/* GStreamer * * Copyright (C) 2009 Nokia Corporation and its subsidary(-ies) * contact: * Copyright (C) 2012 Cisco Systems, Inc * Authors: Kelley Rogers * Havard Graff * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include /* For ease of programming we use globals to keep refs for our floating * src and sink pads we create; otherwise we always have to do get_pad, * get_peer, and then remove references in every test function */ static GstPad *mysrcpad, *mysinkpad; /* we also have a list of src buffers */ static GList *inbuffers = NULL; static gint num_dropped = 0; #define RTP_CAPS_STRING \ "application/x-rtp, " \ "media = (string)audio, " \ "payload = (int) 0, " \ "clock-rate = (int) 8000, " \ "encoding-name = (string)PCMU" #define RTP_FRAME_SIZE 20 static GstStaticPadTemplate sinktemplate = GST_STATIC_PAD_TEMPLATE ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, GST_STATIC_CAPS ("application/x-rtp") ); static GstStaticPadTemplate srctemplate = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS ("application/x-rtp, " "clock-rate = (int) [ 1, 2147483647 ]") ); static void buffer_dropped (gpointer data, GstMiniObject * obj) { GST_DEBUG ("dropping buffer %p", obj); num_dropped++; } static GstElement * setup_jitterbuffer (gint num_buffers) { GstElement *jitterbuffer; GstClock *clock; GstBuffer *buffer; GstCaps *caps; /* a 20 sample audio block (2,5 ms) generated with * gst-launch audiotestsrc wave=silence blocksize=40 num-buffers=3 ! * "audio/x-raw,channels=1,rate=8000" ! mulawenc ! rtppcmupay ! * fakesink dump=1 */ guint8 in[] = { /* first 4 bytes are rtp-header, next 4 bytes are timestamp */ 0x80, 0x80, 0x1c, 0x24, 0x46, 0xcd, 0xb7, 0x11, 0x3c, 0x3a, 0x7c, 0x5b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; GstClockTime ts = G_GUINT64_CONSTANT (0); GstClockTime tso = gst_util_uint64_scale (RTP_FRAME_SIZE, GST_SECOND, 8000); /*guint latency = GST_TIME_AS_MSECONDS (num_buffers * tso); */ gint i; GST_DEBUG ("setup_jitterbuffer"); jitterbuffer = gst_check_setup_element ("rtpjitterbuffer"); /* we need a clock here */ clock = gst_system_clock_obtain (); gst_element_set_clock (jitterbuffer, clock); gst_object_unref (clock); /* setup latency */ /* latency would be 7 for 3 buffers here, default is 200 g_object_set (G_OBJECT (jitterbuffer), "latency", latency, NULL); GST_INFO_OBJECT (jitterbuffer, "set latency to %u ms", latency); */ mysrcpad = gst_check_setup_src_pad (jitterbuffer, &srctemplate); mysinkpad = gst_check_setup_sink_pad (jitterbuffer, &sinktemplate); gst_pad_set_active (mysrcpad, TRUE); gst_pad_set_active (mysinkpad, TRUE); /* create n buffers */ caps = gst_caps_from_string (RTP_CAPS_STRING); gst_pad_set_caps (mysrcpad, caps); gst_caps_unref (caps); for (i = 0; i < num_buffers; i++) { buffer = gst_buffer_new_and_alloc (sizeof (in)); gst_buffer_fill (buffer, 0, in, sizeof (in)); GST_BUFFER_TIMESTAMP (buffer) = ts; GST_BUFFER_DURATION (buffer) = tso; gst_mini_object_weak_ref (GST_MINI_OBJECT (buffer), buffer_dropped, NULL); GST_DEBUG ("created buffer: %p", buffer); if (!i) GST_BUFFER_FLAG_SET (buffer, GST_BUFFER_FLAG_DISCONT); inbuffers = g_list_append (inbuffers, buffer); /* hackish way to update the rtp header */ in[1] = 0x00; in[3]++; /* seqnumber */ in[7] += RTP_FRAME_SIZE; /* inc. timestamp with framesize */ ts += tso; } num_dropped = 0; return jitterbuffer; } static GstStateChangeReturn start_jitterbuffer (GstElement * jitterbuffer) { GstStateChangeReturn ret; GstClockTime now; GstClock *clock; clock = gst_element_get_clock (jitterbuffer); now = gst_clock_get_time (clock); gst_object_unref (clock); gst_element_set_base_time (jitterbuffer, now); ret = gst_element_set_state (jitterbuffer, GST_STATE_PLAYING); return ret; } static void cleanup_jitterbuffer (GstElement * jitterbuffer) { GST_DEBUG ("cleanup_jitterbuffer"); g_list_foreach (buffers, (GFunc) gst_mini_object_unref, NULL); g_list_free (buffers); buffers = NULL; g_list_free (inbuffers); inbuffers = NULL; gst_pad_set_active (mysrcpad, FALSE); gst_pad_set_active (mysinkpad, FALSE); gst_check_teardown_src_pad (jitterbuffer); gst_check_teardown_sink_pad (jitterbuffer); gst_check_teardown_element (jitterbuffer); } static void check_jitterbuffer_results (GstElement * jitterbuffer, gint num_buffers) { GstBuffer *buffer; GList *node; GstClockTime ts = G_GUINT64_CONSTANT (0); GstClockTime tso = gst_util_uint64_scale (RTP_FRAME_SIZE, GST_SECOND, 8000); GstMapInfo map; guint16 prev_sn = 0, cur_sn; guint32 prev_ts = 0, cur_ts; /* sleep for twice the latency */ g_usleep (400 * 1000); GST_INFO ("of %d buffer %d/%d received/dropped", num_buffers, g_list_length (buffers), num_dropped); /* if this fails, not all buffers have been processed */ fail_unless_equals_int ((g_list_length (buffers) + num_dropped), num_buffers); /* check the buffer list */ fail_unless_equals_int (g_list_length (buffers), num_buffers); for (node = buffers; node; node = g_list_next (node)) { fail_if ((buffer = (GstBuffer *) node->data) == NULL); fail_if (GST_BUFFER_TIMESTAMP (buffer) != ts); gst_buffer_map (buffer, &map, GST_MAP_READ); cur_sn = ((guint16) map.data[2] << 8) | map.data[3]; cur_ts = ((guint32) map.data[4] << 24) | ((guint32) map.data[5] << 16) | ((guint32) map.data[6] << 8) | map.data[7]; gst_buffer_unmap (buffer, &map); if (node != buffers) { fail_unless (cur_sn > prev_sn); fail_unless (cur_ts > prev_ts); prev_sn = cur_sn; prev_ts = cur_ts; } ts += tso; } } GST_START_TEST (test_push_forward_seq) { GstElement *jitterbuffer; const guint num_buffers = 3; GstBuffer *buffer; GList *node; jitterbuffer = setup_jitterbuffer (num_buffers); fail_unless (start_jitterbuffer (jitterbuffer) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); /* push buffers: 0,1,2, */ for (node = inbuffers; node; node = g_list_next (node)) { buffer = (GstBuffer *) node->data; fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); } /* check the buffer list */ check_jitterbuffer_results (jitterbuffer, num_buffers); /* cleanup */ cleanup_jitterbuffer (jitterbuffer); } GST_END_TEST; GST_START_TEST (test_push_backward_seq) { GstElement *jitterbuffer; const guint num_buffers = 4; GstBuffer *buffer; GList *node; jitterbuffer = setup_jitterbuffer (num_buffers); fail_unless (start_jitterbuffer (jitterbuffer) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); /* push buffers: 0,3,2,1 */ buffer = (GstBuffer *) inbuffers->data; fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); for (node = g_list_last (inbuffers); node != inbuffers; node = g_list_previous (node)) { buffer = (GstBuffer *) node->data; fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); } /* check the buffer list */ check_jitterbuffer_results (jitterbuffer, num_buffers); /* cleanup */ cleanup_jitterbuffer (jitterbuffer); } GST_END_TEST; GST_START_TEST (test_push_unordered) { GstElement *jitterbuffer; const guint num_buffers = 4; GstBuffer *buffer; jitterbuffer = setup_jitterbuffer (num_buffers); fail_unless (start_jitterbuffer (jitterbuffer) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); /* push buffers; 0,2,1,3 */ buffer = (GstBuffer *) inbuffers->data; fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); buffer = g_list_nth_data (inbuffers, 2); fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); buffer = g_list_nth_data (inbuffers, 1); fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); buffer = g_list_nth_data (inbuffers, 3); fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); /* check the buffer list */ check_jitterbuffer_results (jitterbuffer, num_buffers); /* cleanup */ cleanup_jitterbuffer (jitterbuffer); } GST_END_TEST; GST_START_TEST (test_basetime) { GstElement *jitterbuffer; const guint num_buffers = 3; GstBuffer *buffer; GList *node; GstClockTime tso = gst_util_uint64_scale (RTP_FRAME_SIZE, GST_SECOND, 8000); jitterbuffer = setup_jitterbuffer (num_buffers); fail_unless (start_jitterbuffer (jitterbuffer) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); /* push buffers: 2,1,0 */ for (node = g_list_last (inbuffers); node; node = g_list_previous (node)) { buffer = (GstBuffer *) node->data; fail_unless (gst_pad_push (mysrcpad, buffer) == GST_FLOW_OK); } /* sleep for twice the latency */ g_usleep (400 * 1000); /* if this fails, not all buffers have been processed */ fail_unless_equals_int ((g_list_length (buffers) + num_dropped), num_buffers); buffer = (GstBuffer *) buffers->data; fail_unless (GST_BUFFER_TIMESTAMP (buffer) != (num_buffers * tso)); /* cleanup */ cleanup_jitterbuffer (jitterbuffer); } GST_END_TEST; #if 0 static const guint payload_size = 160; static const guint clock_rate = 8000; static const guint pcmu_payload_type = 0; static const guint test_ssrc = 0x01BADBAD; typedef struct { GstElement *jitter_buffer; GstPad *test_sink_pad, *test_src_pad; GstClock *clock; GAsyncQueue *buf_queue; GAsyncQueue *event_queue; gint lost_event_count; } TestData; static GstCaps * generate_caps (void) { return gst_caps_new_simple ("application/x-rtp", "media", G_TYPE_STRING, "audio", "clock-rate", G_TYPE_INT, clock_rate, "encoding-name", G_TYPE_STRING, "PCMU", "payload", G_TYPE_INT, pcmu_payload_type, "ssrc", G_TYPE_UINT, test_ssrc, NULL); } static GstBuffer * generate_test_buffer (GstClockTime gst_ts, gboolean marker_bit, guint seq_num, guint32 rtp_ts) { GstBuffer *buf; guint8 *payload; guint i; buf = gst_rtp_buffer_new_allocate (payload_size, 0, 0); GST_BUFFER_TIMESTAMP (buf) = gst_ts; GST_BUFFER_CAPS (buf) = generate_caps (); gst_rtp_buffer_set_payload_type (buf, pcmu_payload_type); gst_rtp_buffer_set_marker (buf, marker_bit); gst_rtp_buffer_set_seq (buf, seq_num); gst_rtp_buffer_set_timestamp (buf, rtp_ts); gst_rtp_buffer_set_ssrc (buf, test_ssrc); payload = gst_rtp_buffer_get_payload (buf); for (i = 0; i < payload_size; i++) payload[i] = 0xff; return buf; } static GstFlowReturn test_sink_pad_chain_cb (GstPad * pad, GstBuffer * buffer) { TestData *data = gst_pad_get_element_private (pad); g_async_queue_push (data->buf_queue, buffer); return GST_FLOW_OK; } static gboolean test_sink_pad_event_cb (GstPad * pad, GstEvent * event) { TestData *data = gst_pad_get_element_private (pad); const GstStructure *structure = gst_event_get_structure (event); if (strcmp (gst_structure_get_name (structure), "GstRTPPacketLost") == 0) data->lost_event_count++; g_async_queue_push (data->event_queue, event); return TRUE; } static void setup_testharness (TestData * data) { GstPad *jb_sink_pad, *jb_src_pad; // create the testclock data->clock = gst_test_clock_new (); g_assert (data->clock); gst_test_clock_set_time (GST_TEST_CLOCK (data->clock), 0); // rig up the jitter buffer data->jitter_buffer = gst_element_factory_make ("gstrtpjitterbuffer", NULL); g_assert (data->jitter_buffer); gst_element_set_clock (data->jitter_buffer, data->clock); g_object_set (data->jitter_buffer, "do-lost", TRUE, NULL); g_assert_cmpint (gst_element_set_state (data->jitter_buffer, GST_STATE_PLAYING), !=, GST_STATE_CHANGE_FAILURE); // link in the test source-pad data->test_src_pad = gst_pad_new ("src", GST_PAD_SRC); gst_pad_set_caps (data->test_src_pad, generate_caps ()); jb_sink_pad = gst_element_get_pad (data->jitter_buffer, "sink"); g_assert_cmpint (gst_pad_link (data->test_src_pad, jb_sink_pad), ==, GST_PAD_LINK_OK); g_assert (gst_pad_set_active (data->test_src_pad, TRUE)); gst_object_unref (jb_sink_pad); // link in the test sink-pad data->test_sink_pad = gst_pad_new ("sink", GST_PAD_SINK); gst_pad_set_caps (data->test_sink_pad, generate_caps ()); gst_pad_set_chain_function (data->test_sink_pad, test_sink_pad_chain_cb); gst_pad_set_event_function (data->test_sink_pad, test_sink_pad_event_cb); jb_src_pad = gst_element_get_pad (data->jitter_buffer, "src"); g_assert_cmpint (gst_pad_link (jb_src_pad, data->test_sink_pad), ==, GST_PAD_LINK_OK); g_assert (gst_pad_set_active (data->test_sink_pad, TRUE)); gst_object_unref (jb_src_pad); // set up the buf and event queues data->buf_queue = g_async_queue_new_full ((GDestroyNotify) gst_mini_object_unref); data->event_queue = g_async_queue_new_full ((GDestroyNotify) gst_mini_object_unref); data->lost_event_count = 0; gst_pad_set_element_private (data->test_sink_pad, data); } static void destroy_testharness (TestData * data) { // clean up g_assert_cmpint (gst_element_set_state (data->jitter_buffer, GST_STATE_NULL), ==, GST_STATE_CHANGE_SUCCESS); gst_object_unref (data->jitter_buffer); data->jitter_buffer = NULL; gst_object_unref (data->test_src_pad); data->test_src_pad = NULL; gst_object_unref (data->test_sink_pad); data->test_sink_pad = NULL; gst_object_unref (data->clock); data->clock = NULL; g_async_queue_unref (data->buf_queue); data->buf_queue = NULL; g_async_queue_unref (data->event_queue); data->event_queue = NULL; data->lost_event_count = 0; } static void verify_lost_event (GstEvent * event, guint32 expected_seqnum, GstClockTime expected_timestamp, GstClockTime expected_duration, gboolean expected_late) { const GstStructure *s = gst_event_get_structure (event); const GValue *value; guint32 seqnum; GstClockTime timestamp; GstClockTime duration; gboolean late; g_assert (gst_structure_get_uint (s, "seqnum", &seqnum)); value = gst_structure_get_value (s, "timestamp"); g_assert (value && G_VALUE_HOLDS_UINT64 (value)); timestamp = g_value_get_uint64 (value); value = gst_structure_get_value (s, "duration"); g_assert (value && G_VALUE_HOLDS_UINT64 (value)); duration = g_value_get_uint64 (value); g_assert (gst_structure_get_boolean (s, "late", &late)); g_assert_cmpint (seqnum, ==, expected_seqnum); g_assert_cmpint (timestamp, ==, expected_timestamp); g_assert_cmpint (duration, ==, expected_duration); g_assert (late == expected_late); } GST_START_TEST (test_only_one_lost_event_on_large_gaps) { TestData data; GstTestClockPendingID id; guint64 timeout; GstBuffer *in_buf, *out_buf; GstEvent *out_event; gint jb_latency_ms = 200; guint buffer_size_ms = (payload_size * 1000) / clock_rate; setup_testharness (&data); timeout = 20 * G_USEC_PER_SEC; g_object_set (data.jitter_buffer, "latency", jb_latency_ms, NULL); // push the first buffer in in_buf = generate_test_buffer (0 * GST_MSECOND, TRUE, 0, 0); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // wait for the first buffer to be synced to timestamp + latency g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); // increase the time to timestamp + latency and release the wait gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), jb_latency_ms * GST_MSECOND); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); // check for the buffer coming out that was pushed in out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert_cmpint (GST_BUFFER_TIMESTAMP (out_buf), ==, 0); // move time ahead 10 seconds gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 10 * GST_SECOND); // wait a bit g_usleep (G_USEC_PER_SEC / 10); // check that no buffers have been pushed out and no pending waits g_assert_cmpint (g_async_queue_length (data.buf_queue), ==, 0); g_assert (gst_test_clock_peek_next_pending_id (GST_TEST_CLOCK (data.clock), &id) == FALSE); // a buffer now arrives perfectly on time in_buf = generate_test_buffer (10 * GST_SECOND, FALSE, 500, 500 * 160); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 10 * GST_SECOND); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // release the wait g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); // we should now receive a packet-lost-event for buffers 1 through 489 out_event = g_async_queue_timeout_pop (data.event_queue, timeout); g_assert (out_event != NULL); g_assert_cmpint (data.lost_event_count, ==, 1); verify_lost_event (out_event, 1, 1 * GST_MSECOND * 20, GST_MSECOND * 20 * 489, TRUE); // churn through sync_times until the new buffer gets pushed out while (g_async_queue_length (data.buf_queue) < 1) { if (gst_test_clock_peek_next_pending_id (GST_TEST_CLOCK (data.clock), &id)) { if (id.time > gst_clock_get_time (data.clock)) { gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), id.time); g_print ("setting