woodpecker/vendor/github.com/bombsimon/wsl/v3/wsl.go

1248 lines
38 KiB
Go
Raw Normal View History

package wsl
import (
"fmt"
"go/ast"
"go/parser"
"go/token"
"io/ioutil"
"reflect"
"strings"
)
// Error reason strings
const (
reasonMustCuddleErrCheck = "if statements that check an error must be cuddled with the statement that assigned the error"
reasonOnlyCuddleIfWithAssign = "if statements should only be cuddled with assignments"
reasonOnlyOneCuddle = "only one cuddle assignment allowed before if statement"
reasonOnlyCuddleWithUsedAssign = "if statements should only be cuddled with assignments used in the if statement itself"
reasonOnlyCuddle2LineReturn = "return statements should not be cuddled if block has more than two lines"
reasonMultiLineBranchCuddle = "branch statements should not be cuddled if block has more than two lines"
reasonAppendCuddledWithoutUse = "append only allowed to cuddle with appended value"
reasonAssignsCuddleAssign = "assignments should only be cuddled with other assignments"
reasonNeverCuddleDeclare = "declarations should never be cuddled"
reasonExpressionCuddledWithDeclOrRet = "expressions should not be cuddled with declarations or returns"
reasonExpressionCuddledWithBlock = "expressions should not be cuddled with blocks"
reasonExprCuddlingNonAssignedVar = "only cuddled expressions if assigning variable or using from line above"
reasonOneCuddleBeforeRange = "only one cuddle assignment allowed before range statement"
reasonRangeCuddledWithoutUse = "ranges should only be cuddled with assignments used in the iteration"
reasonOneCuddleBeforeDefer = "only one cuddle assignment allowed before defer statement"
reasonDeferCuddledWithOtherVar = "defer statements should only be cuddled with expressions on same variable"
reasonForWithoutCondition = "for statement without condition should never be cuddled"
reasonForWithMoreThanOneCuddle = "only one cuddle assignment allowed before for statement"
reasonForCuddledAssignWithoutUse = "for statements should only be cuddled with assignments used in the iteration"
reasonOneCuddleBeforeGo = "only one cuddle assignment allowed before go statement"
reasonGoFuncWithoutAssign = "go statements can only invoke functions assigned on line above"
reasonSwitchManyCuddles = "only one cuddle assignment allowed before switch statement"
reasonAnonSwitchCuddled = "anonymous switch statements should never be cuddled"
reasonSwitchCuddledWithoutUse = "switch statements should only be cuddled with variables switched"
reasonTypeSwitchTooCuddled = "only one cuddle assignment allowed before type switch statement"
reasonTypeSwitchCuddledWithoutUse = "type switch statements should only be cuddled with variables switched"
reasonBlockStartsWithWS = "block should not start with a whitespace"
reasonBlockEndsWithWS = "block should not end with a whitespace (or comment)"
reasonCaseBlockTooCuddly = "case block should end with newline at this size"
reasonShortDeclNotExclusive = "short declaration should cuddle only with other short declarations"
)
// Warning strings
const (
warnTypeNotImplement = "type not implemented"
warnStmtNotImplemented = "stmt type not implemented"
warnBodyStmtTypeNotImplemented = "body statement type not implemented "
warnWSNodeTypeNotImplemented = "whitespace node type not implemented "
warnUnknownLHS = "UNKNOWN LHS"
warnUnknownRHS = "UNKNOWN RHS"
)
type Configuration struct {
// StrictAppend will do strict checking when assigning from append (x =
// append(x, y)). If this is set to true the append call must append either
// a variable assigned, called or used on the line above. Example on not
// allowed when this is true:
//
// x := []string{}
// y := "not going in X"
// x = append(x, "not y") // This is not allowed with StrictAppend
// z := "going in X"
//
// x = append(x, z) // This is allowed with StrictAppend
//
// m := transform(z)
// x = append(x, z) // So is this because Z is used above.
StrictAppend bool
// AllowAssignAndCallCuddle allows assignments to be cuddled with variables
// used in calls on line above and calls to be cuddled with assignments of
// variables used in call on line above.
// Example supported with this set to true:
//
// x.Call()
// x = Assign()
// x.AnotherCall()
// x = AnotherAssign()
AllowAssignAndCallCuddle bool
// AllowAssignAndCallCuddle allows assignments to be cuddled with anything.
// Example supported with this set to true:
// if x == 1 {
// x = 0
// }
// z := x + 2
// fmt.Println("x")
// y := "x"
AllowAssignAndAnythingCuddle bool
// AllowMultiLineAssignCuddle allows cuddling to assignments even if they
// span over multiple lines. This defaults to true which allows the
// following example:
//
// err := function(
// "multiple", "lines",
// )
// if err != nil {
// // ...
// }
AllowMultiLineAssignCuddle bool
// If the number of lines in a case block is equal to or lager than this
// number, the case *must* end white a newline.
ForceCaseTrailingWhitespaceLimit int
// AllowTrailingComment will allow blocks to end with comments.
