mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-11-23 18:21:04 +00:00
423 lines
12 KiB
C++
423 lines
12 KiB
C++
/*
|
|
* GStreamer gstreamer-onnxclient
|
|
* Copyright (C) 2021 Collabora Ltd
|
|
*
|
|
* gstonnxclient.cpp
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "gstonnxclient.h"
|
|
#include <providers/cpu/cpu_provider_factory.h>
|
|
#ifdef GST_ML_ONNX_RUNTIME_HAVE_CUDA
|
|
#include <providers/cuda/cuda_provider_factory.h>
|
|
#endif
|
|
#include <exception>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
|
|
namespace GstOnnxNamespace
|
|
{
|
|
template < typename T >
|
|
std::ostream & operator<< (std::ostream & os, const std::vector < T > &v)
|
|
{
|
|
os << "[";
|
|
for (size_t i = 0; i < v.size (); ++i)
|
|
{
|
|
os << v[i];
|
|
if (i != v.size () - 1)
|
|
{
|
|
os << ", ";
|
|
}
|
|
}
|
|
os << "]";
|
|
|
|
return os;
|
|
}
|
|
|
|
GstMlOutputNodeInfo::GstMlOutputNodeInfo (void):index
|
|
(GST_ML_NODE_INDEX_DISABLED),
|
|
type (ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT)
|
|
{
|
|
}
|
|
|
|
GstOnnxClient::GstOnnxClient ():session (nullptr),
|
|
width (0),
|
|
height (0),
|
|
channels (0),
|
|
dest (nullptr),
|
|
m_provider (GST_ONNX_EXECUTION_PROVIDER_CPU),
|
|
inputImageFormat (GST_ML_MODEL_INPUT_IMAGE_FORMAT_HWC),
|
|
fixedInputImageSize (true)
|
|
{
|
|
for (size_t i = 0; i < GST_ML_OUTPUT_NODE_NUMBER_OF; ++i)
|
|
outputNodeIndexToFunction[i] = (GstMlOutputNodeFunction) i;
|
|
}
|
|
|
|
GstOnnxClient::~GstOnnxClient ()
|
|
{
|
|
delete session;
|
|
delete[]dest;
|
|
}
|
|
|
|
Ort::Env & GstOnnxClient::getEnv (void)
|
|
{
|
|
static Ort::Env env (OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
|
|
"GstOnnxNamespace");
|
|
|
|
return env;
|
|
}
|
|
|
|
int32_t GstOnnxClient::getWidth (void)
|
|
{
|
|
return width;
|
|
}
|
|
|
|
int32_t GstOnnxClient::getHeight (void)
|
|
{
|
|
return height;
|
|
}
|
|
|
|
bool GstOnnxClient::isFixedInputImageSize (void)
|
|
{
|
|
return fixedInputImageSize;
|
|
}
|
|
|
|
std::string GstOnnxClient::getOutputNodeName (GstMlOutputNodeFunction nodeType)
|
|
{
|
|
switch (nodeType) {
|
|
case GST_ML_OUTPUT_NODE_FUNCTION_DETECTION:
|
|
return "detection";
|
|
break;
|
|
case GST_ML_OUTPUT_NODE_FUNCTION_BOUNDING_BOX:
|
|
return "bounding box";
|
|
break;
|
|
case GST_ML_OUTPUT_NODE_FUNCTION_SCORE:
|
|
return "score";
|
|
break;
|
|
case GST_ML_OUTPUT_NODE_FUNCTION_CLASS:
|
|
return "label";
|
|
break;
|
|
};
|
|
|
|
return "";
|
|
}
|
|
|
|
void GstOnnxClient::setInputImageFormat (GstMlModelInputImageFormat format)
|
|
{
|
|
inputImageFormat = format;
|
|
}
|
|
|
|
GstMlModelInputImageFormat GstOnnxClient::getInputImageFormat (void)
|
|
{
|
|
return inputImageFormat;
|
|
}
|
|
|
|
std::vector < const char *>GstOnnxClient::getOutputNodeNames (void)
|
|
{
|
|
return outputNames;
|
|
}
|
|
|
|
void GstOnnxClient::setOutputNodeIndex (GstMlOutputNodeFunction node,
|
|
gint index)
|
|
{
|
|
g_assert (index < GST_ML_OUTPUT_NODE_NUMBER_OF);
|
|
outputNodeInfo[node].index = index;
|
|
if (index != GST_ML_NODE_INDEX_DISABLED)
|
|
outputNodeIndexToFunction[index] = node;
|
|
}
|
|
|
|
gint GstOnnxClient::getOutputNodeIndex (GstMlOutputNodeFunction node)
|
|
{
|
|
return outputNodeInfo[node].index;
|
|
}
|
|
|
|
