/* GStreamer * Copyright (C) <1999> Erik Walthinsen * <2006,2011> Stefan Kost * <2007-2009> Sebastian Dröge * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** * SECTION:element-spectrum * @title: spectrum * * The Spectrum element analyzes the frequency spectrum of an audio signal. * If the #GstSpectrum:post-messages property is %TRUE, it sends analysis results * as element messages named * `spectrum` after each interval of time given * by the #GstSpectrum:interval property. * * The message's structure contains some combination of these fields: * * * #GstClockTime `timestamp`: the timestamp of the buffer that triggered the message. * * #GstClockTime `stream-time`: the stream time of the buffer. * * #GstClockTime `running-time`: the running_time of the buffer. * * #GstClockTime `duration`: the duration of the buffer. * * #GstClockTime `endtime`: the end time of the buffer that triggered the message as stream time (this * is deprecated, as it can be calculated from stream-time + duration) * * A #GST_TYPE_LIST value of #gfloat `magnitude`: the level for each frequency band in dB. * All values below the value of the * #GstSpectrum:threshold property will be set to the threshold. Only present * if the #GstSpectrum:message-magnitude property is %TRUE. * * A #GST_TYPE_LIST of #gfloat `phase`: The phase for each frequency band. The value is between -pi and pi. Only * present if the #GstSpectrum:message-phase property is %TRUE. * * If #GstSpectrum:multi-channel property is set to true. magnitude and phase * fields will be each a nested #GST_TYPE_ARRAY value. The first dimension are the * channels and the second dimension are the values. * * ## Example application * * * * * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "gstspectrum.h" GST_DEBUG_CATEGORY_STATIC (gst_spectrum_debug); #define GST_CAT_DEFAULT gst_spectrum_debug /* elementfactory information */ #if G_BYTE_ORDER == G_LITTLE_ENDIAN # define FORMATS "{ S16LE, S24LE, S32LE, F32LE, F64LE }" #else # define FORMATS "{ S16BE, S24BE, S32BE, F32BE, F64BE }" #endif #define ALLOWED_CAPS \ GST_AUDIO_CAPS_MAKE (FORMATS) ", " \ "layout = (string) interleaved" /* Spectrum properties */ #define DEFAULT_POST_MESSAGES TRUE #define DEFAULT_MESSAGE_MAGNITUDE TRUE #define DEFAULT_MESSAGE_PHASE FALSE #define DEFAULT_INTERVAL (GST_SECOND / 10) #define DEFAULT_BANDS 128 #define DEFAULT_THRESHOLD -60 #define DEFAULT_MULTI_CHANNEL FALSE enum { PROP_0, PROP_POST_MESSAGES, PROP_MESSAGE_MAGNITUDE, PROP_MESSAGE_PHASE, PROP_INTERVAL, PROP_BANDS, PROP_THRESHOLD, PROP_MULTI_CHANNEL }; #define gst_spectrum_parent_class parent_class G_DEFINE_TYPE (GstSpectrum, gst_spectrum, GST_TYPE_AUDIO_FILTER); static void gst_spectrum_finalize (GObject * object); static void gst_spectrum_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_spectrum_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static gboolean gst_spectrum_start (GstBaseTransform * trans); static gboolean gst_spectrum_stop (GstBaseTransform * trans); static GstFlowReturn gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * in); static gboolean gst_spectrum_setup (GstAudioFilter * base, const GstAudioInfo * info); static void gst_spectrum_class_init (GstSpectrumClass * klass) { GObjectClass *gobject_class = G_OBJECT_CLASS (klass); GstElementClass *element_class = GST_ELEMENT_CLASS (klass); GstBaseTransformClass *trans_class = GST_BASE_TRANSFORM_CLASS (klass); GstAudioFilterClass *filter_class = GST_AUDIO_FILTER_CLASS (klass); GstCaps *caps; gobject_class->set_property = gst_spectrum_set_property; gobject_class->get_property = gst_spectrum_get_property; gobject_class->finalize = gst_spectrum_finalize; trans_class->start = GST_DEBUG_FUNCPTR (gst_spectrum_start); trans_class->stop = GST_DEBUG_FUNCPTR (gst_spectrum_stop); trans_class->transform_ip = GST_DEBUG_FUNCPTR (gst_spectrum_transform_ip); trans_class->passthrough_on_same_caps = TRUE; filter_class->setup = GST_DEBUG_FUNCPTR (gst_spectrum_setup); g_object_class_install_property (gobject_class, PROP_POST_MESSAGES, g_param_spec_boolean ("post-messages", "Post Messages", "Whether to post a 'spectrum' element message on the bus for each " "passed interval", DEFAULT_POST_MESSAGES, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_MESSAGE_MAGNITUDE, g_param_spec_boolean ("message-magnitude", "Magnitude", "Whether to add a 'magnitude' field to the structure of any " "'spectrum' element messages posted on the bus", DEFAULT_MESSAGE_MAGNITUDE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_MESSAGE_PHASE, g_param_spec_boolean ("message-phase", "Phase", "Whether to add a 'phase' field to the structure of any " "'spectrum' element messages posted on the bus", DEFAULT_MESSAGE_PHASE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_INTERVAL, g_param_spec_uint64 ("interval", "Interval", "Interval of time between message posts (in nanoseconds)", 1, G_MAXUINT64, DEFAULT_INTERVAL, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_BANDS, g_param_spec_uint ("bands", "Bands", "Number of frequency bands", 2, ((guint) G_MAXINT + 2) / 2, DEFAULT_BANDS, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_THRESHOLD, g_param_spec_int ("threshold", "Threshold", "dB threshold for result. All lower values will be set to this", G_MININT, 0, DEFAULT_THRESHOLD, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_MULTI_CHANNEL, g_param_spec_boolean ("multi-channel", "Multichannel results", "Send separate results for each channel", DEFAULT_MULTI_CHANNEL, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); GST_DEBUG_CATEGORY_INIT (gst_spectrum_debug, "spectrum", 0, "audio spectrum analyser element"); gst_element_class_set_static_metadata (element_class, "Spectrum analyzer", "Filter/Analyzer/Audio", "Run an FFT on the audio signal, output spectrum data", "Erik Walthinsen , " "Stefan Kost , " "Sebastian Dröge "); caps = gst_caps_from_string (ALLOWED_CAPS); gst_audio_filter_class_add_pad_templates (filter_class, caps); gst_caps_unref (caps); } static void gst_spectrum_init (GstSpectrum * spectrum) { spectrum->post_messages = DEFAULT_POST_MESSAGES; spectrum->message_magnitude = DEFAULT_MESSAGE_MAGNITUDE; spectrum->message_phase = DEFAULT_MESSAGE_PHASE; spectrum->interval = DEFAULT_INTERVAL; spectrum->bands = DEFAULT_BANDS; spectrum->threshold = DEFAULT_THRESHOLD; g_mutex_init (&spectrum->lock); } static void gst_spectrum_alloc_channel_data (GstSpectrum * spectrum) { gint i; GstSpectrumChannel *cd; guint bands = spectrum->bands; guint nfft = 2 * bands - 2; g_assert (spectrum->channel_data == NULL); spectrum->num_channels = (spectrum->multi_channel) ? GST_AUDIO_FILTER_CHANNELS (spectrum) : 1; GST_DEBUG_OBJECT (spectrum, "allocating data for %d channels", spectrum->num_channels); spectrum->channel_data = g_new (GstSpectrumChannel, spectrum->num_channels); for (i = 0; i < spectrum->num_channels; i++) { cd = &spectrum->channel_data[i]; cd->fft_ctx = gst_fft_f32_new (nfft, FALSE); cd->input = g_new0 (gfloat, nfft); cd->input_tmp = g_new0 (gfloat, nfft); cd->freqdata = g_new0 (GstFFTF32Complex, bands); cd->spect_magnitude = g_new0 (gfloat, bands); cd->spect_phase = g_new0 (gfloat, bands); } } static void gst_spectrum_free_channel_data (GstSpectrum * spectrum) { if (spectrum->channel_data) { gint i; GstSpectrumChannel *cd; GST_DEBUG_OBJECT (spectrum, "freeing data for %d channels", spectrum->num_channels); for (i = 0; i < spectrum->num_channels; i++) { cd = &spectrum->channel_data[i]; if (cd->fft_ctx) gst_fft_f32_free (cd->fft_ctx); g_free (cd->input); g_free (cd->input_tmp); g_free (cd->freqdata); g_free (cd->spect_magnitude); g_free (cd->spect_phase); } g_free (spectrum->channel_data); spectrum->channel_data = NULL; } } static void gst_spectrum_flush (GstSpectrum * spectrum) { spectrum->num_frames = 0; spectrum->num_fft = 0; spectrum->accumulated_error = 0; } static void gst_spectrum_reset_state (GstSpectrum * spectrum) { GST_DEBUG_OBJECT (spectrum, "resetting state"); gst_spectrum_free_channel_data (spectrum); gst_spectrum_flush (spectrum); } static void gst_spectrum_finalize (GObject * object) { GstSpectrum *spectrum = GST_SPECTRUM (object); gst_spectrum_reset_state (spectrum); g_mutex_clear (&spectrum->lock); G_OBJECT_CLASS (parent_class)->finalize (object); } static void gst_spectrum_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstSpectrum *filter = GST_SPECTRUM (object); switch (prop_id) { case PROP_POST_MESSAGES: filter->post_messages = g_value_get_boolean (value); break; case PROP_MESSAGE_MAGNITUDE: filter->message_magnitude = g_value_get_boolean (value); break; case PROP_MESSAGE_PHASE: filter->message_phase = g_value_get_boolean (value); break; case PROP_INTERVAL:{ guint64 interval = g_value_get_uint64 (value); g_mutex_lock (&filter->lock); if (filter->interval != interval) { filter->interval = interval; gst_spectrum_reset_state (filter); } g_mutex_unlock (&filter->lock); break; } case PROP_BANDS:{ guint bands = g_value_get_uint (value); g_mutex_lock (&filter->lock); if (filter->bands != bands) { filter->bands = bands; gst_spectrum_reset_state (filter); } g_mutex_unlock (&filter->lock); break; } case PROP_THRESHOLD: filter->threshold = g_value_get_int (value); break; case PROP_MULTI_CHANNEL:{ gboolean multi_channel = g_value_get_boolean (value); g_mutex_lock (&filter->lock); if (filter->multi_channel != multi_channel) { filter->multi_channel = multi_channel; gst_spectrum_reset_state (filter); } g_mutex_unlock (&filter->lock); break; } default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_spectrum_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstSpectrum *filter = GST_SPECTRUM (object); switch (prop_id) { case PROP_POST_MESSAGES: g_value_set_boolean (value, filter->post_messages); break; case PROP_MESSAGE_MAGNITUDE: g_value_set_boolean (value, filter->message_magnitude); break; case PROP_MESSAGE_PHASE: g_value_set_boolean (value, filter->message_phase); break; case PROP_INTERVAL: g_value_set_uint64 (value, filter->interval); break; case PROP_BANDS: g_value_set_uint (value, filter->bands); break; case PROP_THRESHOLD: g_value_set_int (value, filter->threshold); break; case PROP_MULTI_CHANNEL: g_value_set_boolean (value, filter->multi_channel); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static gboolean gst_spectrum_start (GstBaseTransform * trans) { GstSpectrum *spectrum = GST_SPECTRUM (trans); gst_spectrum_reset_state (spectrum); return TRUE; } static gboolean gst_spectrum_stop (GstBaseTransform * trans) { GstSpectrum *spectrum = GST_SPECTRUM (trans); gst_spectrum_reset_state (spectrum); return TRUE; } /* mixing data readers */ static void input_data_mixed_float (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint i, j, ip = 0; gfloat v; gfloat *in = (gfloat *) _in; for (j = 0; j < len; j++) { v = in[ip++]; for (i = 1; i < channels; i++) v += in[ip++]; out[op] = v / channels; op = (op + 1) % nfft; } } static void input_data_mixed_double (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint i, j, ip = 0; gfloat v; gdouble *in = (gdouble *) _in; for (j = 0; j < len; j++) { v = in[ip++]; for (i = 1; i < channels; i++) v += in[ip++]; out[op] = v / channels; op = (op + 1) % nfft; } } static void input_data_mixed_int32_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint i, j, ip = 0; gint32 *in = (gint32 *) _in; gfloat v; for (j = 0; j < len; j++) { v = in[ip++] / max_value; for (i = 1; i < channels; i++) v += in[ip++] / max_value; out[op] = v / channels; op = (op + 1) % nfft; } } static void input_data_mixed_int24_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint i, j; gfloat v = 0.0; for (j = 0; j < len; j++) { for (i = 0; i < channels; i++) { #if G_BYTE_ORDER == G_BIG_ENDIAN gint32 value = GST_READ_UINT24_BE (_in); #else gint32 value = GST_READ_UINT24_LE (_in); #endif if (value & 0x00800000) value |= 0xff000000; v += value / max_value; _in += 3; } out[op] = v / channels; op = (op + 1) % nfft; } } static void input_data_mixed_int16_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint i, j, ip = 0; gint16 *in = (gint16 *) _in; gfloat v; for (j = 0; j < len; j++) { v = in[ip++] / max_value; for (i = 1; i < channels; i++) v += in[ip++] / max_value; out[op] = v / channels; op = (op + 1) % nfft; } } /* non mixing data readers */ static void input_data_float (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint j, ip; gfloat *in = (gfloat *) _in; for (j = 0, ip = 0; j < len; j++, ip += channels) { out[op] = in[ip]; op = (op + 1) % nfft; } } static void input_data_double (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint j, ip; gdouble *in = (gdouble *) _in; for (j = 0, ip = 0; j < len; j++, ip += channels) { out[op] = in[ip]; op = (op + 1) % nfft; } } static void input_data_int32_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint j, ip; gint32 *in = (gint32 *) _in; for (j = 0, ip = 0; j < len; j++, ip += channels) { out[op] = in[ip] / max_value; op = (op + 1) % nfft; } } static void input_data_int24_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint j; for (j = 0; j < len; j++) { #if G_BYTE_ORDER == G_BIG_ENDIAN gint32 v = GST_READ_UINT24_BE (_in); #else gint32 v = GST_READ_UINT24_LE (_in); #endif if (v & 0x00800000) v |= 0xff000000; _in += 3 * channels; out[op] = v / max_value; op = (op + 1) % nfft; } } static void input_data_int16_max (const guint8 * _in, gfloat * out, guint len, guint channels, gfloat max_value, guint op, guint nfft) { guint j, ip; gint16 *in = (gint16 *) _in; for (j = 0, ip = 0; j < len; j++, ip += channels) { out[op] = in[ip] / max_value; op = (op + 1) % nfft; } } static gboolean gst_spectrum_setup (GstAudioFilter * base, const GstAudioInfo * info) { GstSpectrum *spectrum = GST_SPECTRUM (base); gboolean multi_channel = spectrum->multi_channel; GstSpectrumInputData input_data = NULL; g_mutex_lock (&spectrum->lock); switch (GST_AUDIO_INFO_FORMAT (info)) { case GST_AUDIO_FORMAT_S16: input_data = multi_channel ? input_data_int16_max : input_data_mixed_int16_max; break; case GST_AUDIO_FORMAT_S24: input_data = multi_channel ? input_data_int24_max : input_data_mixed_int24_max; break; case GST_AUDIO_FORMAT_S32: input_data = multi_channel ? input_data_int32_max : input_data_mixed_int32_max; break; case