/* -*- c-basic-offset: 2 -*- * vi:si:et:sw=2:sts=8:ts=8:expandtab * * GStreamer * Copyright (C) 1999-2001 Erik Walthinsen * Copyright (C) 2005 Andy Wingo * Copyright (C) 2010 Sebastian Dröge * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:element-volume * * The volume element changes the volume of the audio data. * * * Example launch line * |[ * gst-launch -v -m audiotestsrc ! volume volume=0.5 ! level ! fakesink silent=TRUE * ]| This pipeline shows that the level of audiotestsrc has been halved * (peak values are around -6 dB and RMS around -9 dB) compared to * the same pipeline without the volume element. * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #ifdef HAVE_ORC #include #else #define orc_memset memset #endif #include "gstvolumeorc.h" #include "gstvolume.h" /* some defines for audio processing */ /* the volume factor is a range from 0.0 to (arbitrary) VOLUME_MAX_DOUBLE = 10.0 * we map 1.0 to VOLUME_UNITY_INT* */ #define VOLUME_UNITY_INT8 8 /* internal int for unity 2^(8-5) */ #define VOLUME_UNITY_INT8_BIT_SHIFT 3 /* number of bits to shift for unity */ #define VOLUME_UNITY_INT16 2048 /* internal int for unity 2^(16-5) */ #define VOLUME_UNITY_INT16_BIT_SHIFT 11 /* number of bits to shift for unity */ #define VOLUME_UNITY_INT24 524288 /* internal int for unity 2^(24-5) */ #define VOLUME_UNITY_INT24_BIT_SHIFT 19 /* number of bits to shift for unity */ #define VOLUME_UNITY_INT32 134217728 /* internal int for unity 2^(32-5) */ #define VOLUME_UNITY_INT32_BIT_SHIFT 27 #define VOLUME_MAX_DOUBLE 10.0 #define VOLUME_MAX_INT8 G_MAXINT8 #define VOLUME_MIN_INT8 G_MININT8 #define VOLUME_MAX_INT16 G_MAXINT16 #define VOLUME_MIN_INT16 G_MININT16 #define VOLUME_MAX_INT24 8388607 #define VOLUME_MIN_INT24 -8388608 #define VOLUME_MAX_INT32 G_MAXINT32 #define VOLUME_MIN_INT32 G_MININT32 /* number of steps we use for the mixer interface to go from 0.0 to 1.0 */ # define VOLUME_STEPS 100 #define GST_CAT_DEFAULT gst_volume_debug GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT); /* Filter signals and args */ enum { /* FILL ME */ LAST_SIGNAL }; #define DEFAULT_PROP_MUTE FALSE #define DEFAULT_PROP_VOLUME 1.0 enum { PROP_0, PROP_MUTE, PROP_VOLUME }; #if G_BYTE_ORDER == G_LITTLE_ENDIAN #define ALLOWED_CAPS \ GST_AUDIO_CAPS_MAKE ("{ F32LE, F64LE, S8, S16LE, S24LE, S32LE }") \ ", layout = (string) interleaved" #else #define ALLOWED_CAPS \ GST_AUDIO_CAPS_MAKE ("{ F32BE, F64BE, S8, S16BE, S24BE, S32BE }") \ ", layout = (string) { interleaved, non-interleaved }" #endif static void gst_volume_mixer_init (GstMixerInterface * iface); #define gst_volume_parent_class parent_class G_DEFINE_TYPE_WITH_CODE (GstVolume, gst_volume, GST_TYPE_AUDIO_FILTER, G_IMPLEMENT_INTERFACE (GST_TYPE_MIXER, gst_volume_mixer_init); G_IMPLEMENT_INTERFACE (GST_TYPE_STREAM_VOLUME, NULL)); static void volume_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void volume_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static void volume_before_transform (GstBaseTransform * base, GstBuffer * buffer); static GstFlowReturn volume_transform_ip (GstBaseTransform * base, GstBuffer * outbuf); static gboolean volume_stop (GstBaseTransform * base); static gboolean volume_setup (GstAudioFilter * filter, const GstAudioInfo * info); static void volume_process_double (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_double (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); static void volume_process_float (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_float (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); static void volume_process_int32 (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_int32_clamp (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_int32_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); static void volume_process_int24 (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_int24_clamp (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_int24_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); static void volume_process_int16 (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_int16_clamp (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_int16_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); static void volume_process_int8 (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_int8_clamp (GstVolume * self, gpointer bytes, guint n_bytes); static void volume_process_controlled_int8_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes); /* helper functions */ static gboolean volume_choose_func (GstVolume * self) { GstAudioFilter *filter = GST_AUDIO_FILTER (self); GstAudioFormat format; self->process = NULL; self->process_controlled = NULL; format = GST_AUDIO_FORMAT_INFO_FORMAT (filter->info.finfo); if (format == GST_AUDIO_FORMAT_UNKNOWN) return FALSE; switch (format) { case GST_AUDIO_FORMAT_S32: /* only clamp if the gain is greater than 1.0 */ if (self->current_vol_i32 > VOLUME_UNITY_INT32) { self->process = volume_process_int32_clamp; } else { self->process = volume_process_int32; } self->process_controlled = volume_process_controlled_int32_clamp; break; case GST_AUDIO_FORMAT_S24: /* only clamp if the gain is greater than 1.0 */ if (self->current_vol_i24 > VOLUME_UNITY_INT24) { self->process = volume_process_int24_clamp; } else { self->process = volume_process_int24; } self->process_controlled = volume_process_controlled_int24_clamp; break; case GST_AUDIO_FORMAT_S16: /* only clamp if the gain is greater than 1.0 */ if (self->current_vol_i16 > VOLUME_UNITY_INT16) { self->process = volume_process_int16_clamp; } else { self->process = volume_process_int16; } self->process_controlled = volume_process_controlled_int16_clamp; break; case GST_AUDIO_FORMAT_S8: /* only clamp if the gain is greater than 1.0 */ if (self->current_vol_i8 > VOLUME_UNITY_INT8) { self->process = volume_process_int8_clamp; } else { self->process = volume_process_int8; } self->process_controlled = volume_process_controlled_int8_clamp; break; case GST_AUDIO_FORMAT_F32: self->process = volume_process_float; self->process_controlled = volume_process_controlled_float; break; case GST_AUDIO_FORMAT_F64: self->process = volume_process_double; self->process_controlled = volume_process_controlled_double; break; default: break; } return (self->process != NULL); } static gboolean volume_update_volume (GstVolume * self, gfloat volume, gboolean mute) { gboolean passthrough; gboolean res; GST_DEBUG_OBJECT (self, "configure mute %d, volume %f", mute, volume); if (mute) { self->current_mute = TRUE; self->current_volume = 0.0; self->current_vol_i8 = 0; self->current_vol_i16 = 0; self->current_vol_i24 = 0; self->current_vol_i32 = 0; passthrough = FALSE; } else { self->current_mute = FALSE; self->current_volume = volume; self->current_vol_i8 = volume * VOLUME_UNITY_INT8; self->current_vol_i16 = volume * VOLUME_UNITY_INT16; self->current_vol_i24 = volume * VOLUME_UNITY_INT24; self->current_vol_i32 = volume * VOLUME_UNITY_INT32; passthrough = (self->current_vol_i16 == VOLUME_UNITY_INT16); } /* If a controller is used, never use passthrough mode * because the property can change from 1.0 to something * else in the middle of a buffer. */ passthrough &= !gst_object_has_active_control_bindings (GST_OBJECT (self)); GST_DEBUG_OBJECT (self, "set passthrough %d", passthrough); gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (self), passthrough); res = self->negotiated = volume_choose_func (self); return res; } /* Mixer interface */ static const GList * gst_volume_list_tracks (GstMixer * mixer) { GstVolume *self = GST_VOLUME (mixer); g_return_val_if_fail (self != NULL, NULL); g_return_val_if_fail (GST_IS_VOLUME (self), NULL); return self->tracklist; } static void gst_volume_set_volume (GstMixer * mixer, GstMixerTrack * track, gint * volumes) { GstVolume *self = GST_VOLUME (mixer); g_return_if_fail (self != NULL); g_return_if_fail (GST_IS_VOLUME (self)); GST_OBJECT_LOCK (self); self->volume = (gfloat) volumes[0] / VOLUME_STEPS; GST_OBJECT_UNLOCK (self); } static void gst_volume_get_volume (GstMixer * mixer, GstMixerTrack * track, gint * volumes) { GstVolume *self = GST_VOLUME (mixer); g_return_if_fail (self != NULL); g_return_if_fail (GST_IS_VOLUME (self)); GST_OBJECT_LOCK (self); volumes[0] = (gint) self->volume * VOLUME_STEPS; GST_OBJECT_UNLOCK (self); } static void gst_volume_set_mute (GstMixer * mixer, GstMixerTrack * track, gboolean mute) { GstVolume *self = GST_VOLUME (mixer); g_return_if_fail (self != NULL); g_return_if_fail (GST_IS_VOLUME (self)); GST_OBJECT_LOCK (self); self->mute = mute; GST_OBJECT_UNLOCK (self); } static void gst_volume_mixer_init (GstMixerInterface * iface) { GST_MIXER_TYPE (iface) = GST_MIXER_SOFTWARE; /* default virtual functions */ iface->list_tracks = gst_volume_list_tracks; iface->set_volume = gst_volume_set_volume; iface->get_volume = gst_volume_get_volume; iface->set_mute = gst_volume_set_mute; } /* Element class */ static void gst_volume_dispose (GObject * object) { GstVolume *volume = GST_VOLUME (object); if (volume->tracklist) { if (volume->tracklist->data) g_object_unref (volume->tracklist->data); g_list_free (volume->tracklist); volume->tracklist = NULL; } G_OBJECT_CLASS (parent_class)->dispose (object); } static void gst_volume_class_init (GstVolumeClass * klass) { GObjectClass *gobject_class; GstElementClass *element_class; GstBaseTransformClass *trans_class; GstAudioFilterClass *filter_class; GstCaps *caps; gobject_class = (GObjectClass *) klass; element_class = (GstElementClass *) klass; trans_class = (GstBaseTransformClass *) klass; filter_class = (GstAudioFilterClass *) (klass); gobject_class->set_property = volume_set_property; gobject_class->get_property = volume_get_property; gobject_class->dispose = gst_volume_dispose; g_object_class_install_property (gobject_class, PROP_MUTE, g_param_spec_boolean ("mute", "Mute", "mute channel", DEFAULT_PROP_MUTE, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_VOLUME, g_param_spec_double ("volume", "Volume", "volume factor, 1.0=100%", 0.0, VOLUME_MAX_DOUBLE, DEFAULT_PROP_VOLUME, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); gst_element_class_set_details_simple (element_class, "Volume", "Filter/Effect/Audio", "Set volume on audio/raw streams", "Andy Wingo "); caps = gst_caps_from_string (ALLOWED_CAPS); gst_audio_filter_class_add_pad_templates (filter_class, caps); gst_caps_unref (caps); trans_class->before_transform = GST_DEBUG_FUNCPTR (volume_before_transform); trans_class->transform_ip = GST_DEBUG_FUNCPTR (volume_transform_ip); trans_class->stop = GST_DEBUG_FUNCPTR (volume_stop); filter_class->setup = GST_DEBUG_FUNCPTR (volume_setup); } static void gst_volume_init (GstVolume * self) { GstMixerTrack *track = NULL; self->mute = DEFAULT_PROP_MUTE;; self->volume = DEFAULT_PROP_VOLUME; self->tracklist = NULL; self->negotiated = FALSE; track = g_object_new (GST_TYPE_MIXER_TRACK, NULL); if (GST_IS_MIXER_TRACK (track)) { track->label = g_strdup ("volume"); track->num_channels = 1; track->min_volume = 0; track->max_volume = VOLUME_STEPS; track->flags = GST_MIXER_TRACK_SOFTWARE; self->tracklist = g_list_append (self->tracklist, track); } gst_base_transform_set_gap_aware (GST_BASE_TRANSFORM (self), TRUE); } static void volume_process_double (GstVolume * self, gpointer bytes, guint n_bytes) { gdouble *data = (gdouble *) bytes; guint num_samples = n_bytes / sizeof (gdouble); orc_scalarmultiply_f64_ns (data, self->current_volume, num_samples); } static void volume_process_controlled_double (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gdouble *data = (gdouble *) bytes; guint num_samples = n_bytes / (sizeof (gdouble) * channels); guint i, j; gdouble vol; if (channels == 1) { orc_process_controlled_f64_1ch (data, volume, num_samples); } else { for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { *data++ *= vol; } } } } static void volume_process_float (GstVolume * self, gpointer bytes, guint n_bytes) { gfloat *data = (gfloat *) bytes; guint num_samples = n_bytes / sizeof (gfloat); orc_scalarmultiply_f32_ns (data, self->current_volume, num_samples); } static void volume_process_controlled_float (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gfloat *data = (gfloat *) bytes; guint num_samples = n_bytes / (sizeof (gfloat) * channels); guint i, j; gdouble vol; if (channels == 1) { orc_process_controlled_f32_1ch (data, volume, num_samples); } else if (channels == 2) { orc_process_controlled_f32_2ch (data, volume, num_samples); } else { for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { *data++ *= vol; } } } } static void volume_process_int32 (GstVolume * self, gpointer bytes, guint n_bytes) { gint32 *data = (gint32 *) bytes; guint num_samples = n_bytes / sizeof (gint); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT32_BIT_SHIFT == 27); orc_process_int32 (data, self->current_vol_i32, num_samples); } static void volume_process_int32_clamp (GstVolume * self, gpointer bytes, guint n_bytes) { gint32 *data = (gint32 *) bytes; guint num_samples = n_bytes / sizeof (gint); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT32_BIT_SHIFT == 27); orc_process_int32_clamp (data, self->current_vol_i32, num_samples); } static void volume_process_controlled_int32_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gint32 *data = (gint32 *) bytes; guint i, j; guint num_samples = n_bytes / (sizeof (gint32) * channels); gdouble vol, val; if (channels == 1) { orc_process_controlled_int32_1ch (data, volume, num_samples); } else { for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { val = *data * vol; *data++ = (gint32) CLAMP (val, VOLUME_MIN_INT32, VOLUME_MAX_INT32); } } } } #if (G_BYTE_ORDER == G_LITTLE_ENDIAN) #define get_unaligned_i24(_x) ( (((guint8*)_x)[0]) | ((((guint8*)_x)[1]) << 8) | ((((gint8*)_x)[2]) << 16) ) #define write_unaligned_u24(_x,samp) \ G_STMT_START { \ *(_x)++ = samp & 0xFF; \ *(_x)++ = (samp >> 8) & 0xFF; \ *(_x)++ = (samp >> 16) & 0xFF; \ } G_STMT_END #else /* BIG