/* GStreamer * Copyright (C) 2023 Seungha Yang * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "gstd3d12.h" #include "gstd3d12-private.h" #include #ifndef GST_DISABLE_GST_DEBUG #define GST_CAT_DEFAULT ensure_debug_category() static GstDebugCategory * ensure_debug_category (void) { static GstDebugCategory *cat = nullptr; GST_D3D12_CALL_ONCE_BEGIN { cat = _gst_debug_category_new ("d3d12format", 0, "d3d12format"); } GST_D3D12_CALL_ONCE_END; return cat; } #endif GstVideoFormat gst_d3d12_dxgi_format_to_gst (DXGI_FORMAT format) { switch (format) { case DXGI_FORMAT_B8G8R8A8_UNORM: return GST_VIDEO_FORMAT_BGRA; case DXGI_FORMAT_R8G8B8A8_UNORM: return GST_VIDEO_FORMAT_RGBA; case DXGI_FORMAT_R10G10B10A2_UNORM: return GST_VIDEO_FORMAT_RGB10A2_LE; case DXGI_FORMAT_AYUV: return GST_VIDEO_FORMAT_VUYA; case DXGI_FORMAT_YUY2: return GST_VIDEO_FORMAT_YUY2; case DXGI_FORMAT_Y210: return GST_VIDEO_FORMAT_Y210; case DXGI_FORMAT_Y410: return GST_VIDEO_FORMAT_Y410; case DXGI_FORMAT_NV12: return GST_VIDEO_FORMAT_NV12; case DXGI_FORMAT_P010: return GST_VIDEO_FORMAT_P010_10LE; case DXGI_FORMAT_P016: return GST_VIDEO_FORMAT_P016_LE; default: break; } return GST_VIDEO_FORMAT_UNKNOWN; } guint gst_d3d12_dxgi_format_get_resource_format (DXGI_FORMAT format, DXGI_FORMAT resource_format[GST_VIDEO_MAX_PLANES]) { g_return_val_if_fail (resource_format != nullptr, FALSE); for (guint i = 0; i < GST_VIDEO_MAX_PLANES; i++) resource_format[i] = DXGI_FORMAT_UNKNOWN; if (format == DXGI_FORMAT_UNKNOWN) return 0; for (guint i = 0; i < GST_D3D12_N_FORMATS; i++) { const GstD3D12Format *fmt = &g_gst_d3d12_default_format_map[i]; if (fmt->dxgi_format == format) { guint n_planes = 0; for (n_planes = 0; n_planes < GST_VIDEO_MAX_PLANES; n_planes++) { if (fmt->resource_format[n_planes] == DXGI_FORMAT_UNKNOWN) break; resource_format[n_planes] = fmt->resource_format[n_planes]; } return n_planes; } } resource_format[0] = format; return 1; } char * gst_d3d12_dump_color_matrix (GstD3D12ColorMatrix * matrix) { /* *INDENT-OFF* */ static const gchar format[] = "[MATRIX]\n" "|% .6f, % .6f, % .6f|\n" "|% .6f, % .6f, % .6f|\n" "|% .6f, % .6f, % .6f|\n" "[OFFSET]\n" "|% .6f, % .6f, % .6f|\n" "[MIN]\n" "|% .6f, % .6f, % .6f|\n" "[MAX]\n" "|% .6f, % .6f, % .6f|"; /* *INDENT-ON* */ g_return_val_if_fail (matrix != nullptr, nullptr); return g_strdup_printf (format, matrix->matrix[0][0], matrix->matrix[0][1], matrix->matrix[0][2], matrix->matrix[1][0], matrix->matrix[1][1], matrix->matrix[1][2], matrix->matrix[2][0], matrix->matrix[2][1], matrix->matrix[2][2], matrix->offset[0], matrix->offset[1], matrix->offset[2], matrix->min[0], matrix->min[1], matrix->min[2], matrix->max[0], matrix->max[1], matrix->max[2]); } static void color_matrix_copy (GstD3D12ColorMatrix * dst, const GstD3D12ColorMatrix * src) { for (guint i = 0; i < 3; i++) { for (guint j = 0; j < 3; j++) { dst->matrix[i][j] = src->matrix[i][j]; } } } static void color_matrix_multiply (GstD3D12ColorMatrix * dst, GstD3D12ColorMatrix * a, GstD3D12ColorMatrix * b) { GstD3D12ColorMatrix tmp; for (guint i = 0; i < 3; i++) { for (guint j = 0; j < 