void GstOnnxClient::setOutputNodeType (GstMlOutputNodeFunction node,
|
|
ONNXTensorElementDataType type)
|
|
{
|
|
outputNodeInfo[node].type = type;
|
|
}
|
|
|
|
ONNXTensorElementDataType
|
|
GstOnnxClient::getOutputNodeType (GstMlOutputNodeFunction node)
|
|
{
|
|
return outputNodeInfo[node].type;
|
|
}
|
|
|
|
bool GstOnnxClient::hasSession (void)
|
|
{
|
|
return session != nullptr;
|
|
}
|
|
|
|
bool GstOnnxClient::createSession (std::string modelFile,
|
|
GstOnnxOptimizationLevel optim, GstOnnxExecutionProvider provider)
|
|
{
|
|
if (session)
|
|
return true;
|
|
|
|
GraphOptimizationLevel onnx_optim;
|
|
switch (optim) {
|
|
case GST_ONNX_OPTIMIZATION_LEVEL_DISABLE_ALL:
|
|
onnx_optim = GraphOptimizationLevel::ORT_DISABLE_ALL;
|
|
break;
|
|
case GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_BASIC:
|
|
onnx_optim = GraphOptimizationLevel::ORT_ENABLE_BASIC;
|
|
break;
|
|
case GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED:
|
|
onnx_optim = GraphOptimizationLevel::ORT_ENABLE_EXTENDED;
|
|
break;
|
|
case GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_ALL:
|
|
onnx_optim = GraphOptimizationLevel::ORT_ENABLE_ALL;
|
|
break;
|
|
default:
|
|
onnx_optim = GraphOptimizationLevel::ORT_ENABLE_EXTENDED;
|
|
break;
|
|
};
|
|
|
|
Ort::SessionOptions sessionOptions;
|
|
// for debugging
|
|
//sessionOptions.SetIntraOpNumThreads (1);
|
|
sessionOptions.SetGraphOptimizationLevel (onnx_optim);
|
|
m_provider = provider;
|
|
switch (m_provider) {
|
|
case GST_ONNX_EXECUTION_PROVIDER_CUDA:
|
|
#ifdef GST_ML_ONNX_RUNTIME_HAVE_CUDA
|
|
Ort::ThrowOnError (OrtSessionOptionsAppendExecutionProvider_CUDA
|
|
(sessionOptions, 0));
|
|
#else
|
|
return false;
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
|
|
};
|
|
session = new Ort::Session (getEnv (), modelFile.c_str (), sessionOptions);
|
|
auto inputTypeInfo = session->GetInputTypeInfo (0);
|
|
std::vector < int64_t > inputDims =
|
|
inputTypeInfo.GetTensorTypeAndShapeInfo ().GetShape ();
|
|
if (inputImageFormat == GST_ML_MODEL_INPUT_IMAGE_FORMAT_HWC) {
|
|
height = inputDims[1];
|
|
width = inputDims[2];
|
|
channels = inputDims[3];
|
|
} else {
|
|
channels = inputDims[1];
|
|
height = inputDims[2];
|
|
width = inputDims[3];
|
|
}
|
|
|
|
fixedInputImageSize = width > 0 && height > 0;
|
|
GST_DEBUG ("Number of Output Nodes: %d", (gint) session->GetOutputCount ());
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
GST_DEBUG ("Input name: %s", session->GetInputName (0, allocator));
|
|
|
|
for (size_t i = 0; i < session->GetOutputCount (); ++i) {
|
|
auto output_name = session->GetOutputName (i, allocator);
|
|
outputNames.push_back (output_name);
|
|
auto type_info = session->GetOutputTypeInfo (i);
|
|
auto tensor_info = type_info.GetTensorTypeAndShapeInfo ();
|
|
|
|
if (i < GST_ML_OUTPUT_NODE_NUMBER_OF) {
|
|
auto function = outputNodeIndexToFunction[i];
|
|
outputNodeInfo[function].type = tensor_info.GetElementType ();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::vector < GstMlBoundingBox > GstOnnxClient::run (uint8_t * img_data,
|
|
GstVideoMeta * vmeta, std::string labelPath, float scoreThreshold)
|
|
{
|
|
auto type = getOutputNodeType (GST_ML_OUTPUT_NODE_FUNCTION_CLASS);
|
|
return (type ==
|
|
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) ?
