/* GStreamer * Copyright (C) <1999> Erik Walthinsen * <2006> Stefan Kost * <2007-2009> Sebastian Dröge * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:element-spectrum * @short_description: audio spectrum analyzer * * * * The Spectrum element analyzes the frequency spectrum of an audio signal. * If the #GstSpectrum:message property is #TRUE, it sends analysis results as * application messages named * "spectrum" after each interval of time given * by the #GstSpectrum:interval property. * * * The message's structure contains some combination of these fields: * * * * #GstClockTime * "timestamp": * the timestamp of the buffer that triggered the message. * * * * * #GstClockTime * "stream-time": * the stream time of the buffer. * * * * * #GstClockTime * "running-time": * the running_time of the buffer. * * * * * #GstClockTime * "duration": * the duration of the buffer. * * * * * #GstClockTime * "endtime": * the end time of the buffer that triggered the message as stream time (this * is deprecated, as it can be calculated from stream-time + duration) * * * * * #GstValueList of #gfloat * "magnitude": * the level for each frequency band in dB. All values below the value of the * #GstSpectrum:threshold property will be set to the threshold. Only present * if the message-magnitude property is true. * * * * * #GstValueList of #gfloat * "phase": * The phase for each frequency band. The value is between -pi and pi. Only * present if the message-phase property is true. * * * * * * This element cannot be used with the gst-launch command in a sensible way. * This sample code demonstrates how to use it in an application. * * Example application * * * * * Last reviewed on 2009-01-14 (0.10.12) * * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "gstspectrum.h" GST_DEBUG_CATEGORY_STATIC (gst_spectrum_debug); #define GST_CAT_DEFAULT gst_spectrum_debug /* elementfactory information */ #define ALLOWED_CAPS \ "audio/x-raw-int, " \ " width = (int) 16, " \ " depth = (int) 16, " \ " signed = (boolean) true, " \ " endianness = (int) BYTE_ORDER, " \ " rate = (int) [ 1, MAX ], " \ " channels = (int) [ 1, MAX ]; " \ "audio/x-raw-int, " \ " width = (int) 32, " \ " depth = (int) 32, " \ " signed = (boolean) true, " \ " endianness = (int) BYTE_ORDER, " \ " rate = (int) [ 1, MAX ], " \ " channels = (int) [ 1, MAX ]; " \ "audio/x-raw-float, " \ " width = (int) { 32, 64 }, " \ " endianness = (int) BYTE_ORDER, " \ " rate = (int) [ 1, MAX ], " \ " channels = (int) [ 1, MAX ]" /* Spectrum properties */ #define DEFAULT_MESSAGE TRUE #define DEFAULT_MESSAGE_MAGNITUDE TRUE #define DEFAULT_MESSAGE_PHASE FALSE #define DEFAULT_INTERVAL (GST_SECOND / 10) #define DEFAULT_BANDS 128 #define DEFAULT_THRESHOLD -60 enum { PROP_0, PROP_MESSAGE, PROP_MESSAGE_MAGNITUDE, PROP_MESSAGE_PHASE, PROP_INTERVAL, PROP_BANDS, PROP_THRESHOLD }; GST_BOILERPLATE (GstSpectrum, gst_spectrum, GstAudioFilter, GST_TYPE_AUDIO_FILTER); static void gst_spectrum_finalize (GObject * object); static void gst_spectrum_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_spectrum_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static gboolean gst_spectrum_start (GstBaseTransform * trans); static gboolean gst_spectrum_stop (GstBaseTransform * trans); static GstFlowReturn gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * in); static gboolean gst_spectrum_setup (GstAudioFilter * base, GstRingBufferSpec * format); static void gst_spectrum_base_init (gpointer g_class) { GstElementClass *element_class = GST_ELEMENT_CLASS (g_class); GstCaps *caps; gst_element_class_set_details_simple (element_class, "Spectrum analyzer", "Filter/Analyzer/Audio", "Run an FFT on the audio signal, output spectrum data", "Erik Walthinsen , " "Stefan Kost , " "Sebastian Dröge "); caps = gst_caps_from_string (ALLOWED_CAPS); gst_audio_filter_class_add_pad_templates (GST_AUDIO_FILTER_CLASS (g_class), caps); gst_caps_unref (caps); } static void gst_spectrum_class_init (GstSpectrumClass * klass) { GObjectClass *gobject_class = G_OBJECT_CLASS (klass); GstBaseTransformClass *trans_class = GST_BASE_TRANSFORM_CLASS (klass); GstAudioFilterClass *filter_class = GST_AUDIO_FILTER_CLASS (klass); gobject_class->set_property = gst_spectrum_set_property; gobject_class->get_property = gst_spectrum_get_property; gobject_class->finalize = gst_spectrum_finalize; trans_class->start = GST_DEBUG_FUNCPTR (gst_spectrum_start); trans_class->stop = GST_DEBUG_FUNCPTR (gst_spectrum_stop); trans_class->transform_ip = GST_DEBUG_FUNCPTR (gst_spectrum_transform_ip); trans_class->passthrough_on_same_caps = TRUE; filter_class->setup = GST_DEBUG_FUNCPTR (gst_spectrum_setup); g_object_class_install_property (gobject_class, PROP_MESSAGE, g_param_spec_boolean ("message", "Message", "Whether to post a 'spectrum' element message on the bus for each " "passed interval", DEFAULT_MESSAGE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_MESSAGE_MAGNITUDE, g_param_spec_boolean ("message-magnitude", "Magnitude", "Whether to add a 'magnitude' field to the structure of any " "'spectrum' element messages posted on the bus", DEFAULT_MESSAGE_MAGNITUDE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_MESSAGE_PHASE, g_param_spec_boolean ("message-phase", "Phase", "Whether to add a 'phase' field to the structure of any " "'spectrum' element messages posted on the bus", DEFAULT_MESSAGE_PHASE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_INTERVAL, g_param_spec_uint64 ("interval", "Interval", "Interval of time between message posts (in nanoseconds)", 1, G_MAXUINT64, DEFAULT_INTERVAL, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_BANDS, g_param_spec_uint ("bands", "Bands", "Number of frequency bands", 0, G_MAXUINT, DEFAULT_BANDS, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_THRESHOLD, g_param_spec_int ("threshold", "Threshold", "dB threshold for result. All lower values will be set to this", G_MININT, 0, DEFAULT_THRESHOLD, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); GST_DEBUG_CATEGORY_INIT (gst_spectrum_debug, "spectrum", 0, "audio spectrum analyser element"); } static void gst_spectrum_init (GstSpectrum * spectrum, GstSpectrumClass * g_class) { spectrum->message = DEFAULT_MESSAGE; spectrum->message_magnitude = DEFAULT_MESSAGE_MAGNITUDE; spectrum->message_phase = DEFAULT_MESSAGE_PHASE; spectrum->interval = DEFAULT_INTERVAL; spectrum->bands = DEFAULT_BANDS; spectrum->threshold = DEFAULT_THRESHOLD; } static void gst_spectrum_reset_state (GstSpectrum * spectrum) { gst_fft_f32_free (spectrum->fft_ctx); g_free (spectrum->input); g_free (spectrum->input_tmp); g_free (spectrum->freqdata); g_free (spectrum->spect_magnitude); g_free (spectrum->spect_phase); spectrum->fft_ctx = NULL; spectrum->input = NULL; spectrum->input_tmp = NULL; spectrum->spect_magnitude = NULL; spectrum->spect_phase = NULL; spectrum->freqdata = NULL; spectrum->num_frames = 0; spectrum->num_fft = 0; } static void gst_spectrum_finalize (GObject * object) { GstSpectrum *spectrum = GST_SPECTRUM (object); gst_spectrum_reset_state (spectrum); G_OBJECT_CLASS (parent_class)->finalize (object); } static void gst_spectrum_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstSpectrum *filter = GST_SPECTRUM (object); switch (prop_id) { case PROP_MESSAGE: filter->message = g_value_get_boolean (value); break; case PROP_MESSAGE_MAGNITUDE: filter->message_magnitude = g_value_get_boolean (value); break; case PROP_MESSAGE_PHASE: filter->message_phase = g_value_get_boolean (value); break; case PROP_INTERVAL: GST_BASE_TRANSFORM_LOCK (filter); filter->interval = g_value_get_uint64 (value); gst_spectrum_reset_state (filter); GST_BASE_TRANSFORM_UNLOCK (filter); break; case PROP_BANDS: GST_BASE_TRANSFORM_LOCK (filter); if (filter->bands == g_value_get_uint (value)) { GST_BASE_TRANSFORM_UNLOCK (filter); break; } filter->bands = g_value_get_uint (value); gst_spectrum_reset_state (filter); GST_BASE_TRANSFORM_UNLOCK (filter); break; case PROP_THRESHOLD: GST_BASE_TRANSFORM_LOCK (filter); filter->threshold = g_value_get_int (value); gst_spectrum_reset_state (filter); GST_BASE_TRANSFORM_UNLOCK (filter); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_spectrum_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstSpectrum *filter = GST_SPECTRUM (object); switch (prop_id) { case PROP_MESSAGE: g_value_set_boolean (value, filter->message); break; case PROP_MESSAGE_MAGNITUDE: g_value_set_boolean (value, filter->message_magnitude); break; case PROP_MESSAGE_PHASE: g_value_set_boolean (value, filter->message_phase); break; case PROP_INTERVAL: g_value_set_uint64 (value, filter->interval); break; case PROP_BANDS: g_value_set_uint (value, filter->bands); break; case PROP_THRESHOLD: g_value_set_int (value, filter->threshold); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static gboolean gst_spectrum_start (GstBaseTransform * trans) { GstSpectrum *filter = GST_SPECTRUM (trans); filter->num_frames = 0; filter->num_fft = 0; return TRUE; } static gboolean gst_spectrum_stop (GstBaseTransform * trans) { GstSpectrum *filter = GST_SPECTRUM (trans); gst_spectrum_reset_state (filter); return TRUE; } static gboolean gst_spectrum_setup (GstAudioFilter * base, GstRingBufferSpec * format) { GstSpectrum *filter = GST_SPECTRUM (base); gst_spectrum_reset_state (filter); return TRUE; } static GstMessage * gst_spectrum_message_new (GstSpectrum * spectrum, GstClockTime timestamp, GstClockTime duration) { GstBaseTransform *trans = GST_BASE_TRANSFORM_CAST (spectrum); GstStructure *s; GValue v = { 0, }; GValue *l; guint i; gfloat *spect_magnitude = spectrum->spect_magnitude; gfloat *spect_phase = spectrum->spect_phase; GstClockTime endtime, running_time, stream_time; GST_DEBUG_OBJECT (spectrum, "preparing message, spect = %p, bands =%d ", spect_magnitude, spectrum->bands); running_time = gst_segment_to_running_time (&trans->segment, GST_FORMAT_TIME, timestamp); stream_time = gst_segment_to_stream_time (&trans->segment, GST_FORMAT_TIME, timestamp); /* endtime is for backwards compatibility */ endtime = stream_time + duration; s = gst_structure_new ("spectrum", "endtime", GST_TYPE_CLOCK_TIME, endtime, "timestamp", G_TYPE_UINT64, timestamp, "stream-time", G_TYPE_UINT64, stream_time, "running-time", G_TYPE_UINT64, running_time, "duration", G_TYPE_UINT64, duration, NULL); if (spectrum->message_magnitude) { /* FIXME 0.11: this should be an array, not a list */ g_value_init (&v, GST_TYPE_LIST); /* will copy-by-value */ gst_structure_set_value (s, "magnitude", &v); g_value_unset (&v); g_value_init (&v, G_TYPE_FLOAT); l = (GValue *) gst_structure_get_value (s, "magnitude"); for (i = 0; i < spectrum->bands; i++) { g_value_set_float (&v, spect_magnitude[i]); gst_value_list_append_value (l, &v); /* copies by value */ } g_value_unset (&v); } if (spectrum->message_phase) { /* FIXME 0.11: this should be an array, not a list */ g_value_init (&v, GST_TYPE_LIST); /* will copy-by-value */ gst_structure_set_value (s, "phase", &v); g_value_unset (&v); g_value_init (&v, G_TYPE_FLOAT); l = (GValue *) gst_structure_get_value (s, "phase"); for (i = 0; i < spectrum->bands; i++) { g_value_set_float (&v, spect_phase[i]); gst_value_list_append_value (l, &v); /* copies by value */ } g_value_unset (&v); } return gst_message_new_element (GST_OBJECT (spectrum), s); } static GstFlowReturn gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer) { GstSpectrum *spectrum = GST_SPECTRUM (trans); guint i; guint rate = GST_AUDIO_FILTER (spectrum)->format.rate; guint channels = GST_AUDIO_FILTER (spectrum)->format.channels; guint width = GST_AUDIO_FILTER (spectrum)->format.width / 8; gboolean fp = (GST_AUDIO_FILTER (spectrum)->format.type == GST_BUFTYPE_FLOAT); guint bands = spectrum->bands; guint nfft = 2 * bands - 2; gint threshold = spectrum->threshold; gfloat *input; gfloat *input_tmp; GstFFTF32Complex *freqdata; gfloat *spect_magnitude; gfloat *spect_phase; GstFFTF32 *fft_ctx; const guint8 *data = GST_BUFFER_DATA (buffer); guint size = GST_BUFFER_SIZE (buffer); GST_LOG_OBJECT (spectrum, "input size: %d bytes", GST_BUFFER_SIZE (buffer)); if (GST_BUFFER_IS_DISCONT (buffer)) { GST_DEBUG_OBJECT (spectrum, "Discontinuity detected -- resetting state"); gst_spectrum_reset_state (spectrum); } /* If we don't have a FFT context yet get one and * allocate memory for everything */ if (spectrum->fft_ctx == NULL) { spectrum->input = g_new0 (gfloat, nfft); spectrum->input_tmp = g_new0 (gfloat, nfft); spectrum->freqdata = g_new0 (GstFFTF32Complex, bands); spectrum->spect_magnitude = g_new0 (gfloat, bands); spectrum->spect_phase = g_new0 (gfloat, bands); spectrum->fft_ctx = gst_fft_f32_new (nfft, FALSE); spectrum->frames_per_interval = gst_util_uint64_scale (spectrum->interval, rate, GST_SECOND); if (spectrum->frames_per_interval == 0) spectrum->frames_per_interval = 1; spectrum->num_frames = 0; spectrum->num_fft = 0; } if (spectrum->num_frames == 0) spectrum->message_ts = GST_BUFFER_TIMESTAMP (buffer); input = spectrum->input; input_tmp = spectrum->input_tmp; freqdata = spectrum->freqdata; spect_magnitude = spectrum->spect_magnitude; spect_phase = spectrum->spect_phase; fft_ctx = spectrum->fft_ctx; while (size >= width * channels) { /* Move the current frame into our ringbuffer and * take the average of all channels */ spectrum->input[spectrum->input_pos] = 0.0; if (fp && width == 4) { gfloat *in = (gfloat *) data; for (i = 0; i < channels; i++) spectrum->input[spectrum->input_pos] += in[i]; } else if (fp && width == 8) { gdouble *in = (gdouble *) data; for (i = 0; i < channels; i++) spectrum->input[spectrum->input_pos] += in[i]; } else if (!fp && width == 4) { gint32 *in = (gint32 *) data; for (i = 0; i < channels; i++) spectrum->input[spectrum->input_pos] += ((gfloat) in[i]) / G_MAXINT32; } else if (!fp && width == 2) { gint16 *in = (gint16 *) data; for (i = 0; i < channels; i++) spectrum->input[spectrum->input_pos] += ((gfloat) in[i]) / G_MAXINT16; } else { g_assert_not_reached (); } spectrum->input[spectrum->input_pos] /= channels; data += width * channels; size -= width * channels; spectrum->input_pos = (spectrum->input_pos + 1) % nfft; spectrum->num_frames++; /* If we have enough frames for an FFT or we * have all frames required for the interval run * an FFT. In the last case we probably take the * FFT of frames that we already handled. */ if (spectrum->num_frames % nfft == 0 || spectrum->num_frames == spectrum->frames_per_interval) { for (i = 0; i < nfft; i++) input_tmp[i] = input[(spectrum->input_pos + i) % nfft]; gst_fft_f32_window (fft_ctx, input_tmp, GST_FFT_WINDOW_HAMMING); gst_fft_f32_fft (fft_ctx, input_tmp, freqdata); spectrum->num_fft++; /* Calculate magnitude in db */ for (i = 0; i < bands; i++) { gdouble val = 0.0; val = freqdata[i].r * freqdata[i].r; val += freqdata[i].i * freqdata[i].i; val /= nfft * nfft; val = 10.0 * log10 (val); if (val < threshold) val = threshold; spect_magnitude[i] += val; } /* Calculate phase */ for (i = 0; i < bands; i++) spect_phase[i] += atan2 (freqdata[i].i, freqdata[i].r); } /* Do we have the FFTs for one interval? */ if (spectrum->num_frames == spectrum->frames_per_interval) { if (spectrum->message) { GstMessage *m; /* Calculate average */ for (i = 0; i < bands; i++) { spect_magnitude[i] /= spectrum->num_fft; spect_phase[i] /= spectrum->num_fft; } m = gst_spectrum_message_new (spectrum, spectrum->message_ts, spectrum->interval); gst_element_post_message (GST_ELEMENT (spectrum), m); } memset (spect_magnitude, 0, bands * sizeof (gfloat)); memset (spect_phase, 0, bands * sizeof (gfloat)); if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts)) spectrum->message_ts += gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate); spectrum->num_frames = 0; spectrum->num_fft = 0; } } g_assert (size == 0); return GST_FLOW_OK; } static gboolean plugin_init (GstPlugin * plugin) { return gst_element_register (plugin, "spectrum", GST_RANK_NONE, GST_TYPE_SPECTRUM); } GST_PLUGIN_DEFINE (GST_VERSION_MAJOR, GST_VERSION_MINOR, "spectrum", "Run an FFT on the audio signal, output spectrum data", plugin_init, VERSION, GST_LICENSE, GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN)