/* GStreamer * Copyright (C) 2011 Wim Taymans <wim.taymans@gmail.be> * * gstmemory.c: memory block handling * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** * SECTION:gstmemory * @title: GstMemory * @short_description: refcounted wrapper for memory blocks * @see_also: #GstBuffer * * GstMemory is a lightweight refcounted object that wraps a region of memory. * They are typically used to manage the data of a #GstBuffer. * * A GstMemory object has an allocated region of memory of maxsize. The maximum * size does not change during the lifetime of the memory object. The memory * also has an offset and size property that specifies the valid range of memory * in the allocated region. * * Memory is usually created by allocators with a gst_allocator_alloc() * method call. When %NULL is used as the allocator, the default allocator will * be used. * * New allocators can be registered with gst_allocator_register(). * Allocators are identified by name and can be retrieved with * gst_allocator_find(). gst_allocator_set_default() can be used to change the * default allocator. * * New memory can be created with gst_memory_new_wrapped() that wraps the memory * allocated elsewhere. * * Refcounting of the memory block is performed with gst_memory_ref() and * gst_memory_unref(). * * The size of the memory can be retrieved and changed with * gst_memory_get_sizes() and gst_memory_resize() respectively. * * Getting access to the data of the memory is performed with gst_memory_map(). * The call will return a pointer to offset bytes into the region of memory. * After the memory access is completed, gst_memory_unmap() should be called. * * Memory can be copied with gst_memory_copy(), which will return a writable * copy. gst_memory_share() will create a new memory block that shares the * memory with an existing memory block at a custom offset and with a custom * size. * * Memory can be efficiently merged when gst_memory_is_span() returns %TRUE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define GST_DISABLE_MINIOBJECT_INLINE_FUNCTIONS #include "gst_private.h" #include "gstmemory.h" GType _gst_memory_type = 0; GST_DEFINE_MINI_OBJECT_TYPE (GstMemory, gst_memory); static GstMemory * _gst_memory_copy (GstMemory * mem) { GST_CAT_DEBUG (GST_CAT_MEMORY, "copy memory %p", mem); return gst_memory_copy (mem, 0, -1); } static void _gst_memory_free (GstMemory * mem) { GstAllocator *allocator; GST_CAT_DEBUG (GST_CAT_MEMORY, "free memory %p", mem); if (mem->parent) { gst_memory_unlock (mem->parent, GST_LOCK_FLAG_EXCLUSIVE); gst_memory_unref (mem->parent); } allocator = mem->allocator; gst_allocator_free (allocator, mem); gst_object_unref (allocator); } /** * gst_memory_init: (skip) * @mem: a #GstMemory * @flags: #GstMemoryFlags * @allocator: the #GstAllocator * @parent: the parent of @mem * @maxsize: the total size of the memory * @align: the alignment of the memory * @offset: The offset in the memory * @size: the size of valid data in the memory * Initializes a newly allocated @mem with the given parameters. This function * will call gst_mini_object_init() with the default memory parameters. */ void gst_memory_init (GstMemory * mem, GstMemoryFlags flags, GstAllocator * allocator, GstMemory * parent, gsize maxsize, gsize align, gsize offset, gsize size) { gst_mini_object_init (GST_MINI_OBJECT_CAST (mem), flags | GST_MINI_OBJECT_FLAG_LOCKABLE, GST_TYPE_MEMORY, (GstMiniObjectCopyFunction) _gst_memory_copy, NULL, (GstMiniObjectFreeFunction) _gst_memory_free); mem->allocator = gst_object_ref (allocator); if (parent) { /* FIXME 2.0: this can fail if the memory is already write locked */ gst_memory_lock (parent, GST_LOCK_FLAG_EXCLUSIVE); gst_memory_ref (parent); } mem->parent = parent; mem->maxsize = maxsize; mem->align = align; mem->offset = offset; mem->size = size; GST_CAT_DEBUG (GST_CAT_MEMORY, "new memory %p, maxsize:%" G_GSIZE_FORMAT " offset:%" G_GSIZE_FORMAT " size:%" G_GSIZE_FORMAT, mem, maxsize, offset, size); } /** * gst_memory_is_type: * @mem: a #GstMemory * @mem_type: a memory type * * Check if @mem if allocated with an allocator for @mem_type. * * Returns: %TRUE if @mem was allocated from an allocator for @mem_type. * * Since: 1.2 */ gboolean gst_memory_is_type (GstMemory * mem, const gchar * mem_type) { g_return_val_if_fail (mem != NULL, FALSE); g_return_val_if_fail (mem->allocator != NULL, FALSE); g_return_val_if_fail (mem_type != NULL, FALSE); return (g_strcmp0 (mem->allocator->mem_type, mem_type) == 0); } /** * gst_memory_get_sizes: * @mem: a #GstMemory * @offset: (out) (allow-none): pointer to offset * @maxsize: (out) (allow-none): pointer to maxsize * * Get the current @size, @offset and @maxsize of @mem. * * Returns: the current size of @mem */ gsize gst_memory_get_sizes (GstMemory * mem, gsize * offset, gsize * maxsize) { g_return_val_if_fail (mem != NULL, 0); if (offset) *offset = mem->offset; if (maxsize) *maxsize = mem->maxsize; return mem->size; } /** * gst_memory_resize: * @mem: a #GstMemory * @offset: a new offset * @size: a new size * * Resize the memory region. @mem should be writable and offset + size should be * less than the maxsize of @mem. * * #GST_MEMORY_FLAG_ZERO_PREFIXED and #GST_MEMORY_FLAG_ZERO_PADDED will be * cleared when offset or padding is increased respectively. */ void gst_memory_resize (GstMemory * mem, gssize offset, gsize size) { g_return_if_fail (mem != NULL); g_return_if_fail (gst_memory_is_writable (mem)); g_return_if_fail (offset >= 0 || mem->offset >= -offset); g_return_if_fail (size + mem->offset + offset <= mem->maxsize); /* if we increase the prefix, we can't guarantee it is still 0 filled */ if ((offset > 0) && GST_MEMORY_IS_ZERO_PREFIXED (mem)) GST_MEMORY_FLAG_UNSET (mem, GST_MEMORY_FLAG_ZERO_PREFIXED); /* if we increase the padding, we can't guarantee it is still 0 filled */ if ((offset + size < mem->size) && GST_MEMORY_IS_ZERO_PADDED (mem)) GST_MEMORY_FLAG_UNSET (mem, GST_MEMORY_FLAG_ZERO_PADDED); mem->offset += offset; mem->size = size; } /** * gst_memory_make_mapped: * @mem: (transfer full): a #GstMemory * @info: (out caller-allocates): pointer for info * @flags: mapping flags * * Create a #GstMemory object that is mapped with @flags. If @mem is mappable * with @flags, this function returns the mapped @mem directly. Otherwise a * mapped copy of @mem is returned. * * This function takes ownership of old @mem and returns a reference to a new * #GstMemory. * * Returns: (transfer full) (nullable): a #GstMemory object mapped * with @flags or %NULL when a mapping is not possible. */ GstMemory * gst_memory_make_mapped (GstMemory * mem, GstMapInfo * info, GstMapFlags flags) { GstMemory *result; if (gst_memory_map (mem, info, flags)) { result = mem; } else { result = gst_memory_copy (mem, 0, -1); gst_memory_unref (mem); if (result == NULL) goto cannot_copy; if (!gst_memory_map (result, info, flags)) goto cannot_map; } return result; /* ERRORS */ cannot_copy: { GST_CAT_DEBUG (GST_CAT_MEMORY, "cannot copy memory %p", mem); return NULL; } cannot_map: { GST_CAT_DEBUG (GST_CAT_MEMORY, "cannot map memory %p with flags %d", mem, flags); gst_memory_unref (result); return NULL; } } /** * gst_memory_map: * @mem: a #GstMemory * @info: (out caller-allocates): pointer for info * @flags: mapping flags * * Fill @info with the pointer and sizes of the memory in @mem that can be * accessed according to @flags. * * This function can return %FALSE for various reasons: * - the memory backed by @mem is not accessible with the given @flags. * - the memory was already mapped with a different mapping. * * @info and its contents remain valid for as long as @mem is valid and * until gst_memory_unmap() is called. * * For each gst_memory_map() call, a corresponding gst_memory_unmap() call * should be done. * * Returns: %TRUE if the map operation was successful. */ gboolean gst_memory_map (GstMemory * mem, GstMapInfo * info, GstMapFlags flags) { g_return_val_if_fail (mem != NULL, FALSE); g_return_val_if_fail (info != NULL, FALSE); if (!gst_memory_lock (mem, (GstLockFlags) flags)) goto lock_failed; info->flags = flags; info->memory = mem; info->size = mem->size; info->maxsize = mem->maxsize - mem->offset; if (mem->allocator->mem_map_full) info->data = mem->allocator->mem_map_full (mem, info, mem->maxsize); else info->data = mem->allocator->mem_map (mem, mem->maxsize, flags); if (G_UNLIKELY (info->data == NULL)) goto error; info->data = info->data + mem->offset; return TRUE; /* ERRORS */ lock_failed: { GST_CAT_DEBUG (GST_CAT_MEMORY, "mem %p: lock %d failed", mem, flags); memset (info, 0, sizeof (GstMapInfo)); return FALSE; } error: { /* something went wrong, restore the original state again * it is up to the subclass to log an error if needed. */ GST_CAT_INFO (GST_CAT_MEMORY, "mem %p: subclass map failed", mem); gst_memory_unlock (mem, (GstLockFlags) flags); memset (info, 0, sizeof (GstMapInfo)); return FALSE; } } /** * gst_memory_unmap: * @mem: a #GstMemory * @info: a #GstMapInfo * * Release the memory obtained with gst_memory_map() */ void gst_memory_unmap (GstMemory * mem, GstMapInfo * info) { g_return_if_fail (mem != NULL); g_return_if_fail (info != NULL); g_return_if_fail (info->memory == mem); if (mem->allocator->mem_unmap_full) mem->allocator->mem_unmap_full (mem, info); else mem->allocator->mem_unmap (mem); gst_memory_unlock (mem, (GstLockFlags) info->flags); } /** * gst_memory_copy: * @mem: a #GstMemory * @offset: offset to copy from * @size: size to copy, or -1 to copy to the end of the memory region * * Return a copy of @size bytes from @mem starting from @offset. This copy is * guaranteed to be writable. @size can be set to -1 to return a copy * from @offset to the end of the memory region. * * Returns: a new #GstMemory. */ GstMemory * gst_memory_copy (GstMemory * mem, gssize offset, gssize size) { GstMemory *copy; g_return_val_if_fail (mem != NULL, NULL); copy = mem->allocator->mem_copy (mem, offset, size); return copy; } /** * gst_memory_share: * @mem: a #GstMemory * @offset: offset to share from * @size: size to share, or -1 to share to the end of the memory region * * Return a shared copy of @size bytes from @mem starting from @offset. No * memory copy is performed and the memory region is simply shared. The result * is guaranteed to be non-writable. @size can be set to -1 to return a shared * copy from @offset to the end of the memory region. * * Returns: a new #GstMemory. */ GstMemory * gst_memory_share (GstMemory * mem, gssize offset, gssize size) { GstMemory *shared; g_return_val_if_fail (mem != NULL, NULL); g_return_val_if_fail (!GST_MEMORY_FLAG_IS_SET (mem, GST_MEMORY_FLAG_NO_SHARE), NULL); /* whether we can lock the memory exclusively */ /* in order to maintain backwards compatibility by not requiring subclasses * to lock the memory themselves and propagate the possible failure in their * mem_share implementation */ /* FIXME 2.0: remove and fix gst_memory_init() and/or all memory subclasses * to propagate this failure case */ if (!gst_memory_lock (mem, GST_LOCK_FLAG_EXCLUSIVE)) return NULL; /* double lock to ensure we are not mapped writable without an * exclusive lock. */ if (!gst_memory_lock (mem, GST_LOCK_FLAG_EXCLUSIVE)) { gst_memory_unlock (mem, GST_LOCK_FLAG_EXCLUSIVE); return NULL; } shared = mem->allocator->mem_share (mem, offset, size); /* unlocking before calling the subclass would be racy */ gst_memory_unlock (mem, GST_LOCK_FLAG_EXCLUSIVE); gst_memory_unlock (mem, GST_LOCK_FLAG_EXCLUSIVE); return shared; } /** * gst_memory_is_span: * @mem1: a #GstMemory * @mem2: a #GstMemory * @offset: (out): a pointer to a result offset * * Check if @mem1 and mem2 share the memory with a common parent memory object * and that the memory is contiguous. * * If this is the case, the memory of @mem1 and @mem2 can be merged * efficiently by performing gst_memory_share() on the parent object from * the returned @offset. * * Returns: %TRUE if the memory is contiguous and of a common parent. */ gboolean gst_memory_is_span (GstMemory * mem1, GstMemory * mem2, gsize * offset) { g_return_val_if_fail (mem1 != NULL, FALSE); g_return_val_if_fail (mem2 != NULL, FALSE); /* need to have the same allocators */ if (mem1->allocator != mem2->allocator) return FALSE; /* need to have the same parent */ if (mem1->parent == NULL || mem1->parent != mem2->parent) return FALSE; /* and memory is contiguous */ if (!mem1->allocator->mem_is_span (mem1, mem2, offset)) return FALSE; return TRUE; } void _priv_gst_memory_initialize (void) { _gst_memory_type = gst_memory_get_type (); } /** * gst_memory_ref: (skip) * @memory: The memory to refcount * * Increase the refcount of this memory. * * Returns: (transfer full): @memory (for convenience when doing assignments) */ GstMemory * gst_memory_ref (GstMemory * memory) { return (GstMemory *) gst_mini_object_ref (GST_MINI_OBJECT_CAST (memory)); } /** * gst_memory_unref: (skip) * @memory: (transfer full): the memory to refcount * * Decrease the refcount of a memory, freeing it if the refcount reaches 0. */ void gst_memory_unref (GstMemory * memory) { gst_mini_object_unref (GST_MINI_OBJECT_CAST (memory)); }