AllowTrailingComment bool
// AllowSeparatedLeadingComment will allow multiple comments in the
// beginning of a block separated with newline. Example:
// func () {
// // Comment one
//
// // Comment two
// fmt.Println("x")
// }
AllowSeparatedLeadingComment bool
// AllowCuddleDeclaration will allow multiple var/declaration statements to
// be cuddled. This defaults to false but setting it to true will enable the
// following example:
// var foo bool
// var err error
AllowCuddleDeclaration bool
// AllowCuddleWithCalls is a list of call idents that everything can be
// cuddled with. Defaults to calls looking like locks to support a flow like
// this:
//
// mu.Lock()
// allow := thisAssignment
AllowCuddleWithCalls []string
// AllowCuddleWithRHS is a list of right hand side variables that is allowed
// to be cuddled with anything. Defaults to assignments or calls looking
// like unlocks to support a flow like this:
//
// allow := thisAssignment()
// mu.Unlock()
AllowCuddleWithRHS []string
// ForceCuddleErrCheckAndAssign will cause an error when an If statement that
// checks an error variable doesn't cuddle with the assignment of that variable.
// This defaults to false but setting it to true will cause the following
// to generate an error:
//
// err := ProduceError()
//
// if err != nil {
// return err
// }
ForceCuddleErrCheckAndAssign bool
// When ForceCuddleErrCheckAndAssign is enabled this is a list of names
// used for error variables to check for in the conditional.
// Defaults to just "err"
ErrorVariableNames []string
// ForceExclusiveShortDeclarations will cause an error if a short declaration
// (:=) cuddles with anything other than another short declaration. For example
//
// a := 2
// b := 3
//
// is allowed, but
//
// a := 2
// b = 3
//
// is not allowed. This logic overrides ForceCuddleErrCheckAndAssign among others.
ForceExclusiveShortDeclarations bool
}
// DefaultConfig returns default configuration
func DefaultConfig() Configuration {
return Configuration{
StrictAppend: true,
AllowAssignAndCallCuddle: true,
AllowAssignAndAnythingCuddle: false,
AllowMultiLineAssignCuddle: true,
AllowTrailingComment: false,
AllowSeparatedLeadingComment: false,
ForceCuddleErrCheckAndAssign: false,
ForceExclusiveShortDeclarations: false,
ForceCaseTrailingWhitespaceLimit: 0,
AllowCuddleWithCalls: []string{"Lock", "RLock"},
AllowCuddleWithRHS: []string{"Unlock", "RUnlock"},
ErrorVariableNames: []string{"err"},
}
}
// Result represents the result of one error.
type Result struct {
FileName string
LineNumber int
Position token.Position
Reason string
}
// String returns the filename, line number and reason of a Result.
func (r *Result) String() string {
return fmt.Sprintf("%s:%d: %s", r.FileName, r.LineNumber, r.Reason)
}
type Processor struct {
config Configuration
result []Result
warnings []string
fileSet *token.FileSet
file *ast.File
}
// NewProcessor will create a Processor.
func NewProcessorWithConfig(cfg Configuration) *Processor {
return &Processor{
result: []Result{},
config: cfg,
}
}
// NewProcessor will create a Processor.
func NewProcessor() *Processor {
return NewProcessorWithConfig(DefaultConfig())
}
// ProcessFiles takes a string slice with file names (full paths) and lints
// them.
// nolint: gocritic
func (p *Processor) ProcessFiles(filenames []string) ([]Result, []string) {
for _, filename := range filenames {
data, err := ioutil.ReadFile(filename)
if err != nil {
panic(err)
}
p.process(filename, data)
}
return p.result, p.warnings
}
func (p *Processor) process(filename string, data []byte) {
fileSet := token.NewFileSet()
file, err := parser.ParseFile(fileSet, filename, data, parser.ParseComments)
// If the file is not parsable let's add a syntax error and move on.
if err != nil {
p.result = append(p.result, Result{
FileName: filename,
LineNumber: 0,
Reason: fmt.Sprintf("invalid syntax, file cannot be linted (%s)", err.Error()),
})
return
}
p.fileSet = fileSet
p.file = file
for _, d := range p.file.Decls {
switch v := d.(type) {
case *ast.FuncDecl:
p.parseBlockBody(v.Name, v.Body)
case *ast.GenDecl:
// `go fmt` will handle proper spacing for GenDecl such as imports,
// constants etc.
default:
p.addWarning(warnTypeNotImplement, d.Pos(), v)
}
}
}
// parseBlockBody will parse any kind of block statements such as switch cases
// and if statements. A list of Result is returned.
func (p *Processor) parseBlockBody(ident *ast.Ident, block *ast.BlockStmt) {
// Nothing to do if there's no value.
if reflect.ValueOf(block).IsNil() {
return
}
// Start by finding leading and trailing whitespaces.
p.findLeadingAndTrailingWhitespaces(ident, block, nil)
// Parse the block body contents.
p.parseBlockStatements(block.List)
}
// parseBlockStatements will parse all the statements found in the body of a
// node. A list of Result is returned.
// nolint: gocognit
func (p *Processor) parseBlockStatements(statements []ast.Stmt) {
for i, stmt := range statements {
// Start by checking if this statement is another block (other than if,
// for and range). This could be assignment to a function, defer or go
// call with an inline function or similar. If this is found we start by
// parsing this body block before moving on.
for _, stmtBlocks := range p.findBlockStmt(stmt) {
p.parseBlockBody(nil, stmtBlocks)
}
firstBodyStatement := p.firstBodyStatement(i, statements)
// First statement, nothing to do.
if i == 0 {
continue
}
previousStatement := statements[i-1]
previousStatementIsMultiline := p.nodeStart(previousStatement) != p.nodeEnd(previousStatement)
cuddledWithLastStmt := p.nodeEnd(previousStatement) == p.nodeStart(stmt)-1
// If we're not cuddled and we don't need to enforce err-check cuddling
// then we can bail out here
if !cuddledWithLastStmt && !p.config.ForceCuddleErrCheckAndAssign {
continue
}
// We don't force error cuddling for multilines. (#86)
if p.config.ForceCuddleErrCheckAndAssign && previousStatementIsMultiline && !cuddledWithLastStmt {
continue
}
// Extract assigned variables on the line above
// which is the only thing we allow cuddling with. If the assignment is
// made over multiple lines we should not allow cuddling.
var assignedOnLineAbove []string
// We want to keep track of what was called on the line above to support
// special handling of things such as mutexes.
var calledOnLineAbove []string
// Check if the previous statement spans over multiple lines.
var cuddledWithMultiLineAssignment = cuddledWithLastStmt && p.nodeStart(previousStatement) != p.nodeStart(stmt)-1
// Ensure previous line is not a multi line assignment and if not get
// rightAndLeftHandSide assigned variables.
if !cuddledWithMultiLineAssignment {
assignedOnLineAbove = p.findLHS(previousStatement)
calledOnLineAbove = p.findRHS(previousStatement)
}
// If previous assignment is multi line and we allow it, fetch
// assignments (but only assignments).
if cuddledWithMultiLineAssignment && p.config.AllowMultiLineAssignCuddle {
if _, ok := previousStatement.(*ast.AssignStmt); ok {
assignedOnLineAbove = p.findLHS(previousStatement)
}
}
// We could potentially have a block which require us to check the first
// argument before ruling out an allowed cuddle.
var calledOrAssignedFirstInBlock []string
if firstBodyStatement != nil {
calledOrAssignedFirstInBlock = append(p.findLHS(firstBodyStatement), p.findRHS(firstBodyStatement)...)
}
var (
leftHandSide = p.findLHS(stmt)
rightHandSide = p.findRHS(stmt)
rightAndLeftHandSide = append(leftHandSide, rightHandSide...)
calledOrAssignedOnLineAbove = append(calledOnLineAbove, assignedOnLineAbove...)
)
// If we called some kind of lock on the line above we allow cuddling
// anything.
if atLeastOneInListsMatch(calledOnLineAbove, p.config.AllowCuddleWithCalls) {
continue
}
// If we call some kind of unlock on this line we allow cuddling with
// anything.
if atLeastOneInListsMatch(rightHandSide, p.config.AllowCuddleWithRHS) {
continue
}
moreThanOneStatementAbove := func() bool {
if i < 2 {
return false
}
statementBeforePreviousStatement := statements[i-2]
return p.nodeStart(previousStatement)-1 == p.nodeEnd(statementBeforePreviousStatement)
}
isLastStatementInBlockOfOnlyTwoLines := func() bool {
// If we're the last statement, check if there's no more than two
// lines from the starting statement and the end of this statement.
// This is to support short return functions such as:
// func (t *Typ) X() {
// t.X = true
// return t
// }
// nolint: gocritic
if i == len(statements)-1 && i == 1 {
if p.nodeEnd(stmt)-p.nodeStart(previousStatement) <= 2 {
return true
}
}
return false
}
// If it's a short declaration we should not cuddle with anything else
// if ForceExclusiveShortDeclarations is set on; either this or the
// previous statement could be the short decl, so we'll find out which
// it was and use *that* statement's position
if p.config.ForceExclusiveShortDeclarations && cuddledWithLastStmt {
if p.isShortDecl(stmt) && !p.isShortDecl(previousStatement) {
p.addError(stmt.Pos(), reasonShortDeclNotExclusive)
} else if p.isShortDecl(previousStatement) && !p.isShortDecl(stmt) {
p.addError(previousStatement.Pos(), reasonShortDeclNotExclusive)
}
}
// If it's not an if statement and we're not cuddled move on. The only
// reason we need to keep going for if statements is to check if we
// should be cuddled with an error check.
if _, ok := stmt.(*ast.IfStmt); !ok {
if !cuddledWithLastStmt {
continue
}
}
switch t := stmt.(type) {
case *ast.IfStmt:
checkingErrInitializedInline := func() bool {
if t.Init == nil {
return false
}
// Variables were initialized inline in the if statement
// Let's make sure it's the err just to be safe
return atLeastOneInListsMatch(p.findLHS(t.Init), p.config.ErrorVariableNames)
}
if !cuddledWithLastStmt {
checkingErr := atLeastOneInListsMatch(rightAndLeftHandSide, p.config.ErrorVariableNames)
if checkingErr {
// We only want to enforce cuddling error checks if the
// error was assigned on the line above. See
// https://github.com/bombsimon/wsl/issues/78.
// This is needed since `assignedOnLineAbove` is not
// actually just assignments but everything from LHS in the
// previous statement. This means that if previous line was
// `if err ...`, `err` will now be in the list
// `assignedOnLineAbove`.
if _, ok := previousStatement.(*ast.AssignStmt); !ok {
continue
}
if checkingErrInitializedInline() {
continue
}
if atLeastOneInListsMatch(assignedOnLineAbove, p.config.ErrorVariableNames) {
p.addError(t.Pos(), reasonMustCuddleErrCheck)
}
}
continue
}
if len(assignedOnLineAbove) == 0 {
p.addError(t.Pos(), reasonOnlyCuddleIfWithAssign)
continue
}
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonOnlyOneCuddle)
continue
}
if atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
continue
}
if atLeastOneInListsMatch(assignedOnLineAbove, calledOrAssignedFirstInBlock) {
continue
}
p.addError(t.Pos(), reasonOnlyCuddleWithUsedAssign)
case *ast.ReturnStmt:
if isLastStatementInBlockOfOnlyTwoLines() {
continue
}
p.addError(t.Pos(), reasonOnlyCuddle2LineReturn)
case *ast.BranchStmt:
if isLastStatementInBlockOfOnlyTwoLines() {
continue
}
p.addError(t.Pos(), reasonMultiLineBranchCuddle)
case *ast.AssignStmt:
// append is usually an assignment but should not be allowed to be
// cuddled with anything not appended.
if len(rightHandSide) > 0 && rightHandSide[len(rightHandSide)-1] == "append" {
if p.config.StrictAppend {
if !atLeastOneInListsMatch(calledOrAssignedOnLineAbove, rightHandSide) {
p.addError(t.Pos(), reasonAppendCuddledWithoutUse)
}
}
continue
}
if _, ok := previousStatement.(*ast.AssignStmt); ok {
continue
}
if p.config.AllowAssignAndAnythingCuddle {
continue
}
if _, ok := previousStatement.(*ast.DeclStmt); ok && p.config.AllowCuddleDeclaration {
continue
}
// If the assignment is from a type or variable called on the line
// above we can allow it by setting AllowAssignAndCallCuddle to
// true.
// Example (x is used):
// x.function()
// a.Field = x.anotherFunction()
if p.config.AllowAssignAndCallCuddle {
if atLeastOneInListsMatch(calledOrAssignedOnLineAbove, rightAndLeftHandSide) {
continue
}
}
p.addError(t.Pos(), reasonAssignsCuddleAssign)
case *ast.DeclStmt:
if !p.config.AllowCuddleDeclaration {
p.addError(t.Pos(), reasonNeverCuddleDeclare)
}
case *ast.ExprStmt:
switch previousStatement.(type) {
case *ast.DeclStmt, *ast.ReturnStmt:
if p.config.AllowAssignAndCallCuddle && p.config.AllowCuddleDeclaration {
continue
}
p.addError(t.Pos(), reasonExpressionCuddledWithDeclOrRet)
case *ast.IfStmt, *ast.RangeStmt, *ast.SwitchStmt:
p.addError(t.Pos(), reasonExpressionCuddledWithBlock)
}
// If the expression is called on a type or variable used or
// assigned on the line we can allow it by setting
// AllowAssignAndCallCuddle to true.
// Example of allowed cuddled (x is used):
// a.Field = x.func()
// x.function()
if p.config.AllowAssignAndCallCuddle {
if atLeastOneInListsMatch(calledOrAssignedOnLineAbove, rightAndLeftHandSide) {
continue
}
}
// If we assigned variables on the line above but didn't use them in
// this expression there should probably be a newline between them.
if len(assignedOnLineAbove) > 0 && !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
p.addError(t.Pos(), reasonExprCuddlingNonAssignedVar)
}
case *ast.RangeStmt:
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonOneCuddleBeforeRange)
continue
}
if !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
if !atLeastOneInListsMatch(assignedOnLineAbove, calledOrAssignedFirstInBlock) {
p.addError(t.Pos(), reasonRangeCuddledWithoutUse)
}
}
case *ast.DeferStmt:
if _, ok := previousStatement.(*ast.DeferStmt); ok {
// We may cuddle multiple defers to group logic.
continue
}
// Special treatment of deferring body closes after error checking
// according to best practices. See
// https://github.com/bombsimon/wsl/issues/31 which links to
// discussion about error handling after HTTP requests. This is hard
// coded and very specific but for now this is to be seen as a
// special case. What this does is that it *only* allows a defer
// statement with `Close` on the right hand side to be cuddled with
// an if-statement to support this:
// resp, err := client.Do(req)
// if err != nil {
// return err
// }
// defer resp.Body.Close()
if _, ok := previousStatement.(*ast.IfStmt); ok {
if atLeastOneInListsMatch(rightHandSide, []string{"Close"}) {
continue
}
}
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonOneCuddleBeforeDefer)
continue
}
// Be extra nice with RHS, it's common to use this for locks:
// m.Lock()
// defer m.Unlock()
previousRHS := p.findRHS(previousStatement)
if atLeastOneInListsMatch(rightHandSide, previousRHS) {
continue
}
// Allow use to cuddled defer func literals with usages on line
// abouve. Example:
// b := getB()
// defer func() {
// makesSenseToUse(b)
// }()
if c, ok := t.Call.Fun.(*ast.FuncLit); ok {
funcLitFirstStmt := append(p.findLHS(c.Body), p.findRHS(c.Body)...)
if atLeastOneInListsMatch(assignedOnLineAbove, funcLitFirstStmt) {
continue
}
}
if atLeastOneInListsMatch(assignedOnLineAbove, calledOrAssignedFirstInBlock) {
continue
}
if !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
p.addError(t.Pos(), reasonDeferCuddledWithOtherVar)
}
case *ast.ForStmt:
if len(rightAndLeftHandSide) == 0 {
p.addError(t.Pos(), reasonForWithoutCondition)
continue
}
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonForWithMoreThanOneCuddle)
continue
}
// The same rule applies for ranges as for if statements, see
// comments regarding variable usages on the line before or as the
// first line in the block for details.
if !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
if !atLeastOneInListsMatch(assignedOnLineAbove, calledOrAssignedFirstInBlock) {
p.addError(t.Pos(), reasonForCuddledAssignWithoutUse)
}
}
case *ast.GoStmt:
if _, ok := previousStatement.(*ast.GoStmt); ok {
continue
}
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonOneCuddleBeforeGo)
continue
}
if !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
p.addError(t.Pos(), reasonGoFuncWithoutAssign)
}
case *ast.SwitchStmt:
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonSwitchManyCuddles)
continue
}
if !atLeastOneInListsMatch(rightAndLeftHandSide, assignedOnLineAbove) {
if len(rightAndLeftHandSide) == 0 {
p.addError(t.Pos(), reasonAnonSwitchCuddled)
} else {
p.addError(t.Pos(), reasonSwitchCuddledWithoutUse)
}
}
case *ast.TypeSwitchStmt:
if moreThanOneStatementAbove() {
p.addError(t.Pos(), reasonTypeSwitchTooCuddled)
continue
}
// Allowed to type assert on variable assigned on line above.
if !atLeastOneInListsMatch(rightHandSide, assignedOnLineAbove) {
// Allow type assertion on variables used in the first case
// immediately.
if !atLeastOneInListsMatch(assignedOnLineAbove, calledOrAssignedFirstInBlock) {
p.addError(t.Pos(), reasonTypeSwitchCuddledWithoutUse)
}
}
case *ast.CaseClause, *ast.CommClause:
// Case clauses will be checked by not allowing leading ot trailing
// whitespaces within the block. There's nothing in the case itself
// that may be cuddled.
default:
p.addWarning(warnStmtNotImplemented, t.Pos(), t)
}
}
}
// firstBodyStatement returns the first statement inside a body block. This is
// because variables may be cuddled with conditions or statements if it's used
// directly as the first argument inside a body.
// The body will then be parsed as a *ast.BlockStmt (regular block) or as a list
// of []ast.Stmt (case block).
func (p *Processor) firstBodyStatement(i int, allStmt []ast.Stmt) ast.Node {
stmt := allStmt[i]
// Start by checking if the statement has a body (probably if-statement,
// a range, switch case or similar. Whenever a body is found we start by
// parsing it before moving on in the AST.
statementBody := reflect.Indirect(reflect.ValueOf(stmt)).FieldByName("Body")
// Some cases allow cuddling depending on the first statement in a body
// of a block or case. If possible extract the first statement.
var firstBodyStatement ast.Node
if !statementBody.IsValid() {
return firstBodyStatement
}
switch statementBodyContent := statementBody.Interface().(type) {
case *ast.BlockStmt:
if len(statementBodyContent.List) > 0 {
firstBodyStatement = statementBodyContent.List[0]
// If the first body statement is a *ast.CaseClause we're
// actually interested in the **next** body to know what's
// inside the first case.
if x, ok := firstBodyStatement.(*ast.CaseClause); ok {
if len(x.Body) > 0 {
firstBodyStatement = x.Body[0]
}
}
}
p.parseBlockBody(nil, statementBodyContent)
case []ast.Stmt:
// The Body field for an *ast.CaseClause or *ast.CommClause is of type
// []ast.Stmt. We must check leading and trailing whitespaces and then
// pass the statements to parseBlockStatements to parse it's content.
var nextStatement ast.Node
// Check if there's more statements (potential cases) after the
// current one.
if len(allStmt)-1 > i {
nextStatement = allStmt[i+1]
}
p.findLeadingAndTrailingWhitespaces(nil, stmt, nextStatement)
p.parseBlockStatements(statementBodyContent)
default:
p.addWarning(
warnBodyStmtTypeNotImplemented,
stmt.Pos(), statementBodyContent,
)
}
return firstBodyStatement
}
func (p *Processor) findLHS(node ast.Node) []string {
var lhs []string
if node == nil {
return lhs
}
switch t := node.(type) {
case *ast.BasicLit, *ast.FuncLit, *ast.SelectStmt,
*ast.LabeledStmt, *ast.ForStmt, *ast.SwitchStmt,
*ast.ReturnStmt, *ast.GoStmt, *ast.CaseClause,
*ast.CommClause, *ast.CallExpr, *ast.UnaryExpr,
*ast.BranchStmt, *ast.TypeSpec, *ast.ChanType,
*ast.DeferStmt, *ast.TypeAssertExpr, *ast.RangeStmt:
// Nothing to add to LHS
case *ast.IncDecStmt:
return p.findLHS(t.X)
case *ast.Ident:
return []string{t.Name}
case *ast.AssignStmt:
for _, v := range t.Lhs {
lhs = append(lhs, p.findLHS(v)...)
}
case *ast.GenDecl:
for _, v := range t.Specs {
lhs = append(lhs, p.findLHS(v)...)
}
case *ast.ValueSpec:
for _, v := range t.Names {
lhs = append(lhs, p.findLHS(v)...)
}
case *ast.BlockStmt:
for _, v := range t.List {
lhs = append(lhs, p.findLHS(v)...)
}
case *ast.BinaryExpr:
return append(
p.findLHS(t.X),
p.findLHS(t.Y)...,
)
case *ast.DeclStmt:
return p.findLHS(t.Decl)
case *ast.IfStmt:
return p.findLHS(t.Cond)
case *ast.TypeSwitchStmt:
return p.findLHS(t.Assign)
case *ast.SendStmt:
return p.findLHS(t.Chan)
default:
if x, ok := maybeX(t); ok {
return p.findLHS(x)
}
p.addWarning(warnUnknownLHS, t.Pos(), t)
}
return lhs
}
func (p *Processor) findRHS(node ast.Node) []string {
var rhs []string
if node == nil {
return rhs
}
switch t := node.(type) {
case *ast.BasicLit, *ast.SelectStmt, *ast.ChanType,
*ast.LabeledStmt, *ast.DeclStmt, *ast.BranchStmt,
*ast.TypeSpec, *ast.ArrayType, *ast.CaseClause,
*ast.CommClause, *ast.KeyValueExpr, *ast.MapType,
*ast.FuncLit:
// Nothing to add to RHS
case *ast.Ident:
return []string{t.Name}
case *ast.SelectorExpr:
// TODO: Should this be RHS?
// t.X is needed for defer as of now and t.Sel needed for special
// functions such as Lock()
rhs = p.findRHS(t.X)
rhs = append(rhs, p.findRHS(t.Sel)...)
case *ast.AssignStmt:
for _, v := range t.Rhs {
rhs = append(rhs, p.findRHS(v)...)
}
case *ast.CallExpr:
for _, v := range t.Args {
rhs = append(rhs, p.findRHS(v)...)
}
rhs = append(rhs, p.findRHS(t.Fun)...)
case *ast.CompositeLit:
for _, v := range t.Elts {
rhs = append(rhs, p.findRHS(v)...)
}
case *ast.IfStmt:
rhs = append(rhs, p.findRHS(t.Cond)...)
rhs = append(rhs, p.findRHS(t.Init)...)
case *ast.BinaryExpr:
return append(
p.findRHS(t.X),
p.findRHS(t.Y)...,
)
case *ast.TypeSwitchStmt:
return p.findRHS(t.Assign)
case *ast.ReturnStmt:
for _, v := range t.Results {
rhs = append(rhs, p.findRHS(v)...)
}
case *ast.BlockStmt:
for _, v := range t.List {
rhs = append(rhs, p.findRHS(v)...)