3; j++) { gdouble val = 0; for (guint k = 0; k < 3; k++) { val += a->matrix[i][k] * b->matrix[k][j]; } tmp.matrix[i][j] = val; } } color_matrix_copy (dst, &tmp); } static void color_matrix_identity (GstD3D12ColorMatrix * m) { for (guint i = 0; i < 3; i++) { for (guint j = 0; j < 3; j++) { if (i == j) m->matrix[i][j] = 1.0; else m->matrix[i][j] = 0; } } } void gst_d3d12_color_matrix_init (GstD3D12ColorMatrix * matrix) { g_return_if_fail (matrix); color_matrix_identity (matrix); for (guint i = 0; i < 3; i++) { matrix->min[i] = 0; matrix->max[i] = 1; matrix->offset[i] = 0; } } static gboolean color_matrix_invert (GstD3D12ColorMatrix * dst, GstD3D12ColorMatrix * src) { GstD3D12ColorMatrix tmp; gdouble det; color_matrix_identity (&tmp); for (guint j = 0; j < 3; j++) { for (guint i = 0; i < 3; i++) { tmp.matrix[j][i] = src->matrix[(i + 1) % 3][(j + 1) % 3] * src->matrix[(i + 2) % 3][(j + 2) % 3] - src->matrix[(i + 1) % 3][(j + 2) % 3] * src->matrix[(i + 2) % 3][(j + 1) % 3]; } } det = tmp.matrix[0][0] * src->matrix[0][0] + tmp.matrix[0][1] * src->matrix[1][0] + tmp.matrix[0][2] * src->matrix[2][0]; if (det == 0) return FALSE; for (guint j = 0; j < 3; j++) { for (guint i = 0; i < 3; i++) { tmp.matrix[i][j] /= det; } } color_matrix_copy (dst, &tmp); return TRUE; } /** * gst_d3d12_color_range_adjust_matrix_unorm: * @in_info: a #GstVideoInfo * @out_info: a #GstVideoInfo * @matrix: a #GstD3D12ColorMatrix * * Calculates matrix for color range adjustment. Both input and output * signals are in normalized [0.0..1.0] space. * * Resulting values can be calculated by * | Yout | | Yin | | matrix.offset[0] | * | Uout | = clamp ( matrix.matrix * | Uin | + | matrix.offset[1] |, matrix.min, matrix.max ) * | Vout | | Vin | | matrix.offset[2] | * * Returns: %TRUE if successful */ gboolean gst_d3d12_color_range_adjust_matrix_unorm (const GstVideoInfo * in_info, const GstVideoInfo * out_info, GstD3D12ColorMatrix * matrix) { gboolean in_rgb, out_rgb; gint in_offset[GST_VIDEO_MAX_COMPONENTS]; gint in_scale[GST_VIDEO_MAX_COMPONENTS]; gint out_offset[GST_VIDEO_MAX_COMPONENTS]; gint out_scale[GST_VIDEO_MAX_COMPONENTS]; GstVideoColorRange in_range; GstVideoColorRange out_range; gdouble src_fullscale, dst_fullscale; g_return_val_if_fail (in_info != nullptr, FALSE); g_return_val_if_fail (out_info != nullptr, FALSE); g_return_val_if_fail (matrix != nullptr, FALSE); memset (matrix, 0, sizeof (GstD3D12ColorMatrix)); for (guint i = 0; i < 3; i++) { matrix->matrix[i][i] = 1.0; matrix->matrix[i][i] = 1.0; matrix->matrix[i][i] = 1.0; matrix->max[i] = 1.0; } in_rgb = GST_VIDEO_INFO_IS_RGB (in_info); out_rgb = GST_VIDEO_INFO_IS_RGB (out_info); if (in_rgb != out_rgb) { GST_WARNING ("Invalid format conversion"); return FALSE; } in_range = in_info->colorimetry.range; out_range = out_info->colorimetry.range; if (in_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) { GST_WARNING ("Unknown input color range"); if (in_rgb || GST_VIDEO_INFO_IS_GRAY (in_info)) in_range = GST_VIDEO_COLOR_RANGE_0_255; else in_range = GST_VIDEO_COLOR_RANGE_16_235; } if (out_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) { GST_WARNING ("Unknown output color range"); if (out_rgb || GST_VIDEO_INFO_IS_GRAY (out_info)) out_range = GST_VIDEO_COLOR_RANGE_0_255; else out_range = GST_VIDEO_COLOR_RANGE_16_235; } src_fullscale = (gdouble) ((1 << in_info->finfo->depth[0]) - 1); dst_fullscale = (gdouble) ((1 << out_info->finfo->depth[0]) - 1); gst_video_color_range_offsets (in_range, in_info->finfo, in_offset, in_scale); gst_video_color_range_offsets (out_range, out_info->finfo, out_offset, out_scale); matrix->min[0] = matrix->min[1] = matrix->min[2] = (gdouble) out_offset[0] / dst_fullscale; matrix->max[0] = (out_scale[0] + out_offset[0]) / dst_fullscale; matrix->max[1] = matrix->max[2] = (out_scale[1] + out_offset[0]) / dst_fullscale; if (in_info->colorimetry.range == out_info->colorimetry.range) { GST_DEBUG ("Same color range"); return TRUE; } /* Formula * * 1) Scales and offset compensates input to [0..1] range * SRC_NORM[i] = (src[i] * src_fullscale - in_offset[i]) / in_scale[i] * = (src[i] * src_fullscale / in_scale[i]) - in_offset[i] / in_scale[i] * * 2) Reverse to output UNIT scale * DST_UINT[i] = SRC_NORM[i] * out_scale[i] + out_offset[i] * = src[i] * src_fullscale * out_scale[i] / in_scale[i] * - in_offset[i] * out_scale[i] / in_scale[i] * + out_offset[i] * * 3) Back to [0..1] scale * dst[i] = DST_UINT[i] / dst_fullscale * = COEFF[i] * src[i] + OFF[i] * where * src_fullscale * out_scale[i] * COEFF[i] = ------------------------------ * dst_fullscale * in_scale[i] * * out_offset[i] in_offset[i] * out_scale[i] * OFF[i] = -------------- - ------------------------------ * dst_fullscale dst_fullscale * in_scale[i] */ for (guint i = 0; i < 3; i++) { matrix->matrix[i][i] = (src_fullscale * out_scale[i]) / (dst_fullscale * in_scale[i]); matrix->offset[i] = (out_offset[i] / dst_fullscale) - ((gdouble) in_offset[i] * out_scale[i] / (dst_fullscale * in_scale[i])); } return TRUE; } /** * gst_d3d12_yuv_to_rgb_matrix_unorm: * @in_yuv_info: a #GstVideoInfo of input YUV signal * @out_rgb_info: a #GstVideoInfo of output RGB signal * @matrix: a #GstD3D12ColorMatrix * * Calculates transform matrix from YUV to RGB conversion. Both input and output * signals are in normalized [0.0..1.0] space and additional gamma decoding * or primary/transfer function transform is not performed by this matrix. * * Resulting non-linear RGB values can be calculated by * | R' | | Y' | | matrix.offset[0] | * | G' | = clamp ( matrix.matrix * | Cb | + | matrix.offset[1] | matrix.min, matrix.max ) * | B' | | Cr | | matrix.offset[2] | * * Returns: %TRUE if successful */ gboolean gst_d3d12_yuv_to_rgb_matrix_unorm (const GstVideoInfo * in_yuv_info, const GstVideoInfo * out_rgb_info, GstD3D12ColorMatrix * matrix) { gint offset[4], scale[4]; gdouble Kr, Kb, Kg; g_return_val_if_fail (in_yuv_info != nullptr, FALSE); g_return_val_if_fail (out_rgb_info != nullptr, FALSE); g_return_val_if_fail (matrix != nullptr, FALSE); /* * * * Input: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range * Output: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range * * 1) Y'CbCr(unorm) to