GST_AUDIO_FORMAT_F32: input_data = multi_channel ? input_data_float : input_data_mixed_float; break; case GST_AUDIO_FORMAT_F64: input_data = multi_channel ? input_data_double : input_data_mixed_double; break; default: g_assert_not_reached (); break; } spectrum->input_data = input_data; gst_spectrum_reset_state (spectrum); g_mutex_unlock (&spectrum->lock); return TRUE; } static GValue * gst_spectrum_message_add_container (GstStructure * s, GType type, const gchar * name) { GValue v = { 0, }; g_value_init (&v, type); /* will copy-by-value */ gst_structure_set_value (s, name, &v); g_value_unset (&v); return (GValue *) gst_structure_get_value (s, name); } static void gst_spectrum_message_add_list (GValue * cv, gfloat * data, guint num_values) { GValue v = { 0, }; guint i; g_value_init (&v, G_TYPE_FLOAT); for (i = 0; i < num_values; i++) { g_value_set_float (&v, data[i]); gst_value_list_append_value (cv, &v); /* copies by value */ } g_value_unset (&v); } static void gst_spectrum_message_add_array (GValue * cv, gfloat * data, guint num_values) { GValue v = { 0, }; GValue a = { 0, }; guint i; g_value_init (&a, GST_TYPE_ARRAY); g_value_init (&v, G_TYPE_FLOAT); for (i = 0; i < num_values; i++) { g_value_set_float (&v, data[i]); gst_value_array_append_value (&a, &v); /* copies by value */ } g_value_unset (&v); gst_value_array_append_value (cv, &a); /* copies by value */ g_value_unset (&a); } static GstMessage * gst_spectrum_message_new (GstSpectrum * spectrum, GstClockTime timestamp, GstClockTime duration) { GstBaseTransform *trans = GST_BASE_TRANSFORM_CAST (spectrum); GstSpectrumChannel *cd; GstStructure *s; GValue *mcv = NULL, *pcv = NULL; GstClockTime endtime, running_time, stream_time; GST_DEBUG_OBJECT (spectrum, "preparing message, bands =%d ", spectrum->bands); running_time = gst_segment_to_running_time (&trans->segment, GST_FORMAT_TIME, timestamp); stream_time = gst_segment_to_stream_time (&trans->segment, GST_FORMAT_TIME, timestamp); /* endtime is for backwards compatibility */ endtime = stream_time + duration; s = gst_structure_new ("spectrum", "endtime", GST_TYPE_CLOCK_TIME, endtime, "timestamp", G_TYPE_UINT64, timestamp, "stream-time", G_TYPE_UINT64, stream_time, "running-time", G_TYPE_UINT64, running_time, "duration", G_TYPE_UINT64, duration, NULL); if (!spectrum->multi_channel) { cd = &spectrum->channel_data[0]; if (spectrum->message_magnitude) { /* FIXME 0.11: this should be an array, not a list */ mcv = gst_spectrum_message_add_container (s, GST_TYPE_LIST, "magnitude"); gst_spectrum_message_add_list (mcv, cd->spect_magnitude, spectrum->bands); } if (spectrum->message_phase) { /* FIXME 0.11: this should be an array, not a list */ pcv = gst_spectrum_message_add_container (s, GST_TYPE_LIST, "phase"); gst_spectrum_message_add_list (pcv, cd->spect_phase, spectrum->bands); } } else { guint c; guint channels = GST_AUDIO_FILTER_CHANNELS (spectrum); if (spectrum->message_magnitude) { mcv = gst_spectrum_message_add_container (s, GST_TYPE_ARRAY, "magnitude"); } if (spectrum->message_phase) { pcv = gst_spectrum_message_add_container (s, GST_TYPE_ARRAY, "phase"); } for (c = 0; c < channels; c++) { cd = &spectrum->channel_data[c]; if (spectrum->message_magnitude) { gst_spectrum_message_add_array (mcv, cd->spect_magnitude, spectrum->bands); } if (spectrum->message_phase) { gst_spectrum_message_add_array (pcv, cd->spect_phase, spectrum->bands); } } } return gst_message_new_element (GST_OBJECT (spectrum), s); } static void gst_spectrum_run_fft (GstSpectrum * spectrum, GstSpectrumChannel * cd, guint input_pos) { guint i; guint bands = spectrum->bands; guint nfft = 2 * bands - 2; gint threshold = spectrum->threshold; gfloat *input = cd->input; gfloat *input_tmp = cd->input_tmp; gfloat *spect_magnitude = cd->spect_magnitude; gfloat *spect_phase = cd->spect_phase; GstFFTF32Complex *freqdata = cd->freqdata; GstFFTF32 *fft_ctx = cd->fft_ctx; for (i = 0; i < nfft; i++) input_tmp[i] = input[(input_pos + i) % nfft]; gst_fft_f32_window (fft_ctx, input_tmp, GST_FFT_WINDOW_HAMMING); gst_fft_f32_fft (fft_ctx, input_tmp, freqdata); if (spectrum->message_magnitude) { gdouble val; /* Calculate magnitude in db */ for (i = 0; i < bands; i++) { val = freqdata[i].r * freqdata[i].r; val += freqdata[i].i * freqdata[i].i; val /= nfft * nfft; val = 10.0 * log10 (val); if (val < threshold) val = threshold; spect_magnitude[i] += val; } } if (spectrum->message_phase) { /* Calculate phase */ for (i = 0; i < bands; i++) spect_phase[i] += atan2 (freqdata[i].i, freqdata[i].r); } } static void gst_spectrum_prepare_message_data (GstSpectrum * spectrum, GstSpectrumChannel * cd) { guint i; guint bands = spectrum->bands; guint num_fft = spectrum->num_fft; /* Calculate average */ if (spectrum->message_magnitude) { gfloat *spect_magnitude = cd->spect_magnitude; for (i = 0; i < bands; i++) spect_magnitude[i] /= num_fft; } if (spectrum->message_phase) { gfloat *spect_phase = cd->spect_phase; for (i = 0; i < bands; i++) spect_phase[i] /= num_fft; } } static void gst_spectrum_reset_message_data (GstSpectrum * spectrum, GstSpectrumChannel * cd) { guint bands = spectrum->bands; gfloat *spect_magnitude = cd->spect_magnitude; gfloat *spect_phase = cd->spect_phase; /* reset spectrum accumulators */ memset (spect_magnitude, 0, bands * sizeof (gfloat)); memset (spect_phase, 0, bands * sizeof (gfloat)); } static GstFlowReturn gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer) { GstSpectrum *spectrum = GST_SPECTRUM (trans); guint rate = GST_AUDIO_FILTER_RATE (spectrum); guint channels = GST_AUDIO_FILTER_CHANNELS (spectrum); guint bps = GST_AUDIO_FILTER_BPS (spectrum); guint bpf = GST_AUDIO_FILTER_BPF (spectrum); guint output_channels = spectrum->multi_channel ? channels : 1; guint c; gfloat max_value = (1UL << ((bps << 3) - 1)) - 1; guint bands = spectrum->bands; guint nfft = 2 * bands - 2; guint input_pos; gfloat *input; GstMapInfo map; const guint8 *data; gsize size; guint fft_todo, msg_todo, block_size; gboolean have_full_interval; GstSpectrumChannel *cd; GstSpectrumInputData input_data; g_mutex_lock (&spectrum->lock); gst_buffer_map (buffer, &map, GST_MAP_READ); data = map.data; size = map.size; GST_LOG_OBJECT (spectrum, "input size: %" G_GSIZE_FORMAT " bytes", size); if (GST_BUFFER_IS_DISCONT (buffer)) { GST_DEBUG_OBJECT (spectrum, "Discontinuity detected -- flushing"); gst_spectrum_flush (spectrum); } /* If we don't have a FFT context yet (or it was reset due to parameter * changes) get one and allocate memory for everything */ if (spectrum->channel_data == NULL) { GST_DEBUG_OBJECT (spectrum, "allocating for bands %u", bands); gst_spectrum_alloc_channel_data (spectrum); /* number of sample frames we process before posting a message * interval is in ns */ spectrum->frames_per_interval = gst_util_uint64_scale (spectrum->interval, rate, GST_SECOND); spectrum->frames_todo = spectrum->frames_per_interval; /* rounding error for frames_per_interval in ns, * aggregated it in accumulated_error */ spectrum->error_per_interval = (spectrum->interval * rate) % GST_SECOND; if (spectrum->frames_per_interval == 0) spectrum->frames_per_interval = 1; GST_INFO_OBJECT (spectrum, "interval %" GST_TIME_FORMAT ", fpi %" G_GUINT64_FORMAT ", error %" GST_TIME_FORMAT, GST_TIME_ARGS (spectrum->interval), spectrum->frames_per_interval, GST_TIME_ARGS (spectrum->error_per_interval)); spectrum->input_pos = 0; gst_spectrum_flush (spectrum); } if (spectrum->num_frames == 0) spectrum->message_ts = GST_BUFFER_TIMESTAMP (buffer); input_pos = spectrum->input_pos; input_data = spectrum->input_data; while (size >= bpf) { /* run input_data for a chunk of data */ fft_todo = nfft - (spectrum->num_frames % nfft); msg_todo = spectrum->frames_todo - spectrum->num_frames; GST_LOG_OBJECT (spectrum, "message frames todo: %u, fft frames todo: %u, input frames %" G_GSIZE_FORMAT, msg_todo, fft_todo, (size / bpf)); block_size = msg_todo; if (block_size > (size / bpf)) block_size = (size / bpf); if (block_size > fft_todo) block_size = fft_todo; for (c = 0; c < output_channels; c++) { cd = &spectrum->channel_data[c]; input = cd->input; /* Move the current frames into our ringbuffers */ input_data (data + c * bps, input, block_size, channels, max_value, input_pos, nfft); } data += block_size * bpf; size -= block_size * bpf; input_pos = (input_pos + block_size) % nfft; spectrum->num_frames += block_size; have_full_interval = (spectrum->num_frames == spectrum->frames_todo); GST_LOG_OBJECT (spectrum, "size: %" G_GSIZE_FORMAT ", do-fft = %d, do-message = %d", size, (spectrum->num_frames % nfft == 0), have_full_interval); /* If we have enough frames for an FFT or we have all frames required for * the interval and we haven't run a FFT, then run an FFT */ if ((spectrum->num_frames % nfft == 0) || (have_full_interval && !spectrum->num_fft)) { for (c = 0; c < output_channels; c++) { cd = &spectrum->channel_data[c]; gst_spectrum_run_fft (spectrum, cd, input_pos); } spectrum->num_fft++; } /* Do we have the FFTs for one interval? */ if (have_full_interval) { GST_DEBUG_OBJECT (spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT " fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft, spectrum->num_frames, spectrum->frames_per_interval, GST_TIME_ARGS (spectrum->accumulated_error)); spectrum->frames_todo = spectrum->frames_per_interval; if (spectrum->accumulated_error >= GST_SECOND) { spectrum->accumulated_error -= GST_SECOND; spectrum->frames_todo++; } spectrum->accumulated_error += spectrum->error_per_interval; if (spectrum->post_messages) { GstMessage *m; for (c = 0; c < output_channels; c++) { cd = &spectrum->channel_data[c]; gst_spectrum_prepare_message_data (spectrum, cd); } m = gst_spectrum_message_new (spectrum, spectrum->message_ts, spectrum->interval); gst_element_post_message (GST_ELEMENT (spectrum), m); } if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts)) spectrum->message_ts += gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate); for (c = 0; c < output_channels; c++) { cd = &spectrum->channel_data[c]; gst_spectrum_reset_message_data (spectrum, cd); } spectrum->num_frames = 0; spectrum->num_fft = 0; } } spectrum->input_pos = input_pos; gst_buffer_unmap (buffer, &map); g_mutex_unlock (&spectrum->lock); g_assert (size == 0); return GST_FLOW_OK; } static gboolean plugin_init (GstPlugin * plugin) { return gst_element_register (plugin, "spectrum", GST_RANK_NONE, GST_TYPE_SPECTRUM); } GST_PLUGIN_DEFINE (GST_VERSION_MAJOR, GST_VERSION_MINOR, spectrum, "Run an FFT on the audio signal, output spectrum data", plugin_init, VERSION, GST_LICENSE, GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN)