/* GStreamer * Copyright (C) <2007> Sebastian Dröge <slomo@circular-chaos.org> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include <glib.h> #include <math.h> #include "kiss_fftr_f32.h" #include "gstfft.h" #include "gstfftf32.h" /** * SECTION:gstfftf32 * @short_description: FFT functions for 32 bit float samples * * #GstFFTF32 provides a FFT implementation and related functions for * 32 bit float samples. To use this call gst_fft_f32_new() for * allocating a #GstFFTF32 instance with the appropiate parameters and * then call gst_fft_f32_fft() or gst_fft_f32_inverse_fft() to perform the * FFT or inverse FFT on a buffer of samples. * * After use free the #GstFFTF32 instance with gst_fft_f32_free(). * * For the best performance use gst_fft_next_fast_length() to get a * number that is entirely a product of 2, 3 and 5 and use this as the * @len parameter for gst_fft_f32_new(). * * The @len parameter specifies the number of samples in the time domain that * will be processed or generated. The number of samples in the frequency domain * is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len. * * Before performing the FFT on time domain data it usually makes sense * to apply a window function to it. For this gst_fft_f32_window() can comfortably * be used. * * Be aware, that you can't simply run gst_fft_f32_inverse_fft() on the * resulting frequency data of gst_fft_f32_fft() to get the original data back. * The relation between them is iFFT (FFT (x)) = x * nfft where nfft is the * length of the FFT. This also has to be taken into account when calculation * the magnitude of the frequency data. * */ /** * gst_fft_f32_new: * @len: Length of the FFT in the time domain * @inverse: %TRUE if the #GstFFTF32 instance should be used for the inverse FFT * * This returns a new #GstFFTF32 instance with the given parameters. It makes * sense to keep one instance for several calls for speed reasons. * * @len must be even and to get the best performance a product of * 2, 3 and 5. To get the next number with this characteristics use * gst_fft_next_fast_length(). * * Returns: a new #GstFFTF32 instance. */ GstFFTF32 * gst_fft_f32_new (gint len, gboolean inverse) { GstFFTF32 *self; g_return_val_if_fail (len > 0, NULL); g_return_val_if_fail (len % 2 == 0, NULL); self = g_new (GstFFTF32, 1); self->cfg = kiss_fftr_f32_alloc (len, (inverse) ? 1 : 0, NULL, NULL); g_assert (self->cfg); self->inverse = inverse; self->len = len; return self; } /** * gst_fft_f32_fft: * @self: #GstFFTF32 instance for this call * @timedata: Buffer of the samples in the time domain * @freqdata: Target buffer for the samples in the frequency domain * * This performs the FFT on @timedata and puts the result in @freqdata. * * @timedata must have as many samples as specified with the @len parameter while * allocating the #GstFFTF32 instance with gst_fft_f32_new(). * * @freqdata must be large enough to hold @len/2 + 1 #GstFFTF32Complex frequency * domain samples. * */ void gst_fft_f32_fft (GstFFTF32 * self, const gfloat * timedata, GstFFTF32Complex * freqdata) { g_return_if_fail (self); g_return_if_fail (!self->inverse); g_return_if_fail (timedata); g_return_if_fail (freqdata); kiss_fftr_f32 (self->cfg, timedata, (kiss_fft_f32_cpx *) freqdata); } /** * gst_fft_f32_inverse_fft: * @self: #GstFFTF32 instance for this call * @freqdata: Buffer of the samples in the frequency domain * @timedata: Target buffer for the samples in the time domain * * This performs the inverse FFT on @freqdata and puts the result in @timedata. * * @freqdata must have @len/2 + 1 samples, where @len is the parameter specified * while allocating the #GstFFTF32 instance with gst_fft_f32_new(). * * @timedata must be large enough to hold @len time domain samples. * */ void gst_fft_f32_inverse_fft (GstFFTF32 * self, const GstFFTF32Complex * freqdata, gfloat * timedata) { g_return_if_fail (self); g_return_if_fail (self->inverse); g_return_if_fail (timedata); g_return_if_fail (freqdata); kiss_fftri_f32 (self->cfg, (kiss_fft_f32_cpx *) freqdata, timedata); } /** * gst_fft_f32_free: * @self: #GstFFTF32 instance for this call * * This frees the memory allocated for @self. * */ void gst_fft_f32_free (GstFFTF32 * self) { kiss_fftr_f32_free (self->cfg); g_free (self); } /** * gst_fft_f32_window: * @self: #GstFFTF32 instance for this call * @timedata: Time domain samples * @window: Window function to apply * * This calls the window function @window on the @timedata sample buffer. * */ void gst_fft_f32_window (GstFFTF32 * self, gfloat * timedata, GstFFTWindow window) { gint i, len; g_return_if_fail (self); g_return_if_fail (timedata); len = self->len; switch (window) { case GST_FFT_WINDOW_RECTANGULAR: /* do nothing */ break; case GST_FFT_WINDOW_HAMMING: for (i = 0; i < len; i++) timedata[i] *= (0.53836 - 0.46164 * cos (2.0 * M_PI * i / len)); break; case GST_FFT_WINDOW_HANN: for (i = 0; i < len; i++) timedata[i] *= (0.5 - 0.5 * cos (2.0 * M_PI * i / len)); break; case GST_FFT_WINDOW_BARTLETT: for (i = 0; i < len; i++) timedata[i] *= (1.0 - fabs ((2.0 * i - len) / len)); break; case GST_FFT_WINDOW_BLACKMAN: for (i = 0; i < len; i++) timedata[i] *= (0.42 - 0.5 * cos ((2.0 * i) / len) + 0.08 * cos ((4.0 * i) / len)); break; default: g_assert_not_reached (); break; } }