scaled Y'CbCr * | Y' | | Y'(unorm) | * | Cb | = S | Cb(unorm) | * | Cb | | Cr(unorm) | * where S = (2 ^ bitdepth) - 1 * * 2) Y'CbCr to YPbPr * Y = (Y' - offsetY ) / scaleY * Pb = [(Cb - offsetCbCr) / scaleCbCr] * Pr = [(Cr - offsetCrCr) / scaleCrCr] * => * Y = Y'(unorm) * Sy + Oy * Pb = Cb(unorm) * Suv + Ouv * Pb = Cr(unorm) * Suv + Ouv * where * Sy = S / scaleY * Suv = S / scaleCbCr * Oy = -(offsetY / scaleY) * Ouv = -(offsetCbCr / scaleCbCr) * * 3) YPbPr to R'G'B' * | R' | | Y | * | G' | = M *| Pb | * | B' | | Pr | * where * | vecR | * M = | vecG | * | vecB | * vecR = | 1, 0 , 2(1 - Kr) | * vecG = | 1, -(Kb/Kg) * 2(1 - Kb), -(Kr/Kg) * 2(1 - Kr) | * vecB = | 1, 2(1 - Kb) , 0 | * => * R' = dot(vecR, (Syuv * Y'CbCr(unorm))) + dot(vecR, Offset) * G' = dot(vecG, (Svuy * Y'CbCr(unorm))) + dot(vecG, Offset) * B' = dot(vecB, (Syuv * Y'CbCr(unorm)) + dot(vecB, Offset) * where * | Sy, 0, 0 | * Syuv = | 0, Suv, 0 | * | 0 0, Suv | * * | Oy | * Offset = | Ouv | * | Ouv | * * 4) YUV -> RGB matrix * | R' | | Y'(unorm) | | offsetA | * | G' | = Matrix * | Cb(unorm) | + | offsetB | * | B' | | Cr(unorm) | | offsetC | * * where * | vecR | * Matrix = | vecG | * Syuv * | vecB | * * offsetA = dot(vecR, Offset) * offsetB = dot(vecG, Offset) * offsetC = dot(vecB, Offset) * * 4) Consider 16-235 scale RGB * RGBfull(0..255) -> RGBfull(16..235) matrix is represented by * | Rs | | Rf | | Or | * | Gs | = Ms | Gf | + | Og | * | Bs | | Bf | | Ob | * * Combining all matrix into * | Rs | | Y'(unorm) | | offsetA | | Or | * | Gs | = Ms * ( Matrix * | Cb(unorm) | + | offsetB | ) + | Og | * | Bs | | Cr(unorm) | | offsetC | | Ob | * * | Y'(unorm) | | offsetA | | Or | * = Ms * Matrix * | Cb(unorm) | + Ms | offsetB | + | Og | * | Cr(unorm) | | offsetC | | Ob | */ memset (matrix, 0, sizeof (GstD3D12ColorMatrix)); for (guint i = 0; i < 3; i++) matrix->max[i] = 1.0; gst_video_color_range_offsets (in_yuv_info->colorimetry.range, in_yuv_info->finfo, offset, scale); if (gst_video_color_matrix_get_Kr_Kb (in_yuv_info->colorimetry.matrix, &Kr, &Kb)) { guint S; gdouble Sy, Suv; gdouble Oy, Ouv; gdouble vecR[3], vecG[3], vecB[3]; Kg = 1.0 - Kr - Kb; vecR[0] = 1.0; vecR[1] = 0; vecR[2] = 2 * (1 - Kr); vecG[0] = 1.0; vecG[1] = -(Kb / Kg) * 2 * (1 - Kb); vecG[2] = -(Kr / Kg) * 2 * (1 - Kr); vecB[0] = 1.0; vecB[1] = 2 * (1 - Kb); vecB[2] = 0; /* Assume all components has the same bitdepth */ S = (1 << in_yuv_info->finfo->depth[0]) - 1; Sy = (gdouble) S / scale[0]; Suv = (gdouble) S / scale[1]; Oy = -((gdouble) offset[0] / scale[0]); Ouv = -((gdouble) offset[1] / scale[1]); matrix->matrix[0][0] = Sy * vecR[0]; matrix->matrix[1][0] = Sy * vecG[0]; matrix->matrix[2][0] = Sy * vecB[0]; matrix->matrix[0][1] = Suv * vecR[1]; matrix->matrix[1][1] = Suv * vecG[1]; matrix->matrix[2][1] = Suv * vecB[1]; matrix->matrix[0][2] = Suv * vecR[2]; matrix->matrix[1][2] = Suv * vecG[2]; matrix->matrix[2][2] = Suv * vecB[2]; matrix->offset[0] = vecR[0] * Oy + vecR[1] * Ouv + vecR[2] * Ouv; matrix->offset[1] = vecG[0] * Oy + vecG[1] * Ouv + vecG[2] * Ouv; matrix->offset[2] = vecB[0] * Oy + vecB[1] * Ouv + vecB[2] * Ouv; /* Apply RGB range scale matrix */ if (out_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) { GstD3D12ColorMatrix scale_matrix, rst; GstVideoInfo full_rgb = *out_rgb_info; full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255; if (gst_d3d12_color_range_adjust_matrix_unorm (&full_rgb, out_rgb_info, &scale_matrix)) { /* Ms * Matrix */ color_matrix_multiply (&rst, &scale_matrix, matrix); /* Ms * transform offsets */ for (guint i = 0; i < 3; i++) { gdouble val = 0; for (guint j = 0; j < 3; j++) { val += scale_matrix.matrix[i][j] * matrix->offset[j]; } rst.offset[i] = val + scale_matrix.offset[i]; } /* copy back to output matrix */ for (guint i = 0; i < 3; i++) { for (guint j = 0; j < 3; j++) { matrix->matrix[i][j] = rst.matrix[i][j]; } matrix->offset[i] = rst.offset[i]; matrix->min[i] = scale_matrix.min[i]; matrix->max[i] = scale_matrix.max[i]; } } } } else { /* Unknown matrix */ matrix->matrix[0][0] = 1.0; matrix->matrix[1][1] = 1.0; matrix->matrix[2][2] = 1.0; } return TRUE; } /** * gst_d3d12_rgb_to_yuv_matrix_unorm: * @in_rgb_info: a #GstVideoInfo of input RGB signal * @out_yuv_info: a #GstVideoInfo of output YUV signal * @matrix: a #GstD3D12ColorMatrix * * Calculates transform matrix from RGB to YUV conversion. Both input and output * signals are in normalized [0.0..1.0] space and additional gamma decoding * or primary/transfer function transform is not performed by this matrix. * * Resulting RGB values can be calculated by * | Y' | | R' | | matrix.offset[0] | * | Cb | = clamp ( matrix.matrix * | G' | + | matrix.offset[1] |, matrix.min, matrix.max ) * | Cr | | B' | | matrix.offset[2] | * * Returns: %TRUE if successful */ gboolean gst_d3d12_rgb_to_yuv_matrix_unorm (const GstVideoInfo * in_rgb_info, const GstVideoInfo * out_yuv_info, GstD3D12ColorMatrix * matrix) { gint offset[4], scale[4]; gdouble Kr, Kb, Kg; g_return_val_if_fail (in_rgb_info != nullptr, FALSE); g_return_val_if_fail (out_yuv_info != nullptr, FALSE); g_return_val_if_fail (matrix != nullptr, FALSE); /* * * * Input: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range * Output: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range * * 1) R'G'B' to YPbPr * | Y | | R' | * | Pb | = M *| G' | * | Pr | | B' | * where * | vecY | * M = | vecU | * | vecV | * vecY = | Kr , Kg , Kb | * vecU = | -0.5*Kr/(1-Kb), -0.5*Kg/(1-Kb), 0.5 | * vecV = | 0.5 , -0.5*Kg/(1-Kr), -0.5*Kb(1-Kr) | * * 2) YPbPr to Y'CbCr(unorm) * Y'(unorm) = (Y * scaleY + offsetY) / S * Cb(unorm) = (Pb * scaleCbCr + offsetCbCr) / S * Cr(unorm) = (Pr * scaleCbCr + offsetCbCr) / S * => * Y'(unorm) = (Y * scaleY / S) + (offsetY / S) * Cb(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S) * Cr(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S) * where S = (2 ^ bitdepth) - 1 * * 3) RGB -> YUV matrix * | Y'(unorm) | | R' | | offsetA | * | Cb(unorm) | = Matrix * | G' | + | offsetB | * | Cr(unorm) | | B' | | offsetC | * * where * | (scaleY/S) * vecY | * Matrix = | (scaleCbCr/S) * vecU | * | (scaleCbCr/S) * vecV | * * offsetA = offsetY / S * offsetB = offsetCbCr / S * offsetC = offsetCbCr / S * * 4) Consider 16-235 scale RGB * RGBstudio(16..235) -> RGBfull(0..255) matrix is represented by * | Rf | | Rs | | Or | * | Gf | = Ms | Gs | + | Og | * | Bf | | Bs | | Ob | * * Combining all matrix into * | Y'(unorm) | | Rs | | Or | | offsetA | * | Cb(unorm) | = Matrix * ( Ms | Gs | + | Og | ) + | offsetB | * | Cr(unorm) | | Bs | | Ob | | offsetC | * * | Rs | | Or | | offsetA | * = Matrix * Ms | Gs | + Matrix | Og | + | offsetB | * | Bs | | Ob | | offsetB | */ memset (matrix, 0, sizeof (GstD3D12ColorMatrix)); for (guint i = 0; i < 3; i++) matrix->max[i] = 1.0; gst_video_color_range_offsets (out_yuv_info->colorimetry.range, out_yuv_info->finfo, offset, scale); if (gst_video_color_matrix_get_Kr_Kb (out_yuv_info->colorimetry.matrix, &Kr, &Kb)) { guint S; gdouble Sy, Suv; gdouble Oy, Ouv; gdouble vecY[3], vecU[3], vecV[3]; Kg = 1.0 - Kr - Kb; vecY[0] = Kr; vecY[1] = Kg; vecY[2] = Kb; vecU[0] = -0.5 * Kr / (1 - Kb); vecU[1] = -0.5 * Kg / (1 - Kb); vecU[2] = 0.5; vecV[0] = 0.5; vecV[1] = -0.5 * Kg / (1 - Kr); vecV[2] = -0.5 * Kb / (1 - Kr); /* Assume all components has the same bitdepth */ S = (1 << out_yuv_info->finfo->depth[0]) - 1; Sy = (gdouble) scale[0] / S; Suv = (gdouble) scale[1] / S; Oy = (gdouble) offset[0] / S; Ouv = (gdouble) offset[1] / S; for (guint i = 0; i < 3; i++) { matrix->matrix[0][i] = Sy * vecY[i]; matrix->matrix[1][i] = Suv * vecU[i]; matrix->matrix[2][i] = Suv * vecV[i]; } matrix->offset[0] = Oy; matrix->offset[1] = Ouv; matrix->offset[2] = Ouv; matrix->min[0] = Oy; matrix->min[1] = Oy; matrix->min[2] = Oy; matrix->max[0] = ((gdouble) scale[0] + offset[0]) / S; matrix->max[1] = ((gdouble) scale[1] + offset[0]) / S; matrix->max[2] = ((gdouble) scale[1] + offset[0]) / S; /* Apply RGB range scale matrix */ if (in_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) { GstD3D12ColorMatrix scale_matrix, rst; GstVideoInfo full_rgb = *in_rgb_info; full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255; if (gst_d3d12_color_range_adjust_matrix_unorm (in_rgb_info, &full_rgb, &scale_matrix)) { /* Matrix * Ms */ color_matrix_multiply (&rst, matrix, &scale_matrix); /* Matrix * scale offsets */ for (guint i = 0; i < 3; i++) { gdouble val = 0; for (guint j = 0; j < 3; j++) { val += matrix->matrix[i][j] * scale_matrix.offset[j]; } rst.offset[i] = val + matrix->offset[i]; } /* copy back to output matrix */ for (guint i = 0; i < 3; i++) { for (guint j = 0; j < 3; j++) { matrix->matrix[i][j] = rst.matrix[i][j]; } matrix->offset[i] = rst.offset[i]; } } } } else { /* Unknown matrix */ matrix->matrix[0][0] = 1.0; matrix->matrix[1][1] = 1.0; matrix->matrix[2][2] = 1.0; } return TRUE; } static gboolean rgb_to_xyz_matrix (const GstVideoColorPrimariesInfo * info, GstD3D12ColorMatrix * matrix) { GstD3D12ColorMatrix m, im; gdouble Sr, Sg, Sb; gdouble Xw, Yw, Zw; if (info->Rx == 0 || info->Gx == 0 || info->By == 0 || info->Wy == 0) return FALSE; color_matrix_identity (&m); m.matrix[0][0] = info->Rx / info->Ry; m.matrix[1][0] = 1.0; m.matrix[2][0] = (1.0 - info->Rx - info->Ry) / info->Ry; m.matrix[0][1] = info->Gx / info->Gy; m.matrix[1][1] = 1.0; m.matrix[2][1] = (1.0 - info->Gx - info->Gy) / info->Gy; m.matrix[0][2] = info->Bx / info->By; m.matrix[1][2] = 1.0; m.matrix[2][2] = (1.0 - info->Bx - info->By) / info->By; if (!color_matrix_invert (&im, &m)) return FALSE; Xw = info->Wx / info->Wy; Yw = 1.0; Zw = (1.0 - info->Wx - info->Wy) / info->Wy; Sr = im.matrix[0][0] * Xw + im.matrix[0][1] * Yw + im.matrix[0][2] * Zw; Sg = im.matrix[1][0] * Xw + im.matrix[1][1] * Yw + im.matrix[1][2] * Zw; Sb = im.matrix[2][0] * Xw + im.matrix[2][1] * Yw + im.matrix[2][2] * Zw; for (guint i = 0; i < 3; i++) { m.matrix[i][0] *= Sr; m.matrix[i][1] *= Sg; m.matrix[i][2] *= Sb; } color_matrix_copy (matrix, &m); return TRUE; } /** * gst_d3d12_color_primaries_matrix_unorm: * @in_info: a #GstVideoColorPrimariesInfo of input signal * @out_info: a #GstVideoColorPrimariesInfo of output signal * @matrix: a #GstD3D12ColorMatrix * * Calculates color primaries conversion matrix * * Resulting RGB values can be calculated by * | Rout | | Rin | * | Gout | = saturate ( matrix.matrix * | Gin | ) * | Bout | | Bin | * * Returns: %TRUE if successful */ gboolean gst_d3d12_color_primaries_matrix_unorm (const GstVideoColorPrimariesInfo * in_info, const GstVideoColorPrimariesInfo * out_info, GstD3D12ColorMatrix * matrix) { GstD3D12ColorMatrix Ms, invMd, ret; g_return_val_if_fail (in_info != nullptr, FALSE); g_return_val_if_fail (out_info != nullptr, FALSE); g_return_val_if_fail (matrix != nullptr, FALSE); /* * * * 1) RGB -> XYZ conversion * | X | | R | * | Y | = M | G | * | Z | | B | * where * | SrXr, SgXg, SbXb | * M = | SrYr, SgYg, SbYb | * | SrZr, SgZg, SbZb | * * Xr = xr / yr * Yr = 1 * Zr = (1 - xr - yr) / yr * xr and yr are xy coordinates of red primary in the CIE 1931 color space. * And its applied to G and B components * * | Sr | | Xr, Xg, Xb | | Xw | * | Sg | = inv( | Yr, Yg, Yb | ) * | Yw | * | Sb | | Zr, Zg, Zb | | Zw | * * 2) XYZsrc -> XYZdst conversion * Apply chromatic adaptation * | Xdst | | Xsrc | * | Ydst | = Mc | Ysrc | * | Zdst | | Zsrc | * where * | Xwdst / Xwsrc, 0 , 0 | * Mc = | 0 , Ywdst / Ywsrc, 0 | * | 0 , 0 , Zwdst / Zwsrc | * * where * * 3) Final matrix * | Rd | | Rs | * | Gd | = inv (Md) * Mc * Ms | Gs | * | Bd | | Bs | */ memset (matrix, 0, sizeof (GstD3D12ColorMatrix)); for (guint i = 0; i < 3; i++) matrix->max[i] = 1.0; if (!rgb_to_xyz_matrix (in_info, &Ms)) { GST_WARNING ("Failed to get src XYZ matrix"); return FALSE; } if (!rgb_to_xyz_matrix (out_info, &invMd) || !color_matrix_invert (&invMd, &invMd)) { GST_WARNING ("Failed to get dst XYZ matrix"); return FALSE; } if (in_info->Wx != out_info->Wx || in_info->Wy != out_info->Wy) { GstD3D12ColorMatrix Mc; color_matrix_identity (&Mc); Mc.matrix[0][0] = (out_info->Wx / out_info->Wy) / (in_info->Wx / in_info->Wy); /* Yw == 1.0 */ Mc.matrix[2][2] = ((1.0 - out_info->Wx - out_info->Wy) / out_info->Wy) / ((1.0 - in_info->Wx - in_info->Wy) / in_info->Wy); color_matrix_multiply (&ret, &Mc, &Ms); } else { color_matrix_copy (&ret, &Ms); } color_matrix_multiply (&ret, &invMd, &ret); color_matrix_copy (matrix, &ret); return TRUE; }