::builder("foobar") .field("foo", 42) .field("baz", Structure::builder("baz").field("foo", 43).build()) .build(); let s_ser = ron::ser::to_string(&s).unwrap(); let s_de: Structure = ron::de::from_str(s_ser.as_str()).unwrap(); assert_eq!(s_de, s); } #[allow(clippy::cognitive_complexity)] #[test] fn test_deserialize_collections() { crate::init().unwrap(); // Array of fractions let array_ron = r#"[ ("Fraction", (1, 3)), ("Fraction", (1, 2)), ]"#; let array: Array = ron::de::from_str(array_ron).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); let fraction = slice[0].get::().expect("slice[0]"); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &3); let fraction = slice[1].get::().expect("slice[1]"); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &2); // Array of strings let array_ron = r#"[ ("String", Some("test str")), ("String", None), ]"#; let array: Array = ron::de::from_str(array_ron).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); assert_eq!( "test str".to_owned(), slice[0].get::().expect("slice[0]") ); assert!(slice[1] .get::>() .expect("slice[1]") .is_none()); // Array of dates let array_ron = r#"[ ("Date", Some(YMD(2019, 8, 19))), ("Date", None), ]"#; let array: Array = ron::de::from_str(array_ron).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); assert_eq!( Date::from_dmy(19, DateMonth::August, 2019).unwrap(), slice[0].get::().expect("slice[0]") ); assert!(slice[1].get::>().expect("slice[1]").is_none()); // Array of fractions let array_json = r#"[["Fraction",[1,3]],["Fraction",[1,2]]]"#; let array: Array = serde_json::from_str(array_json).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); let fraction = slice[0].get::().expect("slice[0]"); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &3); let fraction = slice[1].get::().expect("slice[1]"); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &2); // Array of strings let array_json = r#"[["String","test str"],["String",null]]"#; let array: Array = serde_json::from_str(array_json).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); assert_eq!( "test str".to_owned(), slice[0].get::().expect("slice[0]") ); assert!(slice[1] .get::>() .expect("slice[1]") .is_none()); // Array of dates let array_json = r#"[["Date",{"YMD":[2019,8,19]}],["Date",null]]"#; let array: Array = serde_json::from_str(array_json).unwrap(); let slice = array.as_slice(); assert_eq!(2, slice.len()); assert_eq!( Date::from_dmy(19, DateMonth::August, 2019).unwrap(), slice[0].get::().expect("slice[0]") ); assert!(slice[1].get::>().expect("slice[1]").is_none()); // List of fractions let list_ron = r#"[ ("Fraction", (1, 2)), ]"#; let list: List = ron::de::from_str(list_ron).unwrap(); let slice = list.as_slice(); assert_eq!(1, slice.len()); let fraction = slice[0].get::().expect("slice[0]"); assert_eq!(fraction.0.numer(), &1); assert_eq!(fraction.0.denom(), &2); // List of strings let list_ron = r#"[ ("String", Some("test str")), ("String", None), ]"#; let list: List = ron::de::from_str(list_ron).unwrap(); let slice = list.as_slice(); assert_eq!(2, slice.len()); assert_eq!( "test str".to_owned(), slice[0].get::().expect("slice[0]") ); assert!(slice[1] .get::>() .expect("slice[1]") .is_none()); // List of date times let list_ron = r#"[ ("DateTime", Some(YMDhmsTz(2019, 8, 19, 13, 34, 42, 2))), ("DateTime", None), ]"#; let list: List = ron::de::from_str(list_ron).unwrap(); let slice = list.as_slice(); assert_eq!(2, slice.len()); assert_eq!( DateTime::new(2f32, 2019, 8, 19, 13, 34, 42f64).unwrap(), slice[0].get::().expect("slice[0]") ); assert!(slice[1] .get::>() .expect("slice[1]") .is_none()); } #[test] fn test_serde_roundtrip_collection() { crate::init().unwrap(); // Array let value_13 = Fraction::new(1, 3); let value_12 = Fraction::new(1, 2); let array = Array::new([value_13, value_12]); let array_ser = ron::ser::to_string(&array).unwrap(); let array_de: Array = ron::de::from_str(array_ser.as_str()).unwrap(); let slice_de = array_de.as_slice(); let slice = array.as_slice(); assert_eq!(slice_de.len(), slice.len()); let fraction_de = slice_de[0].get::().expect("slice_de[0]"); let fraction = slice[0].get::().expect("slice[0]"); assert_eq!(fraction_de.0.numer(), fraction.0.numer()); assert_eq!(fraction_de.0.denom(), fraction.0.denom()); let fraction_de = slice_de[1].get::().expect("slice_de[1]"); let fraction = slice[1].get::().expect("slice[1]"); assert_eq!(fraction_de.0.numer(), fraction.0.numer()); assert_eq!(fraction.0.denom(), fraction.0.denom()); // List let value_12 = Fraction::new(1, 2); let list = List::new([value_12]); let list_ser = ron::ser::to_string(&list).unwrap(); let list_de: List = ron::de::from_str(list_ser.as_str()).unwrap(); let slice_de = list_de.as_slice(); let slice = list.as_slice(); assert_eq!(slice_de.len(), slice.len()); let fraction_de = slice_de[0].get::().expect("slice_de[0]"); let fraction = slice[0].get::().expect("slice[0]"); assert_eq!(fraction_de.0.numer(), fraction.0.numer()); assert_eq!(fraction_de.0.denom(), fraction.0.denom()); } }