time to %" GST_TIME_FORMAT "\n", GST_TIME_ARGS (id.time)); } gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)); } } out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert (GST_BUFFER_FLAG_IS_SET (out_buf, GST_BUFFER_FLAG_DISCONT)); g_assert_cmpint (gst_rtp_buffer_get_seq (out_buf), ==, 500); g_assert_cmpint (GST_BUFFER_TIMESTAMP (out_buf), ==, (10 * GST_SECOND)); // we get as many lost events as the the number of buffers the jitterbuffer // is able to wait for (+ the one we already got) g_assert_cmpint (data.lost_event_count, ==, jb_latency_ms / buffer_size_ms + 1); destroy_testharness (&data); } GST_END_TEST; GST_START_TEST (test_two_lost_one_arrives_in_time) { TestData data; GstTestClockPendingID id; guint64 timeout; GstBuffer *in_buf, *out_buf; GstEvent *out_event; gint jb_latency_ms = 10; GstClockTime buffer_time; gint b; setup_testharness (&data); timeout = 20 * G_USEC_PER_SEC; g_object_set (data.jitter_buffer, "latency", jb_latency_ms, NULL); // push the first buffer in in_buf = generate_test_buffer (0 * GST_MSECOND, TRUE, 0, 0); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), jb_latency_ms * GST_MSECOND); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); // push some buffers arriving in perfect time! for (b = 1; b < 3; b++) { buffer_time = b * GST_MSECOND * 20; in_buf = generate_test_buffer (buffer_time, TRUE, b, b * 160); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), buffer_time); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // check for the buffer coming out that was pushed in out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert_cmpint (GST_BUFFER_TIMESTAMP (out_buf), ==, buffer_time); } // hop over 2 packets and make another one (gap of 2) b = 5; buffer_time = b * GST_MSECOND * 20; in_buf = generate_test_buffer (buffer_time, TRUE, b, b * 160); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // verify that the jitterbuffer now wait for the latest moment it can push // the first lost buffer (buffer 3) out on (buffer-timestamp (60) + latency (10) = 70) g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert_cmpint (id.time, ==, (3 * GST_MSECOND * 20) + (jb_latency_ms * GST_MSECOND)); // let the time expire... gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), id.time); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); // we should now receive a packet-lost-event for buffer 3 out_event = g_async_queue_timeout_pop (data.event_queue, timeout); g_assert (out_event != NULL); g_assert_cmpint (data.lost_event_count, ==, 1); verify_lost_event (out_event, 3, 3 * GST_MSECOND * 20, GST_MSECOND * 20, FALSE); // buffer 4 now arrives just in time (time is 70, buffer 4 expires at 90) b = 4; buffer_time = b * GST_MSECOND * 20; in_buf = generate_test_buffer (buffer_time, TRUE, b, b * 160); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // verify that buffer 4 made it through! out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert (GST_BUFFER_FLAG_IS_SET (out_buf, GST_BUFFER_FLAG_DISCONT)); g_assert_cmpint (gst_rtp_buffer_get_seq (out_buf), ==, 4); // and see that buffer 5 now arrives in a normal fashion out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert (!GST_BUFFER_FLAG_IS_SET (out_buf, GST_BUFFER_FLAG_DISCONT)); g_assert_cmpint (gst_rtp_buffer_get_seq (out_buf), ==, 5); // should still have only seen 1 packet lost event g_assert_cmpint (data.lost_event_count, ==, 1); destroy_testharness (&data); } GST_END_TEST; GST_START_TEST (test_late_packets_still_makes_lost_events) { TestData data; GstTestClockPendingID id; guint64 timeout; GstBuffer *in_buf, *out_buf; GstEvent *out_event; gint jb_latency_ms = 10; GstClockTime buffer_time; gint b; setup_testharness (&data); timeout = 20 * G_USEC_PER_SEC; g_object_set (data.jitter_buffer, "latency", jb_latency_ms, NULL); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 10 * GST_SECOND); // push the first buffer in in_buf = generate_test_buffer (0 * GST_MSECOND, TRUE, 0, 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); // push some buffers in! for (b = 1; b < 3; b++) { buffer_time = b * GST_MSECOND * 20; in_buf = generate_test_buffer (buffer_time, TRUE, b, b * 160); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // check for the buffer coming out that was pushed in out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert_cmpint (GST_BUFFER_TIMESTAMP (out_buf), ==, buffer_time); } // hop over 2 packets and make another one (gap of 2) b = 5; buffer_time = b * GST_MSECOND * 20; in_buf = generate_test_buffer (buffer_time, TRUE, b, b * 160); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // release the wait g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); // we should now receive a packet-lost-event for buffer 3 and 4 out_event = g_async_queue_timeout_pop (data.event_queue, timeout); g_assert (out_event != NULL); g_assert_cmpint (data.lost_event_count, ==, 1); verify_lost_event (out_event, 3, 3 * GST_MSECOND * 20, GST_MSECOND * 20 * 2, TRUE); // verify that buffer 5 made it through! out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert (GST_BUFFER_FLAG_IS_SET (out_buf, GST_BUFFER_FLAG_DISCONT)); g_assert_cmpint (gst_rtp_buffer_get_seq (out_buf), ==, 5); // should still have only seen 1 packet lost event g_assert_cmpint (data.lost_event_count, ==, 1); destroy_testharness (&data); } GST_END_TEST; GST_START_TEST (test_all_packets_are_timestamped_zero) { TestData data; GstTestClockPendingID id; guint64 timeout; GstBuffer *in_buf, *out_buf; GstEvent *out_event; gint jb_latency_ms = 10; GstClockTime buffer_time; gint b; setup_testharness (&data); timeout = 20 * G_USEC_PER_SEC; g_object_set (data.jitter_buffer, "latency", jb_latency_ms, NULL); gst_test_clock_set_time (GST_TEST_CLOCK (data.clock), 10 * GST_SECOND); // push the first buffer in in_buf = generate_test_buffer (0 * GST_MSECOND, TRUE, 0, 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); // push some buffers in! for (b = 1; b < 3; b++) { in_buf = generate_test_buffer (0, TRUE, b, 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // check for the buffer coming out that was pushed in out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert_cmpint (GST_BUFFER_TIMESTAMP (out_buf), ==, 0); } // hop over 2 packets and make another one (gap of 2) b = 5; in_buf = generate_test_buffer (0, TRUE, b, 0); g_assert_cmpint (gst_pad_push (data.test_src_pad, in_buf), ==, GST_FLOW_OK); // release the wait g_assert (gst_test_clock_wait_for_next_pending_id (GST_TEST_CLOCK (data.clock), &id)); g_assert (gst_test_clock_process_next_clock_id (GST_TEST_CLOCK (data.clock)) == id.clock_id); // we should now receive a packet-lost-event for buffer 3 and 4 out_event = g_async_queue_timeout_pop (data.event_queue, timeout); g_assert (out_event != NULL); g_assert_cmpint (data.lost_event_count, ==, 1); verify_lost_event (out_event, 3, 0, 0, TRUE); // verify that buffer 5 made it through! out_buf = g_async_queue_timeout_pop (data.buf_queue, timeout); g_assert (out_buf != NULL); g_assert (GST_BUFFER_FLAG_IS_SET (out_buf, GST_BUFFER_FLAG_DISCONT)); g_assert_cmpint (gst_rtp_buffer_get_seq (out_buf), ==, 5); // should still have only seen 1 packet lost event g_assert_cmpint (data.lost_event_count, ==, 1); destroy_testharness (&data); } GST_END_TEST; #endif static Suite * rtpjitterbuffer_suite (void) { Suite *s = suite_create ("rtpjitterbuffer"); TCase *tc_chain = tcase_create ("general"); suite_add_tcase (s, tc_chain); tcase_add_test (tc_chain, test_push_forward_seq); tcase_add_test (tc_chain, test_push_backward_seq); tcase_add_test (tc_chain, test_push_unordered); tcase_add_test (tc_chain, test_basetime); #if 0 tcase_add_test (tc_chain, test_only_one_lost_event_on_large_gaps); tcase_add_test (tc_chain, test_two_lost_one_arrives_in_time); tcase_add_test (tc_chain, test_late_packets_still_makes_lost_events); tcase_add_test (tc_chain, test_all_packets_are_timestamped_zero); #endif /* FIXME: test buffer lists */ return s; } GST_CHECK_MAIN (rtpjitterbuffer);