|
|
doRun < float >(img_data, vmeta, labelPath, scoreThreshold)
|
|
: doRun < int >(img_data, vmeta, labelPath, scoreThreshold);
|
|
}
|
|
|
|
void GstOnnxClient::parseDimensions (GstVideoMeta * vmeta)
|
|
{
|
|
int32_t newWidth = fixedInputImageSize ? width : vmeta->width;
|
|
int32_t newHeight = fixedInputImageSize ? height : vmeta->height;
|
|
|
|
if (!dest || width * height < newWidth * newHeight) {
|
|
delete[] dest;
|
|
dest = new uint8_t[newWidth * newHeight * channels];
|
|
}
|
|
width = newWidth;
|
|
height = newHeight;
|
|
}
|
|
|
|
template < typename T > std::vector < GstMlBoundingBox >
|
|
GstOnnxClient::doRun (uint8_t * img_data, GstVideoMeta * vmeta,
|
|
std::string labelPath, float scoreThreshold)
|
|
{
|
|
std::vector < GstMlBoundingBox > boundingBoxes;
|
|
if (!img_data)
|
|
return boundingBoxes;
|
|
|
|
parseDimensions (vmeta);
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
auto inputName = session->GetInputName (0, allocator);
|
|
auto inputTypeInfo = session->GetInputTypeInfo (0);
|
|
std::vector < int64_t > inputDims =
|
|
inputTypeInfo.GetTensorTypeAndShapeInfo ().GetShape ();
|
|
inputDims[0] = 1;
|
|
if (inputImageFormat == GST_ML_MODEL_INPUT_IMAGE_FORMAT_HWC) {
|
|
inputDims[1] = height;
|
|
inputDims[2] = width;
|
|
} else {
|
|
inputDims[2] = height;
|
|
inputDims[3] = width;
|
|
}
|
|
|
|
std::ostringstream buffer;
|
|
buffer << inputDims;
|
|
GST_DEBUG ("Input dimensions: %s", buffer.str ().c_str ());
|
|
|
|
// copy video frame
|
|
uint8_t *srcPtr[3] = { img_data, img_data + 1, img_data + 2 };
|
|
uint32_t srcSamplesPerPixel = 3;
|
|
switch (vmeta->format) {
|
|
case GST_VIDEO_FORMAT_RGBA:
|
|
srcSamplesPerPixel = 4;
|
|
break;
|
|
case GST_VIDEO_FORMAT_BGRA:
|
|
srcSamplesPerPixel = 4;
|
|
srcPtr[0] = img_data + 2;
|
|
srcPtr[1] = img_data + 1;
|
|
srcPtr[2] = img_data + 0;
|
|
break;
|
|
case GST_VIDEO_FORMAT_ARGB:
|
|
srcSamplesPerPixel = 4;
|
|
srcPtr[0] = img_data + 1;
|
|
srcPtr[1] = img_data + 2;
|
|
srcPtr[2] = img_data + 3;
|
|
break;
|
|
case GST_VIDEO_FORMAT_ABGR:
|
|
srcSamplesPerPixel = 4;
|
|
srcPtr[0] = img_data + 3;
|
|
srcPtr[1] = img_data + 2;
|
|
srcPtr[2] = img_data + 1;
|
|
break;
|
|
case GST_VIDEO_FORMAT_BGR:
|
|
srcPtr[0] = img_data + 2;
|
|
srcPtr[1] = img_data + 1;
|
|
srcPtr[2] = img_data + 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
size_t destIndex = 0;
|
|
uint32_t stride = vmeta->stride[0];
|
|
if (inputImageFormat == GST_ML_MODEL_INPUT_IMAGE_FORMAT_HWC) {
|
|
for (int32_t j = 0; j < height; ++j) {
|
|
for (int32_t i = 0; i < width; ++i) {
|
|
for (int32_t k = 0; k < channels; ++k) {
|
|
dest[destIndex++] = *srcPtr[k];
|
|
srcPtr[k] += srcSamplesPerPixel;
|
|
}
|
|
}
|
|
// correct for stride
|
|
for (uint32_t k = 0; k < 3; ++k)
|
|
srcPtr[k] += stride - srcSamplesPerPixel * width;
|
|
}
|
|
} else {
|
|
size_t frameSize = width * height;
|
|
uint8_t *destPtr[3] = { dest, dest + frameSize, dest + 2 * frameSize };
|
|
for (int32_t j = 0; j < height; ++j) {
|
|
for (int32_t i = 0; i < width; ++i) {
|
|
for (int32_t k = 0; k < channels; ++k) {
|
|
destPtr[k][destIndex] = *srcPtr[k];
|
|
srcPtr[k] += srcSamplesPerPixel;
|
|
}
|
|
destIndex++;
|
|
}
|
|
// correct for stride
|
|
for (uint32_t k = 0; k < 3; ++k)
|
|
srcPtr[k] += stride - srcSamplesPerPixel * width;
|
|
}
|
|
}
|
|
|
|
const size_t inputTensorSize = width * height * channels;
|
|
auto memoryInfo =
|
|
Ort::MemoryInfo::CreateCpu (OrtAllocatorType::OrtArenaAllocator,
|
|
OrtMemType::OrtMemTypeDefault);
|
|
std::vector < Ort::Value > inputTensors;
|
|
inputTensors.push_back (Ort::Value::CreateTensor < uint8_t > (memoryInfo,
|
|
dest, inputTensorSize, inputDims.data (), inputDims.size ()));
|
|
std::vector < const char *>inputNames { inputName };
|
|
|
|
std::vector < Ort::Value > modelOutput = session->Run (Ort::RunOptions { nullptr},
|
|
inputNames.data (),
|
|
inputTensors.data (), 1, outputNames.data (), outputNames.size ());
|
|
|
|
auto numDetections =
|
|
modelOutput[getOutputNodeIndex
|
|
(GST_ML_OUTPUT_NODE_FUNCTION_DETECTION)].GetTensorMutableData < float >();
|
|
auto bboxes =
|
|
modelOutput[getOutputNodeIndex
|
|
(GST_ML_OUTPUT_NODE_FUNCTION_BOUNDING_BOX)].GetTensorMutableData < float >();
|
|
auto scores =
|
|
modelOutput[getOutputNodeIndex
|
|
(GST_ML_OUTPUT_NODE_FUNCTION_SCORE)].GetTensorMutableData < float >();
|
|
T *labelIndex = nullptr;
|
|
if (getOutputNodeIndex (GST_ML_OUTPUT_NODE_FUNCTION_CLASS) !=
|
|
GST_ML_NODE_INDEX_DISABLED) {
|
|
labelIndex =
|
|
modelOutput[getOutputNodeIndex
|
|
(GST_ML_OUTPUT_NODE_FUNCTION_CLASS)].GetTensorMutableData < T > ();
|
|
}
|
|
if (labels.empty () && !labelPath.empty ())
|
|
labels = ReadLabels (labelPath);
|
|
|
|
for (int i = 0; i < numDetections[0]; ++i) {
|
|
if (scores[i] > scoreThreshold) {
|
|
std::string label = "";
|
|
|
|
if (labelIndex && !labels.empty ())
|
|
label = labels[labelIndex[i] - 1];
|
|
auto score = scores[i];
|
|
auto y0 = bboxes[i * 4] * height;
|
|
auto x0 = bboxes[i * 4 + 1] * width;
|
|
auto bheight = bboxes[i * 4 + 2] * height - y0;
|
|
auto bwidth = bboxes[i * 4 + 3] * width - x0;
|
|
boundingBoxes.push_back (GstMlBoundingBox (label, score, x0, y0, bwidth,
|
|
bheight));
|
|
}
|
|
}
|
|
return boundingBoxes;
|
|
}
|
|
|
|
std::vector < std::string >
|
|
GstOnnxClient::ReadLabels (const std::string & labelsFile)
|
|
{
|
|
std::vector < std::string > labels;
|
|
std::string line;
|
|
std::ifstream fp (labelsFile);
|
|
while (std::getline (fp, line))
|
|
labels.push_back (line);
|
|
|
|
return labels;
|
|
}
|
|
}
|