}
case *ast.SwitchStmt:
return p.findRHS(t.Tag)
case *ast.GoStmt:
return p.findRHS(t.Call)
case *ast.ForStmt:
return p.findRHS(t.Cond)
case *ast.DeferStmt:
return p.findRHS(t.Call)
case *ast.SendStmt:
return p.findLHS(t.Value)
case *ast.IndexExpr:
rhs = append(rhs, p.findRHS(t.Index)...)
rhs = append(rhs, p.findRHS(t.X)...)
case *ast.SliceExpr:
rhs = append(rhs, p.findRHS(t.X)...)
rhs = append(rhs, p.findRHS(t.Low)...)
rhs = append(rhs, p.findRHS(t.High)...)
default:
if x, ok := maybeX(t); ok {
return p.findRHS(x)
}
p.addWarning(warnUnknownRHS, t.Pos(), t)
}
return rhs
}
func (p *Processor) isShortDecl(node ast.Node) bool {
if t, ok := node.(*ast.AssignStmt); ok {
return t.Tok == token.DEFINE
}
return false
}
func (p *Processor) findBlockStmt(node ast.Node) []*ast.BlockStmt {
var blocks []*ast.BlockStmt
switch t := node.(type) {
case *ast.AssignStmt:
for _, x := range t.Rhs {
blocks = append(blocks, p.findBlockStmt(x)...)
}
case *ast.CallExpr:
blocks = append(blocks, p.findBlockStmt(t.Fun)...)
case *ast.FuncLit:
blocks = append(blocks, t.Body)
case *ast.ExprStmt:
blocks = append(blocks, p.findBlockStmt(t.X)...)
case *ast.ReturnStmt:
for _, x := range t.Results {
blocks = append(blocks, p.findBlockStmt(x)...)
}
case *ast.DeferStmt:
blocks = append(blocks, p.findBlockStmt(t.Call)...)
case *ast.GoStmt:
blocks = append(blocks, p.findBlockStmt(t.Call)...)
}
return blocks
}
// maybeX extracts the X field from an AST node and returns it with a true value
// if it exists. If the node doesn't have an X field nil and false is returned.
// Known fields with X that are handled:
// IndexExpr, ExprStmt, SelectorExpr, StarExpr, ParentExpr, TypeAssertExpr,
// RangeStmt, UnaryExpr, ParenExpr, SliceExpr, IncDecStmt.
func maybeX(node interface{}) (ast.Node, bool) {
maybeHasX := reflect.Indirect(reflect.ValueOf(node)).FieldByName("X")
if !maybeHasX.IsValid() {
return nil, false
}
n, ok := maybeHasX.Interface().(ast.Node)
if !ok {
return nil, false
}
return n, true
}
func atLeastOneInListsMatch(listOne, listTwo []string) bool {
sliceToMap := func(s []string) map[string]struct{} {
m := map[string]struct{}{}
for _, v := range s {
m[v] = struct{}{}
}
return m
}
m1 := sliceToMap(listOne)
m2 := sliceToMap(listTwo)
for k1 := range m1 {
if _, ok := m2[k1]; ok {
return true
}
}
for k2 := range m2 {
if _, ok := m1[k2]; ok {
return true
}
}
return false
}
// findLeadingAndTrailingWhitespaces will find leading and trailing whitespaces
// in a node. The method takes comments in consideration which will make the
// parser more gentle.
// nolint: gocognit
func (p *Processor) findLeadingAndTrailingWhitespaces(ident *ast.Ident, stmt, nextStatement ast.Node) {
var (
allowedLinesBeforeFirstStatement = 1
commentMap = ast.NewCommentMap(p.fileSet, stmt, p.file.Comments)
blockStatements []ast.Stmt
blockStartLine int
blockEndLine int
blockStartPos token.Pos
blockEndPos token.Pos
)
// Depending on the block type, get the statements in the block and where
// the block starts (and ends).
switch t := stmt.(type) {
case *ast.BlockStmt:
blockStatements = t.List
blockStartPos = t.Lbrace
blockEndPos = t.Rbrace
case *ast.CaseClause:
blockStatements = t.Body
blockStartPos = t.Colon
case *ast.CommClause:
blockStatements = t.Body
blockStartPos = t.Colon
default:
p.addWarning(warnWSNodeTypeNotImplemented, stmt.Pos(), stmt)
return
}
// Ignore empty blocks even if they have newlines or just comments.
if len(blockStatements) < 1 {
return
}
blockStartLine = p.fileSet.Position(blockStartPos).Line
blockEndLine = p.fileSet.Position(blockEndPos).Line
// No whitespace possible if LBrace and RBrace is on the same line.
if blockStartLine == blockEndLine {
return
}
var (
firstStatement = blockStatements[0]
lastStatement = blockStatements[len(blockStatements)-1]
seenCommentGroups = 0
)
// Get the comment related to the first statement, we do allow commends in
// the beginning of a block before the first statement.
if c, ok := commentMap[firstStatement]; ok {
for _, commentGroup := range c {
// If the comment group is on the same line as the block start
// (LBrace) we should not consider it.
if p.nodeStart(commentGroup) == blockStartLine {
continue
}
// We only care about comments before our statement from the comment
// map. As soon as we hit comments after our statement let's break
// out!
if commentGroup.Pos() > firstStatement.Pos() {
break
}
// We store number of seen comment groups because we allow multiple
// groups with a newline between them; but if the first one has WS
// before it, we're not going to count it to force an error.
if p.config.AllowSeparatedLeadingComment {
cg := p.fileSet.Position(commentGroup.Pos()).Line
if seenCommentGroups > 0 || cg == blockStartLine+1 {
seenCommentGroups++
}
} else {
seenCommentGroups++
}
// Support both /* multiline */ and //single line comments
for _, c := range commentGroup.List {
allowedLinesBeforeFirstStatement += len(strings.Split(c.Text, "\n"))
}
}
}
// If we allow separated comments, allow for a space after each group
if p.config.AllowSeparatedLeadingComment {
if seenCommentGroups > 1 {
allowedLinesBeforeFirstStatement += seenCommentGroups - 1
} else if seenCommentGroups == 1 {
allowedLinesBeforeFirstStatement += 1
}
}
// And now if the first statement is passed the number of allowed lines,
// then we had extra WS, possibly before the first comment group.
if p.nodeStart(firstStatement) > blockStartLine+allowedLinesBeforeFirstStatement {
p.addError(
blockStartPos,
reasonBlockStartsWithWS,
)
}
// If the blockEndLine is not 0 we're a regular block (not case).
if blockEndLine != 0 {
if p.config.AllowTrailingComment {
if lastComment, ok := commentMap[lastStatement]; ok {
var (
lastCommentGroup = lastComment[len(lastComment)-1]
lastCommentLine = lastCommentGroup.List[len(lastCommentGroup.List)-1]
countNewlines = 0
)
countNewlines += len(strings.Split(lastCommentLine.Text, "\n"))
// No newlines between trailing comments and end of block.
if p.nodeStart(lastCommentLine)+countNewlines != blockEndLine-1 {
return
}
}
}
if p.nodeEnd(lastStatement) != blockEndLine-1 && !isExampleFunc(ident) {
p.addError(blockEndPos, reasonBlockEndsWithWS)
}
return
}
// If we don't have any nextStatement the trailing whitespace will be
// handled when parsing the switch. If we do have a next statement we can
// see where it starts by getting it's colon position. We set the end of the
// current case to the position of the next case.
switch n := nextStatement.(type) {
case *ast.CaseClause:
blockEndPos = n.Case
case *ast.CommClause:
blockEndPos = n.Case
default:
// No more cases
return
}
blockEndLine = p.fileSet.Position(blockEndPos).Line - 1
var (
blockSize = blockEndLine - blockStartLine
caseTrailingCommentLines int
)
// TODO: I don't know what comments are bound to in cases. For regular
// blocks the last comment is bound to the last statement but for cases
// they are bound to the case clause expression. This will however get us all
// comments and depending on the case expression this gets tricky.
//
// To handle this I get the comment map from the current statement (the case
// itself) and iterate through all groups and all comment within all groups.
// I then get the comments after the last statement but before the next case
// clause and just map each line of comment that way.
for _, commentGroups := range commentMap {
for _, commentGroup := range commentGroups {
for _, comment := range commentGroup.List {
commentLine := p.fileSet.Position(comment.Pos()).Line
// Ignore comments before the last statement.
if commentLine <= p.nodeStart(lastStatement) {
continue
}
// Ignore comments after the end of this case.
if commentLine > blockEndLine {
continue
}
// This allows /* multiline */ comments with newlines as well
// as regular (//) ones
caseTrailingCommentLines += len(strings.Split(comment.Text, "\n"))
}
}
}
hasTrailingWhitespace := p.nodeEnd(lastStatement)+caseTrailingCommentLines != blockEndLine
// If the force trailing limit is configured and we don't end with a newline.
if p.config.ForceCaseTrailingWhitespaceLimit > 0 && !hasTrailingWhitespace {
// Check if the block size is too big to miss the newline.
if blockSize >= p.config.ForceCaseTrailingWhitespaceLimit {
p.addError(lastStatement.Pos(), reasonCaseBlockTooCuddly)
}
}
}
func isExampleFunc(ident *ast.Ident) bool {
return ident != nil && strings.HasPrefix(ident.Name, "Example")
}
func (p *Processor) nodeStart(node ast.Node) int {
return p.fileSet.Position(node.Pos()).Line
}
func (p *Processor) nodeEnd(node ast.Node) int {
var line = p.fileSet.Position(node.End()).Line
if isEmptyLabeledStmt(node) {
return p.fileSet.Position(node.Pos()).Line
}
return line
}
func isEmptyLabeledStmt(node ast.Node) bool {
v, ok := node.(*ast.LabeledStmt)
if !ok {
return false
}
_, empty := v.Stmt.(*ast.EmptyStmt)
return empty
}
// Add an error for the file and line number for the current token.Pos with the
// given reason.
func (p *Processor) addError(pos token.Pos, reason string) {
position := p.fileSet.Position(pos)
p.result = append(p.result, Result{
FileName: position.Filename,
LineNumber: position.Line,
Position: position,
Reason: reason,
})
}
func (p *Processor) addWarning(w string, pos token.Pos, t interface{}) {
position := p.fileSet.Position(pos)
p.warnings = append(p.warnings,
fmt.Sprintf("%s:%d: %s (%T)", position.Filename, position.Line, w, t),
)
}