/* * GStreamer * Copyright (C) 2007 Sebastian Dröge * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:element-audiodynamic * @short_description: Compressor and Expander * * * This element can act as a compressor or expander. A compressor changes the * amplitude of all samples above a specific threshold with a specific ratio, * a expander does the same for all samples below a specific threshold. If * soft-knee mode is selected the ratio is applied smoothly. * Example launch line * * * gst-launch audiotestsrc wave=saw ! audiodynamic characteristics=soft-knee mode=compressor threshold=0.5 rate=0.5 ! alsasink * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiodynamic characteristics=hard-knee mode=expander threshold=0.2 rate=4.0 ! alsasink * gst-launch audiotestsrc wave=saw ! audioconvert ! audiodynamic ! audioconvert ! alsasink * * * */ /* TODO: Implement attack and release parameters */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "audiodynamic.h" #define GST_CAT_DEFAULT gst_audio_dynamic_debug GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT); static const GstElementDetails element_details = GST_ELEMENT_DETAILS ("AudioDynamic", "Filter/Effect/Audio", "Compressor and Expander", "Sebastian Dröge "); /* Filter signals and args */ enum { /* FILL ME */ LAST_SIGNAL }; enum { PROP_0, PROP_CHARACTERISTICS, PROP_MODE, PROP_THRESHOLD, PROP_RATIO }; #define ALLOWED_CAPS \ "audio/x-raw-int," \ " depth=(int)16," \ " width=(int)16," \ " endianness=(int)BYTE_ORDER," \ " signed=(bool)TRUE," \ " rate=(int)[1,MAX]," \ " channels=(int)[1,MAX]; " \ "audio/x-raw-float," \ " width=(int)32," \ " endianness=(int)BYTE_ORDER," \ " rate=(int)[1,MAX]," \ " channels=(int)[1,MAX]" #define DEBUG_INIT(bla) \ GST_DEBUG_CATEGORY_INIT (gst_audio_dynamic_debug, "audiodynamic", 0, "audiodynamic element"); GST_BOILERPLATE_FULL (GstAudioDynamic, gst_audio_dynamic, GstAudioFilter, GST_TYPE_AUDIO_FILTER, DEBUG_INIT); static void gst_audio_dynamic_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_audio_dynamic_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static gboolean gst_audio_dynamic_setup (GstAudioFilter * filter, GstRingBufferSpec * format); static GstFlowReturn gst_audio_dynamic_transform_ip (GstBaseTransform * base, GstBuffer * buf); static void gst_audio_dynamic_transform_hard_knee_compressor_int (GstAudioDynamic * filter, gint16 * data, guint num_samples); static void gst_audio_dynamic_transform_hard_knee_compressor_float (GstAudioDynamic * filter, gfloat * data, guint num_samples); static void gst_audio_dynamic_transform_soft_knee_compressor_int (GstAudioDynamic * filter, gint16 * data, guint num_samples); static void gst_audio_dynamic_transform_soft_knee_compressor_float (GstAudioDynamic * filter, gfloat * data, guint num_samples); static void gst_audio_dynamic_transform_hard_knee_expander_int (GstAudioDynamic * filter, gint16 * data, guint num_samples); static void gst_audio_dynamic_transform_hard_knee_expander_float (GstAudioDynamic * filter, gfloat * data, guint num_samples); static void gst_audio_dynamic_transform_soft_knee_expander_int (GstAudioDynamic * filter, gint16 * data, guint num_samples); static void gst_audio_dynamic_transform_soft_knee_expander_float (GstAudioDynamic * filter, gfloat * data, guint num_samples); static GstAudioDynamicProcessFunc process_functions[] = { (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_hard_knee_compressor_int, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_hard_knee_compressor_float, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_soft_knee_compressor_int, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_soft_knee_compressor_float, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_hard_knee_expander_int, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_hard_knee_expander_float, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_soft_knee_expander_int, (GstAudioDynamicProcessFunc) gst_audio_dynamic_transform_soft_knee_expander_float }; enum { CHARACTERISTICS_HARD_KNEE = 0, CHARACTERISTICS_SOFT_KNEE }; #define GST_TYPE_AUDIO_DYNAMIC_CHARACTERISTICS (gst_audio_dynamic_characteristics_get_type ()) static GType gst_audio_dynamic_characteristics_get_type (void) { static GType gtype = 0; if (gtype == 0) { static const GEnumValue values[] = { {CHARACTERISTICS_HARD_KNEE, "Hard Knee (default)", "hard-knee"}, {CHARACTERISTICS_SOFT_KNEE, "Soft Knee (smooth)", "soft-knee"}, {0, NULL, NULL} }; gtype = g_enum_register_static ("GstAudioDynamicCharacteristics", values); } return gtype; } enum { MODE_COMPRESSOR = 0, MODE_EXPANDER }; #define GST_TYPE_AUDIO_DYNAMIC_MODE (gst_audio_dynamic_mode_get_type ()) static GType gst_audio_dynamic_mode_get_type (void) { static GType gtype = 0; if (gtype == 0) { static const GEnumValue values[] = { {MODE_COMPRESSOR, "Compressor (default)", "compressor"}, {MODE_EXPANDER, "Expander", "expander"}, {0, NULL, NULL} }; gtype = g_enum_register_static ("GstAudioDynamicMode", values); } return gtype; } static gboolean gst_audio_dynamic_set_process_function (GstAudioDynamic * filter) { gint func_index; func_index = (filter->mode == MODE_COMPRESSOR) ? 0 : 4; func_index += (filter->characteristics == CHARACTERISTICS_HARD_KNEE) ? 0 : 2; func_index += (GST_AUDIO_FILTER (filter)->format.type == GST_BUFTYPE_FLOAT) ? 1 : 0; if (func_index >= 0 && func_index < 8) { filter->process = process_functions[func_index]; return TRUE; } return FALSE; } /* GObject vmethod implementations */ static void gst_audio_dynamic_base_init (gpointer klass) { GstElementClass *element_class = GST_ELEMENT_CLASS (klass); GstCaps *caps; gst_element_class_set_details (element_class, &element_details); caps = gst_caps_from_string (ALLOWED_CAPS); gst_audio_filter_class_add_pad_templates (GST_AUDIO_FILTER_CLASS (klass), caps); gst_caps_unref (caps); } static void gst_audio_dynamic_class_init (GstAudioDynamicClass * klass) { GObjectClass *gobject_class; gobject_class = (GObjectClass *) klass; gobject_class->set_property = gst_audio_dynamic_set_property; gobject_class->get_property = gst_audio_dynamic_get_property; g_object_class_install_property (gobject_class, PROP_CHARACTERISTICS, g_param_spec_enum ("characteristics", "Characteristics", "Selects whether the ratio should be applied smooth (soft-knee) " "or hard (hard-knee).", GST_TYPE_AUDIO_DYNAMIC_CHARACTERISTICS, CHARACTERISTICS_HARD_KNEE, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_MODE, g_param_spec_enum ("mode", "Mode", "Selects whether the filter should work on loud samples (compressor) or" "quiet samples (expander).", GST_TYPE_AUDIO_DYNAMIC_MODE, MODE_COMPRESSOR, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_THRESHOLD, g_param_spec_float ("threshold", "Threshold", "Threshold until the filter is activated", 0.0, 1.0, 0.0, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE)); g_object_class_install_property (gobject_class, PROP_RATIO, g_param_spec_float ("ratio", "Ratio", "Ratio that should be applied", 0.0, G_MAXFLOAT, 1.0, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE)); GST_AUDIO_FILTER_CLASS (klass)->setup = GST_DEBUG_FUNCPTR (gst_audio_dynamic_setup); GST_BASE_TRANSFORM_CLASS (klass)->transform_ip = GST_DEBUG_FUNCPTR (gst_audio_dynamic_transform_ip); } static void gst_audio_dynamic_init (GstAudioDynamic * filter, GstAudioDynamicClass * klass) { filter->ratio = 1.0; filter->threshold = 0.0; filter->characteristics = CHARACTERISTICS_HARD_KNEE; filter->mode = MODE_COMPRESSOR; gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE); } static void gst_audio_dynamic_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstAudioDynamic *filter = GST_AUDIO_DYNAMIC (object); switch (prop_id) { case PROP_CHARACTERISTICS: filter->characteristics = g_value_get_enum (value); gst_audio_dynamic_set_process_function (filter); break; case PROP_MODE: filter->mode = g_value_get_enum (value); gst_audio_dynamic_set_process_function (filter); break; case PROP_THRESHOLD: filter->threshold = g_value_get_float (value); break; case PROP_RATIO: filter->ratio = g_value_get_float (value); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_audio_dynamic_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstAudioDynamic *filter = GST_AUDIO_DYNAMIC (object); switch (prop_id) { case PROP_CHARACTERISTICS: g_value_set_enum (value, filter->characteristics); break; case PROP_MODE: g_value_set_enum (value, filter->mode); break; case PROP_THRESHOLD: g_value_set_float (value, filter->threshold); break; case PROP_RATIO: g_value_set_float (value, filter->ratio); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } /* GstAudioFilter vmethod implementations */ static gboolean gst_audio_dynamic_setup (GstAudioFilter * base, GstRingBufferSpec * format) { GstAudioDynamic *filter = GST_AUDIO_DYNAMIC (base); gboolean ret = TRUE; ret = gst_audio_dynamic_set_process_function (filter); return ret; } static void gst_audio_dynamic_transform_hard_knee_compressor_int (GstAudioDynamic * filter, gint16 * data, guint num_samples) { glong val; glong thr_p = filter->threshold * G_MAXINT16; glong thr_n = filter->threshold * G_MININT16; /* Nothing to do for us if ratio is 1.0 or if the threshold * equals 1.0. */ if (filter->threshold == 1.0 || filter->ratio == 1.0) return; for (; num_samples; num_samples--) { val = *data; if (val > thr_p) { val = thr_p + (val - thr_p) * filter->ratio; } else if (val < thr_n) { val = thr_n + (val - thr_n) * filter->ratio; } *data++ = (gint16) CLAMP (val, G_MININT16, G_MAXINT16); } } static void gst_audio_dynamic_transform_hard_knee_compressor_float (GstAudioDynamic * filter, gfloat * data, guint num_samples) { gdouble val, threshold = filter->threshold; /* Nothing to do for us if ratio == 1.0. * As float values can be above 1.0 we have to do something * if threshold is greater than 1.0. */ if (filter->ratio == 1.0) return; for (; num_samples; num_samples--) { val = *data; if (val > threshold) { val = threshold + (val - threshold) * filter->ratio; } else if (val < -threshold) { val = -threshold + (val + threshold) * filter->ratio; } *data++ = (gfloat) val; } } static void gst_audio_dynamic_transform_soft_knee_compressor_int (GstAudioDynamic * filter, gint16 * data, guint num_samples) { glong val; glong thr_p = filter->threshold * G_MAXINT16; glong thr_n = filter->threshold * G_MININT16; gdouble a_p, b_p, c_p; gdouble a_n, b_n, c_n; /* Nothing to do for us if ratio is 1.0 or if the threshold * equals 1.0. */ if (filter->threshold == 1.0 || filter->ratio == 1.0) return; /* We build a 2nd degree polynomial here for * values greater than threshold or small than * -threshold with: * f(t) = t, f'(t) = 1, f'(m) = r * => * a = (1-r)/(2*(t-m)) * b = (r*t - m)/(t-m) * c = t * (1 - b - a*t) * f(x) = ax^2 + bx + c */ /* shouldn't happen because this would only be the case * for threshold == 1.0 which we catch above */ g_assert (thr_p - G_MAXINT16 != 0); g_assert (thr_n - G_MININT != 0); a_p = (1 - filter->ratio) / (2 * (thr_p - G_MAXINT16)); b_p = (filter->ratio * thr_p - G_MAXINT16) / (thr_p - G_MAXINT16); c_p = thr_p * (1 - b_p - a_p * thr_p); a_n = (1 - filter->ratio) / (2 * (thr_n - G_MININT16)); b_n = (filter->ratio * thr_n - G_MININT16) / (thr_n - G_MININT16); c_n = thr_n * (1 - b_n - a_n * thr_n); for (; num_samples; num_samples--) { val = *data; if (val > thr_p) { val = a_p * val * val + b_p * val + c_p; } else if (val < thr_n) { val = a_n * val * val + b_n * val + c_n; } *data++ = (gint16) CLAMP (val, G_MININT16, G_MAXINT16); } } static void gst_audio_dynamic_transform_soft_knee_compressor_float (GstAudioDynamic * filter, gfloat * data, guint num_samples) { gdouble val; gdouble threshold = filter->threshold; gdouble a_p, b_p, c_p; gdouble a_n, b_n, c_n; /* Nothing to do for us if ratio == 1.0. * As float values can be above 1.0 we have to do something * if threshold is greater than 1.0. */ if (filter->ratio == 1.0) return; /* We build a 2nd degree polynomial here for * values greater than threshold or small than * -threshold with: * f(t) = t, f'(t) = 1, f'(m) = r * => * a = (1-r)/(2*(t-m)) * b = (r*t - m)/(t-m) * c = t * (1 - b - a*t) * f(x) = ax^2 + bx + c */ /* FIXME: If treshold is the same as the maximum * we need to raise it a bit to prevent * division by zero. */ if (threshold == 1.0) threshold = 1.0 + 0.00001; a_p = (1.0 - filter->ratio) / (2.0 * (threshold - 1.0)); b_p = (filter->ratio * threshold - 1.0) / (threshold - 1.0); c_p = threshold * (1.0 - b_p - a_p * threshold); a_n = (1.0 - filter->ratio) / (2.0 * (-threshold + 1.0)); b_n = (-filter->ratio * threshold + 1.0) / (-threshold + 1.0); c_n = -threshold * (1.0 - b_n + a_n * threshold); for (; num_samples; num_samples--) { val = *data; if (val > 1.0) { val = 1.0 + (val - 1.0) * filter->ratio; } else if (val > threshold) { val = a_p * val * val + b_p * val + c_p; } else if (val < -1.0) { val = -1.0 + (val + 1.0) * filter->ratio; } else if (val < -threshold) { val = a_n * val * val + b_n * val + c_n; } *data++ = (gfloat) val; } } static void gst_audio_dynamic_transform_hard_knee_expander_int (GstAudioDynamic * filter, gint16 * data, guint num_samples) { glong val; glong thr_p = filter->threshold * G_MAXINT16; glong thr_n = filter->threshold * G_MININT16; gdouble zero_p, zero_n; /* Nothing to do for us here if threshold equals 0.0 * or ratio equals 1.0 */ if (filter->threshold == 0.0 || filter->ratio == 1.0) return; /* zero crossing of our function */ if (filter->ratio != 0.0) { zero_p = thr_p - thr_p / filter->ratio; zero_n = thr_n - thr_n / filter->ratio; } else { zero_p = zero_n = 0.0; } if (zero_p < 0.0) zero_p = 0.0; if (zero_n > 0.0) zero_n = 0.0; for (; num_samples; num_samples--) { val = *data; if (val < thr_p && val > zero_p) { val = filter->ratio * val + thr_p * (1 - filter->ratio); } else if ((val <= zero_p && val > 0) || (val >= zero_n && val < 0)) { val = 0; } else if (val > thr_n && val < zero_n) { val = filter->ratio * val + thr_n * (1 - filter->ratio); } *data++ = (gint16) CLAMP (val, G_MININT16, G_MAXINT16); } } static void gst_audio_dynamic_transform_hard_knee_expander_float (GstAudioDynamic * filter, gfloat * data, guint num_samples) { gdouble val, threshold = filter->threshold, zero; /* Nothing to do for us here if threshold equals 0.0 * or ratio equals 1.0 */ if (filter->threshold == 0.0 || filter->ratio == 1.0) return; /* zero crossing of our function */ if (filter->ratio != 0.0) zero = threshold - threshold / filter->ratio; else zero = 0.0; if (zero < 0.0) zero = 0.0; for (; num_samples; num_samples--) { val = *data; if (val < threshold && val > zero) { val = filter->ratio * val + threshold * (1.0 - filter->ratio); } else if ((val <= zero && val > 0.0) || (val >= -zero && val < 0.0)) { val = 0.0; } else if (val > -threshold && val < -zero) { val = filter->ratio * val - threshold * (1.0 - filter->ratio); } *data++ = (gfloat) val; } } static void gst_audio_dynamic_transform_soft_knee_expander_int (GstAudioDynamic * filter, gint16 * data, guint num_samples) { glong val; glong thr_p = filter->threshold * G_MAXINT16; glong thr_n = filter->threshold * G_MININT16; gdouble zero_p, zero_n; gdouble a_p, b_p, c_p; gdouble a_n, b_n, c_n; /* Nothing to do for us here if threshold equals 0.0 * or ratio equals 1.0 */ if (filter->threshold == 0.0 || filter->ratio == 1.0) return; /* zero crossing of our function */ zero_p = (thr_p * (filter->ratio - 1.0)) / (1.0 + filter->ratio); zero_n = (thr_n * (filter->ratio - 1.0)) / (1.0 + filter->ratio); if (zero_p < 0.0) zero_p = 0.0; if (zero_n > 0.0) zero_n = 0.0; /* shouldn't happen as this would only happen * with threshold == 0.0 */ g_assert (thr_p != 0); g_assert (thr_n != 0); /* We build a 2n degree polynomial here for values between * 0 and threshold or 0 and -threshold with: * f(t) = t, f'(t) = 1, f(z) = 0, f'(z) = r * z between 0 and t * => * a = (1 - r^2) / (4 * t) * b = (1 + r^2) / 2 * c = t * (1.0 - b - a*t) * f(x) = ax^2 + bx + c */ a_p = (1.0 - filter->ratio * filter->ratio) / (4.0 * thr_p); b_p = (1.0 + filter->ratio * filter->ratio) / 2.0; c_p = thr_p * (1.0 - b_p - a_p * thr_p); a_n = (1.0 - filter->ratio * filter->ratio) / (4.0 * thr_n); b_n = (1.0 + filter->ratio * filter->ratio) / 2.0; c_n = thr_n * (1.0 - b_n - a_n * thr_n); for (; num_samples; num_samples--) { val = *data; if (val < thr_p && val > zero_p) { val = a_p * val * val + b_p * val + c_p; } else if ((val <= zero_p && val > 0) || (val >= zero_n && val < 0)) { val = 0; } else if (val > thr_n && val < zero_n) { val = a_n * val * val + b_n * val + c_n; } *data++ = (gint16) CLAMP (val, G_MININT16, G_MAXINT16); } } static void gst_audio_dynamic_transform_soft_knee_expander_float (GstAudioDynamic * filter, gfloat * data, guint num_samples) { gdouble val; gdouble threshold = filter->threshold; gdouble zero; gdouble a_p, b_p, c_p; gdouble a_n, b_n, c_n; /* Nothing to do for us here if threshold equals 0.0 * or ratio equals 1.0 */ if (filter->threshold == 0.0 || filter->ratio == 1.0) return; /* zero crossing of our function */ zero = (threshold * (filter->ratio - 1.0)) / (1.0 + filter->ratio); if (zero < 0.0) zero = 0.0; /* shouldn't happen as this only happens with * threshold == 0.0 */ g_assert (threshold != 0.0); /* We build a 2n degree polynomial here for values between * 0 and threshold or 0 and -threshold with: * f(t) = t, f'(t) = 1, f(z) = 0, f'(z) = r * z between 0 and t * => * a = (1 - r^2) / (4 * t) * b = (1 + r^2) / 2 * c = t * (1.0 - b - a*t) * f(x) = ax^2 + bx + c */ a_p = (1.0 - filter->ratio * filter->ratio) / (4.0 * threshold); b_p = (1.0 + filter->ratio * filter->ratio) / 2.0; c_p = threshold * (1.0 - b_p - a_p * threshold); a_n = (1.0 - filter->ratio * filter->ratio) / (-4.0 * threshold); b_n = (1.0 + filter->ratio * filter->ratio) / 2.0; c_n = -threshold * (1.0 - b_n + a_n * threshold); for (; num_samples; num_samples--) { val = *data; if (val < threshold && val > zero) { val = a_p * val * val + b_p * val + c_p; } else if ((val <= zero && val > 0.0) || (val >= -zero && val < 0.0)) { val = 0.0; } else if (val > -threshold && val < -zero) { val = a_n * val * val + b_n * val + c_n; } *data++ = (gfloat) val; } } /* GstBaseTransform vmethod implementations */ static GstFlowReturn gst_audio_dynamic_transform_ip (GstBaseTransform * base, GstBuffer * buf) { GstAudioDynamic *filter = GST_AUDIO_DYNAMIC (base); guint num_samples = GST_BUFFER_SIZE (buf) / (GST_AUDIO_FILTER (filter)->format.width / 8); if (gst_base_transform_is_passthrough (base)) return GST_FLOW_OK; if (GST_CLOCK_TIME_IS_VALID (GST_BUFFER_TIMESTAMP (buf))) gst_object_sync_values (G_OBJECT (filter), GST_BUFFER_TIMESTAMP (buf)); filter->process (filter, GST_BUFFER_DATA (buf), num_samples); return GST_FLOW_OK; }