ENDIAN */ #define get_unaligned_i24(_x) ( (((guint8*)_x)[2]) | ((((guint8*)_x)[1]) << 8) | ((((gint8*)_x)[0]) << 16) ) #define write_unaligned_u24(_x,samp) \ G_STMT_START { \ *(_x)++ = (samp >> 16) & 0xFF; \ *(_x)++ = (samp >> 8) & 0xFF; \ *(_x)++ = samp & 0xFF; \ } G_STMT_END #endif static void volume_process_int24 (GstVolume * self, gpointer bytes, guint n_bytes) { gint8 *data = (gint8 *) bytes; /* treat the data as a byte stream */ guint i, num_samples; guint32 samp; gint64 val; num_samples = n_bytes / (sizeof (gint8) * 3); for (i = 0; i < num_samples; i++) { samp = get_unaligned_i24 (data); val = (gint32) samp; val = (((gint64) self->current_vol_i24 * val) >> VOLUME_UNITY_INT24_BIT_SHIFT); samp = (guint32) val; /* write the value back into the stream */ write_unaligned_u24 (data, samp); } } static void volume_process_int24_clamp (GstVolume * self, gpointer bytes, guint n_bytes) { gint8 *data = (gint8 *) bytes; /* treat the data as a byte stream */ guint i, num_samples; guint32 samp; gint64 val; num_samples = n_bytes / (sizeof (gint8) * 3); for (i = 0; i < num_samples; i++) { samp = get_unaligned_i24 (data); val = (gint32) samp; val = (((gint64) self->current_vol_i24 * val) >> VOLUME_UNITY_INT24_BIT_SHIFT); samp = (guint32) CLAMP (val, VOLUME_MIN_INT24, VOLUME_MAX_INT24); /* write the value back into the stream */ write_unaligned_u24 (data, samp); } } static void volume_process_controlled_int24_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gint8 *data = (gint8 *) bytes; /* treat the data as a byte stream */ guint i, j; guint num_samples = n_bytes / (sizeof (gint8) * 3 * channels); gdouble vol, val; for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { val = get_unaligned_i24 (data) * vol; val = CLAMP (val, VOLUME_MIN_INT24, VOLUME_MAX_INT24); write_unaligned_u24 (data, (gint32) val); } } } static void volume_process_int16 (GstVolume * self, gpointer bytes, guint n_bytes) { gint16 *data = (gint16 *) bytes; guint num_samples = n_bytes / sizeof (gint16); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT16_BIT_SHIFT == 11); orc_process_int16 (data, self->current_vol_i16, num_samples); } static void volume_process_int16_clamp (GstVolume * self, gpointer bytes, guint n_bytes) { gint16 *data = (gint16 *) bytes; guint num_samples = n_bytes / sizeof (gint16); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT16_BIT_SHIFT == 11); orc_process_int16_clamp (data, self->current_vol_i16, num_samples); } static void volume_process_controlled_int16_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gint16 *data = (gint16 *) bytes; guint i, j; guint num_samples = n_bytes / (sizeof (gint16) * channels); gdouble vol, val; if (channels == 1) { orc_process_controlled_int16_1ch (data, volume, num_samples); } else if (channels == 2) { orc_process_controlled_int16_2ch (data, volume, num_samples); } else { for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { val = *data * vol; *data++ = (gint16) CLAMP (val, VOLUME_MIN_INT16, VOLUME_MAX_INT16); } } } } static void volume_process_int8 (GstVolume * self, gpointer bytes, guint n_bytes) { gint8 *data = (gint8 *) bytes; guint num_samples = n_bytes / sizeof (gint8); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT8_BIT_SHIFT == 3); orc_process_int8 (data, self->current_vol_i8, num_samples); } static void volume_process_int8_clamp (GstVolume * self, gpointer bytes, guint n_bytes) { gint8 *data = (gint8 *) bytes; guint num_samples = n_bytes / sizeof (gint8); /* hard coded in volume.orc */ g_assert (VOLUME_UNITY_INT8_BIT_SHIFT == 3); orc_process_int8_clamp (data, self->current_vol_i8, num_samples); } static void volume_process_controlled_int8_clamp (GstVolume * self, gpointer bytes, gdouble * volume, guint channels, guint n_bytes) { gint8 *data = (gint8 *) bytes; guint i, j; guint num_samples = n_bytes / (sizeof (gint8) * channels); gdouble val, vol; if (channels == 1) { orc_process_controlled_int8_1ch (data, volume, num_samples); } else if (channels == 2) { orc_process_controlled_int8_2ch (data, volume, num_samples); } else { for (i = 0; i < num_samples; i++) { vol = *volume++; for (j = 0; j < channels; j++) { val = *data * vol; *data++ = (gint8) CLAMP (val, VOLUME_MIN_INT8, VOLUME_MAX_INT8); } } } } /* GstBaseTransform vmethod implementations */ /* get notified of caps and plug in the correct process function */ static gboolean volume_setup (GstAudioFilter * filter, const GstAudioInfo * info) { gboolean res; GstVolume *self = GST_VOLUME (filter); gfloat volume; gboolean mute; GST_OBJECT_LOCK (self); volume = self->volume; mute = self->mute; GST_OBJECT_UNLOCK (self); res = volume_update_volume (self, volume, mute); if (!res) { GST_ELEMENT_ERROR (self, CORE, NEGOTIATION, ("Invalid incoming format"), (NULL)); } self->negotiated = res; return res; } static gboolean volume_stop (GstBaseTransform * base) { GstVolume *self = GST_VOLUME (base); g_free (self->volumes); self->volumes = NULL; self->volumes_count = 0; g_free (self->mutes); self->mutes = NULL; self->mutes_count = 0; return GST_CALL_PARENT_WITH_DEFAULT (GST_BASE_TRANSFORM_CLASS, stop, (base), TRUE); } static void volume_before_transform (GstBaseTransform * base, GstBuffer * buffer) { GstClockTime timestamp; GstVolume *self = GST_VOLUME (base); gfloat volume; gboolean mute; timestamp = GST_BUFFER_TIMESTAMP (buffer); timestamp = gst_segment_to_stream_time (&base->segment, GST_FORMAT_TIME, timestamp); GST_DEBUG_OBJECT (base, "sync to %" GST_TIME_FORMAT, GST_TIME_ARGS (timestamp)); if (GST_CLOCK_TIME_IS_VALID (timestamp)) gst_object_sync_values (GST_OBJECT (self), timestamp); /* get latest values */ GST_OBJECT_LOCK (self); volume = self->volume; mute = self->mute; GST_OBJECT_UNLOCK (self); if ((volume != self->current_volume) || (mute != self->current_mute)) { /* the volume or mute was updated, update our internal state before * we continue processing. */ volume_update_volume (self, volume, mute); } } /* call the plugged-in process function for this instance * needs to be done with this indirection since volume_transform is * a class-global method */ static GstFlowReturn volume_transform_ip (GstBaseTransform * base, GstBuffer * outbuf) { GstAudioFilter *filter = GST_AUDIO_FILTER_CAST (base); GstVolume *self = GST_VOLUME (base); guint8 *data; gsize size; GstControlSource *mute_csource, *volume_csource; if (G_UNLIKELY (!self->negotiated)) goto not_negotiated; /* don't process data in passthrough-mode */ if (gst_base_transform_is_passthrough (base) || GST_BUFFER_FLAG_IS_SET (outbuf, GST_BUFFER_FLAG_GAP)) return GST_FLOW_OK; data = gst_buffer_map (outbuf, &size, NULL, GST_MAP_READWRITE); mute_csource = gst_object_get_control_source (GST_OBJECT (self), "mute"); volume_csource = gst_object_get_control_source (GST_OBJECT (self), "volume"); if (mute_csource || (volume_csource && !self->current_mute)) { gint rate = GST_AUDIO_INFO_RATE (&filter->info); gint width = GST_AUDIO_FORMAT_INFO_WIDTH (filter->info.finfo) / 8; gint channels = GST_AUDIO_INFO_CHANNELS (&filter->info); guint nsamples = size / (width * channels); GstClockTime interval = gst_util_uint64_scale_int (1, GST_SECOND, rate); GstClockTime ts = GST_BUFFER_TIMESTAMP (outbuf); gboolean use_mutes = FALSE; ts = gst_segment_to_stream_time (&base->segment, GST_FORMAT_TIME, ts); if (self->mutes_count < nsamples && mute_csource) { self->mutes = g_realloc (self->mutes, sizeof (gboolean) * nsamples); self->mutes_count = nsamples; } if (self->volumes_count < nsamples) { self->volumes = g_realloc (self->volumes, sizeof (gdouble) * nsamples); self->volumes_count = nsamples; } if (mute_csource) { if (!gst_control_source_get_value_array (mute_csource, ts, interval, nsamples, (gpointer) self->mutes)) goto controller_failure; gst_object_unref (mute_csource); mute_csource = NULL; use_mutes = TRUE; } else { g_free (self->mutes); self->mutes = NULL; self->mutes_count = 0; } if (volume_csource) { if (!gst_control_source_get_value_array (volume_csource, ts, interval, nsamples, (gpointer) self->volumes)) goto controller_failure; gst_object_unref (volume_csource); volume_csource = NULL; } else { orc_memset_f64 (self->volumes, self->current_volume, nsamples); } if (use_mutes) { orc_prepare_volumes (self->volumes, self->mutes, nsamples); } self->process_controlled (self, data, self->volumes, channels, size); return GST_FLOW_OK; } else if (volume_csource) { gst_object_unref (volume_csource); } if (self->current_volume == 0.0 || self->current_mute) { orc_memset (data, 0, size); GST_BUFFER_FLAG_SET (outbuf, GST_BUFFER_FLAG_GAP); } else if (self->current_volume != 1.0) { self->process (self, data, size); } gst_buffer_unmap (outbuf, data, size); return GST_FLOW_OK; /* ERRORS */ not_negotiated: { GST_ELEMENT_ERROR (self, CORE, NEGOTIATION, ("No format was negotiated"), (NULL)); return GST_FLOW_NOT_NEGOTIATED; } controller_failure: { if (mute_csource) gst_object_unref (mute_csource); if (volume_csource) gst_object_unref (volume_csource); GST_ELEMENT_ERROR (self, CORE, FAILED, ("Failed to get values from controller"), (NULL)); gst_buffer_unmap (outbuf, data, size); return GST_FLOW_ERROR; } } static void volume_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstVolume *self = GST_VOLUME (object); switch (prop_id) { case PROP_MUTE: GST_OBJECT_LOCK (self); self->mute = g_value_get_boolean (value); GST_OBJECT_UNLOCK (self); break; case PROP_VOLUME: GST_OBJECT_LOCK (self); self->volume = g_value_get_double (value); GST_OBJECT_UNLOCK (self); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void volume_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstVolume *self = GST_VOLUME (object); switch (prop_id) { case PROP_MUTE: GST_OBJECT_LOCK (self); g_value_set_boolean (value, self->mute); GST_OBJECT_UNLOCK (self); break; case PROP_VOLUME: GST_OBJECT_LOCK (self); g_value_set_double (value, self->volume); GST_OBJECT_UNLOCK (self); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static gboolean plugin_init (GstPlugin * plugin) { gst_volume_orc_init (); GST_DEBUG_CATEGORY_INIT (GST_CAT_DEFAULT, "volume", 0, "Volume gain"); /* ref class from a thread-safe context to work around missing bit of * thread-safety in GObject */ g_type_class_ref (GST_TYPE_MIXER_TRACK); return gst_element_register (plugin, "volume", GST_RANK_NONE, GST_TYPE_VOLUME); } GST_PLUGIN_DEFINE (GST_VERSION_MAJOR, GST_VERSION_MINOR, "volume", "plugin for controlling audio volume", plugin_init, VERSION, GST_LICENSE, GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN);