/* GStreamer * Copyright (C) 2004 Ronald Bultje * * gstchannelmix.c: setup of channel conversion matrices * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "gstchannelmix.h" /* * Channel matrix functions. */ void gst_channel_mix_unset_matrix (AudioConvertCtx * this) { gint i; /* don't access if nothing there */ if (!this->matrix) return; /* free */ for (i = 0; i < this->in.channels; i++) g_free (this->matrix[i]); g_free (this->matrix); this->matrix = NULL; g_free (this->tmp); this->tmp = NULL; } /* * Detect and fill in identical channels. E.g. * forward the left/right front channels in a * 5.1 to 2.0 conversion. */ static void gst_channel_mix_fill_identical (AudioConvertCtx * this) { gint ci, co; /* Apart from the compatible channel assignments, we can also have * same channel assignments. This is much simpler, we simply copy * the value from source to dest! */ for (co = 0; co < this->out.channels; co++) { /* find a channel in input with same position */ for (ci = 0; ci < this->in.channels; ci++) { if (this->in.pos[ci] == this->out.pos[co]) { this->matrix[ci][co] = 1.0; } } } } /* * Detect and fill in compatible channels. E.g. * forward left/right front to mono (or the other * way around) when going from 2.0 to 1.0. */ static void gst_channel_mix_fill_compatible (AudioConvertCtx * this) { /* Conversions from one-channel to compatible two-channel configs */ struct { GstAudioChannelPosition pos1[2]; GstAudioChannelPosition pos2[1]; } conv[] = { /* front: mono <-> stereo */ { { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT}, { GST_AUDIO_CHANNEL_POSITION_FRONT_MONO}}, /* front center: 2 <-> 1 */ { { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER}, { GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER}}, /* rear: 2 <-> 1 */ { { GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT}, { GST_AUDIO_CHANNEL_POSITION_REAR_CENTER}}, { { GST_AUDIO_CHANNEL_POSITION_INVALID}} }; gint c; /* conversions from compatible (but not the same) channel schemes. This * goes two ways: if the sink has both pos1[0,1] and src has pos2[0] or * if the src has both pos1[0,1] and sink has pos2[0], then we do the * conversion. We hereby assume that the existance of pos1[0,1] and * pos2[0] are mututally exclusive. There are no checks for that, * unfortunately. This shouldn't lead to issues (like crashes or so), * though. */ for (c = 0; conv[c].pos1[0] != GST_AUDIO_CHANNEL_POSITION_INVALID; c++) { gint pos1_0 = -1, pos1_1 = -1, pos2_0 = -1, n; /* Try to go from the given 2 channels to the given 1 channel */ for (n = 0; n < this->in.channels; n++) { if (this->in.pos[n] == conv[c].pos1[0]) pos1_0 = n; else if (this->in.pos[n] == conv[c].pos1[1]) pos1_1 = n; } for (n = 0; n < this->out.channels; n++) { if (this->out.pos[n] == conv[c].pos2[0]) pos2_0 = n; } if (pos1_0 != -1 && pos1_1 != -1 && pos2_0 != -1) { this->matrix[pos1_0][pos2_0] = 1.0; this->matrix[pos1_1][pos2_0] = 1.0; } /* Try to go from the given 1 channel to the given 2 channels */ pos1_0 = -1; pos1_1 = -1; pos2_0 = -1; for (n = 0; n < this->out.channels; n++) { if (this->out.pos[n] == conv[c].pos1[0]) pos1_0 = n; else if (this->out.pos[n] == conv[c].pos1[1]) pos1_1 = n; } for (n = 0; n < this->in.channels; n++) { if (this->in.pos[n] == conv[c].pos2[0]) pos2_0 = n; } if (pos1_0 != -1 && pos1_1 != -1 && pos2_0 != -1) { this->matrix[pos2_0][pos1_0] = 1.0; this->matrix[pos2_0][pos1_1] = 1.0; } } } /* * Detect and fill in channels not handled by the * above two, e.g. center to left/right front in * 5.1 to 2.0 (or the other way around). * * Unfortunately, limited to static conversions * for now. */ static void gst_channel_mix_detect_pos (AudioConvertFmt * caps, gint * f, gboolean * has_f, gint * c, gboolean * has_c, gint * r, gboolean * has_r, gint * s, gboolean * has_s, gint * b, gboolean * has_b) { gint n; for (n = 0; n < caps->channels; n++) { switch (caps->pos[n]) { case GST_AUDIO_CHANNEL_POSITION_FRONT_MONO: case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT: case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT: *has_f = TRUE; if (f[0] == -1) f[0] = n; else f[1] = n; break; case GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER: case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: *has_c = TRUE; if (c[0] == -1) c[0] = n; else c[1] = n; break; case GST_AUDIO_CHANNEL_POSITION_REAR_CENTER: case GST_AUDIO_CHANNEL_POSITION_REAR_LEFT: case GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT: *has_r = TRUE; if (r[0] == -1) r[0] = n; else r[1] = n; break; case GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT: case GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT: *has_s = TRUE; if (s[0] == -1) s[0] = n; else s[1] = n; break; case GST_AUDIO_CHANNEL_POSITION_LFE: *has_b = TRUE; b[0] = n; break; default: break; } } } static void gst_channel_mix_fill_one_other (gfloat ** matrix, AudioConvertFmt * from_caps, gint * from_idx, GstAudioChannelPosition from_pos_l, GstAudioChannelPosition from_pos_r, GstAudioChannelPosition from_pos_c, AudioConvertFmt * to_caps, gint * to_idx, GstAudioChannelPosition to_pos_l, GstAudioChannelPosition to_pos_r, GstAudioChannelPosition to_pos_c, gfloat ratio) { gfloat in_r, out_r[2] = { 0.f, 0.f }; /* * The idea is that we add up from the input (which means that if we * have stereo input, we divide their sum by two) and put that in * the matrix for their output ratio (given in $ratio). * For left channels, we need to invert the signal sign (* -1). */ if (from_caps->pos[from_idx[0]] == from_pos_c) in_r = 1.0; else in_r = 0.5; if (to_caps->pos[to_idx[0]] == to_pos_l) out_r[0] = in_r * -ratio; else out_r[0] = in_r * ratio; if (to_idx[1] != -1) { if (to_caps->pos[to_idx[1]] == to_pos_l) out_r[1] = in_r * -ratio; else out_r[1] = in_r * ratio; } matrix[from_idx[0]][to_idx[0]] = out_r[0]; if (to_idx[1] != -1) matrix[from_idx[0]][to_idx[1]] = out_r[1]; if (from_idx[1] != -1) { matrix[from_idx[1]][to_idx[0]] = out_r[0]; if (to_idx[1] != -1) matrix[from_idx[1]][to_idx[1]] = out_r[1]; } } #define RATIO_FRONT_CENTER (1.0 / sqrt (2.0)) #define RATIO_FRONT_REAR (1.0 / sqrt (2.0)) #define RATIO_FRONT_BASS (1.0) #define RATIO_REAR_BASS (1.0 / sqrt (2.0)) #define RATIO_CENTER_BASS (1.0 / sqrt (2.0)) static void gst_channel_mix_fill_others (AudioConvertCtx * this) { gboolean in_has_front = FALSE, out_has_front = FALSE, in_has_center = FALSE, out_has_center = FALSE, in_has_rear = FALSE, out_has_rear = FALSE, in_has_side = FALSE, out_has_side = FALSE, in_has_bass = FALSE, out_has_bass = FALSE; gint in_f[2] = { -1, -1 }, out_f[2] = { -1, -1}, in_c[2] = { -1, -1}, out_c[2] = { -1, -1}, in_r[2] = { -1, -1}, out_r[2] = { -1, -1}, in_s[2] = { -1, -1}, out_s[2] = { -1, -1}, in_b[2] = { -1, -1}, out_b[2] = { -1, -1}; /* First see where (if at all) the various channels from/to * which we want to convert are located in our matrix/array. */ gst_channel_mix_detect_pos (&this->in, in_f, &in_has_front, in_c, &in_has_center, in_r, &in_has_rear, in_s, &in_has_side, in_b, &in_has_bass); gst_channel_mix_detect_pos (&this->out, out_f, &out_has_front, out_c, &out_has_center, out_r, &out_has_rear, out_s, &out_has_side, out_b, &out_has_bass); /* center/front */ if (!in_has_center && in_has_front && out_has_center) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, &this->out, out_c, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, RATIO_FRONT_CENTER); } else if (in_has_center && !out_has_center && out_has_front) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_c, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, &this->out, out_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_CENTER); } /* rear/front */ if (!in_has_rear && in_has_front && out_has_rear) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, &this->out, out_r, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, RATIO_FRONT_REAR); } else if (in_has_rear && !out_has_rear && out_has_front) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_r, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, &this->out, out_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_REAR); } /* bass/any */ if (in_has_bass && !out_has_bass) { if (out_has_front) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, &this->out, out_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_BASS); } if (out_has_center) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, &this->out, out_c, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, RATIO_CENTER_BASS); } if (out_has_rear) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, &this->out, out_r, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, RATIO_REAR_BASS); } } else if (!in_has_bass && out_has_bass) { if (in_has_front) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_f, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, &this->out, out_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_FRONT_BASS); } if (in_has_center) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_c, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, &this->out, out_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_CENTER_BASS); } if (in_has_rear) { gst_channel_mix_fill_one_other (this->matrix, &this->in, in_r, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, &this->out, out_b, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_INVALID, GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_REAR_BASS); } } /* FIXME: side */ } /* * Normalize output values. */ static void gst_channel_mix_fill_normalize (AudioConvertCtx * this) { gfloat sum, top = 0; gint i, j; for (j = 0; j < this->out.channels; j++) { /* calculate sum */ sum = 0.0; for (i = 0; i < this->in.channels; i++) { sum += fabs (this->matrix[i][j]); } if (sum > top) { top = sum; } } /* normalize to this */ for (j = 0; j < this->out.channels; j++) { for (i = 0; i < this->in.channels; i++) { this->matrix[i][j] /= top; } } } /* * Automagically generate conversion matrix. */ static void gst_channel_mix_fill_matrix (AudioConvertCtx * this) { gst_channel_mix_fill_identical (this); if (!this->in.unpositioned_layout) { gst_channel_mix_fill_compatible (this); gst_channel_mix_fill_others (this); gst_channel_mix_fill_normalize (this); } } /* only call after this->out and this->in are filled in */ void gst_channel_mix_setup_matrix (AudioConvertCtx * this) { gint i, j; GString *s; /* don't lose memory */ gst_channel_mix_unset_matrix (this); /* temp storage */ if (this->in.is_int || this->out.is_int) { this->tmp = (gpointer) g_new (gint32, this->out.channels); } else { this->tmp = (gpointer) g_new (gdouble, this->out.channels); } /* allocate */ this->matrix = g_new0 (gfloat *, this->in.channels); for (i = 0; i < this->in.channels; i++) { this->matrix[i] = g_new (gfloat, this->out.channels); for (j = 0; j < this->out.channels; j++) this->matrix[i][j] = 0.; } /* setup the matrix' internal values */ gst_channel_mix_fill_matrix (this); /* debug */ s = g_string_new ("Matrix for"); g_string_append_printf (s, " %d -> %d: ", this->in.channels, this->out.channels); g_string_append (s, "{"); for (i = 0; i < this->in.channels; i++) { if (i != 0) g_string_append (s, ","); g_string_append (s, " {"); for (j = 0; j < this->out.channels; j++) { if (j != 0) g_string_append (s, ","); g_string_append_printf (s, " %f", this->matrix[i][j]); } g_string_append (s, " }"); } g_string_append (s, " }"); GST_DEBUG (s->str); g_string_free (s, TRUE); } gboolean gst_channel_mix_passthrough (AudioConvertCtx * this) { gint i; /* only NxN matrices can be identities */ if (this->in.channels != this->out.channels) return FALSE; /* this assumes a normalized matrix */ for (i = 0; i < this->in.channels; i++) if (this->matrix[i][i] != 1.) return FALSE; return TRUE; } /* IMPORTANT: out_data == in_data is possible, make sure to not overwrite data * you might need later on! */ void gst_channel_mix_mix_int (AudioConvertCtx * this, gint32 * in_data, gint32 * out_data, gint samples) { gint in, out, n; gint64 res; gboolean backwards; gint inchannels, outchannels; gint32 *tmp = (gint32 *) this->tmp; g_return_if_fail (this->matrix != NULL); g_return_if_fail (this->tmp != NULL); inchannels = this->in.channels; outchannels = this->out.channels; backwards = outchannels > inchannels; /* FIXME: use liboil here? */ for (n = (backwards ? samples - 1 : 0); n < samples && n >= 0; backwards ? n-- : n++) { for (out = 0; out < outchannels; out++) { /* convert */ res = 0; for (in = 0; in < inchannels; in++) { res += in_data[n * inchannels + in] * this->matrix[in][out]; } /* clip (shouldn't we use doubles instead as intermediate format?) */ if (res < G_MININT32) res = G_MININT32; else if (res > G_MAXINT32) res = G_MAXINT32; tmp[out] = res; } memcpy (&out_data[n * outchannels], this->tmp, sizeof (gint32) * outchannels); } } void gst_channel_mix_mix_float (AudioConvertCtx * this, gdouble * in_data, gdouble * out_data, gint samples) { gint in, out, n; gdouble res; gboolean backwards; gint inchannels, outchannels; gdouble *tmp = (gdouble *) this->tmp; g_return_if_fail (this->matrix != NULL); g_return_if_fail (this->tmp != NULL); inchannels = this->in.channels; outchannels = this->out.channels; backwards = outchannels > inchannels; /* FIXME: use liboil here? */ for (n = (backwards ? samples - 1 : 0); n < samples && n >= 0; backwards ? n-- : n++) { for (out = 0; out < outchannels; out++) { /* convert */ res = 0.0; for (in = 0; in < inchannels; in++) { res += in_data[n * inchannels + in] * this->matrix[in][out]; } /* clip (shouldn't we use doubles instead as intermediate format?) */ if (res < -1.0) res = -1.0; else if (res > 1.0) res = 1.0; tmp[out] = res; } memcpy (&out_data[n * outchannels], this->tmp, sizeof (gdouble) * outchannels); } }