/* GStreamer * Copyright (C) 2022 Seungha Yang * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** * SECTION:element-amfh264enc * @title: amfh264enc * @short_description: An AMD AMF API based H.264 video encoder * * amfh264enc element encodes raw video stream into compressed H.264 bitstream * via AMD AMF API. * * ## Example launch line * ``` * gst-launch-1.0 videotestsrc num-buffers=100 ! amfh264enc ! h264parse ! mp4mux ! filesink location=encoded.mp4 * ``` * * Since: 1.22 * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "gstamfh264enc.h" #include #include #include #include #include #include #include #include using namespace amf; GST_DEBUG_CATEGORY_STATIC (gst_amf_h264_enc_debug); #define GST_CAT_DEFAULT gst_amf_h264_enc_debug static GTypeClass *parent_class = nullptr; typedef struct { amf_int64 max_bitrate; amf_int64 num_of_streams; amf_int64 max_profile; amf_int64 max_level; amf_int64 bframes; amf_int64 min_ref_frames; amf_int64 max_ref_frames; amf_int64 max_temporal_layers; amf_int64 fixed_slice_mode; amf_int64 num_of_hw_instances; amf_int64 color_conversion; amf_int64 pre_analysis; amf_int64 roi_map; amf_int64 max_throughput; amf_int64 query_timeout_support; amf_int64 default_qp_i; amf_int64 default_qp_p; amf_int64 default_qp_b; gboolean interlace_supported; guint valign; gboolean smart_access_supported; } GstAmfH264EncDeviceCaps; /** * GstAmfH264EncUsage: * * Encoder usages * * Since: 1.22 */ #define GST_TYPE_AMF_H264_ENC_USAGE (gst_amf_h264_enc_usage_get_type ()) static GType gst_amf_h264_enc_usage_get_type (void) { static GType usage_type = 0; static const GEnumValue usages[] = { /** * GstAmfH264EncUsage::transcoding: * * Transcoding usage */ {AMF_VIDEO_ENCODER_USAGE_TRANSCODING, "Transcoding", "transcoding"}, /** * GstAmfH264EncUsage::ultra-low-latency: * * Ultra Low Latency usage */ {AMF_VIDEO_ENCODER_USAGE_ULTRA_LOW_LATENCY, "Ultra Low Latency", "ultra-low-latency"}, /** * GstAmfH264EncUsage::low-latency: * * Low Latency usage */ {AMF_VIDEO_ENCODER_USAGE_LOW_LATENCY, "Low Latency", "low-latency"}, /** * GstAmfH264EncUsage::webcam: * * Webcam usage */ {AMF_VIDEO_ENCODER_USAGE_WEBCAM, "Webcam", "webcam"}, {0, nullptr, nullptr} }; if (g_once_init_enter (&usage_type)) { GType type = g_enum_register_static ("GstAmfH264EncUsage", usages); g_once_init_leave (&usage_type, type); } return usage_type; } /** * GstAmfH264EncRateControl: * * Rate control methods * * Since: 1.22 */ #define GST_TYPE_AMF_H264_ENC_RATE_CONTROL (gst_amf_h264_enc_rate_control_get_type ()) static GType gst_amf_h264_enc_rate_control_get_type (void) { static GType rate_control_type = 0; static const GEnumValue rate_controls[] = { /** * GstAmfH264EncRateControl::default: * * Default rate control method depending on usage */ {AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN, "Default, depends on Usage", "default"}, /** * GstAmfH264EncRateControl::cqp: * * Constant QP */ {AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CONSTANT_QP, "Constant QP", "cqp"}, /** * GstAmfH264EncRateControl::cbr: * * Constant Bitrate */ {AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CBR, "Constant Bitrate", "cbr"}, /** * GstAmfH264EncRateControl::vbr: * * Peak Constrained Variable Bitrate */ {AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_PEAK_CONSTRAINED_VBR, "Peak Constrained VBR", "vbr"}, /** * GstAmfH264EncRateControl::lcvbr: * * Latency Constrained Variable Bitrate */ {AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_LATENCY_CONSTRAINED_VBR, "Latency Constrained VBR", "lcvbr"}, {0, nullptr, nullptr} }; if (g_once_init_enter (&rate_control_type)) { GType type = g_enum_register_static ("GstAmfH264EncRateControl", rate_controls); g_once_init_leave (&rate_control_type, type); } return rate_control_type; } /** * GstAmfH264EncPreset: * * Encoding quality presets * * Since: 1.22 */ #define AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN -1 #define GST_TYPE_AMF_H264_ENC_PRESET (gst_amf_h264_enc_preset_get_type ()) static GType gst_amf_h264_enc_preset_get_type (void) { static GType preset_type = 0; static const GEnumValue presets[] = { /** * GstAmfH264EncRateControl::default: * * Default preset depends on usage */ {AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN, "Default, depends on USAGE", "default"}, /** * GstAmfH264EncRateControl::balanced: * * Balanced preset */ {AMF_VIDEO_ENCODER_QUALITY_PRESET_BALANCED, "Balanced", "balanced"}, /** * GstAmfH264EncRateControl::speed: * * Speed oriented preset */ {AMF_VIDEO_ENCODER_QUALITY_PRESET_SPEED, "Speed", "speed"}, /** * GstAmfH264EncRateControl::quality: * * Quality oriented preset */ {AMF_VIDEO_ENCODER_QUALITY_PRESET_QUALITY, "Quality", "quality"}, {0, nullptr, nullptr} }; if (g_once_init_enter (&preset_type)) { GType type = g_enum_register_static ("GstAmfH264EncPreset", presets); g_once_init_leave (&preset_type, type); } return preset_type; } typedef struct { GstCaps *sink_caps; GstCaps *src_caps; gint64 adapter_luid; GstAmfH264EncDeviceCaps dev_caps; } GstAmfH264EncClassData; enum { PROP_0, PROP_ADAPTER_LUID, PROP_USAGE, PROP_RATE_CONTROL, PROP_PRESET, PROP_BITRATE, PROP_MAX_BITRATE, PROP_GOP_SIZE, PROP_MIN_QP, PROP_MAX_QP, PROP_QP_I, PROP_QP_P, PROP_REF_FRAMES, PROP_AUD, PROP_CABAC, PROP_SMART_ACCESS }; #define DEFAULT_USAGE AMF_VIDEO_ENCODER_USAGE_TRANSCODING #define DEFAULT_RATE_CONTROL AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN #define DEFAULT_PRESET AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN #define DEFAULT_BITRATE 0 #define DEFAULT_MAX_BITRATE 0 #define DEFAULT_GOP_SIZE -1 #define DEFAULT_MIN_MAX_QP -1 #define DEFAULT_AUD TRUE #define DEFAULT_CABAC TRUE #define DEFAULT_SMART_ACCESS FALSE #define DOC_SINK_CAPS_COMM \ "format = (string) NV12, " \ "width = (int) [ 128, 4096 ], height = (int) [ 128, 4096 ]" #define DOC_SINK_CAPS \ "video/x-raw(memory:D3D11Memory), " DOC_SINK_CAPS_COMM "; " \ "video/x-raw, " DOC_SINK_CAPS_COMM #define DOC_SRC_CAPS \ "video/x-h264, width = (int) [ 128, 4096 ], height = (int) [ 128, 4096 ], " \ "profile = (string) { main, high, constrained-baseline, baseline }, " \ "stream-format = (string) { avc, byte-stream }, alignment = (string) au" typedef struct _GstAmfH264Enc { GstAmfEncoder parent; gboolean packetized; GstH264NalParser *parser; GMutex prop_lock; gboolean property_updated; gint usage; gint rate_control; gint preset; guint bitrate; guint max_bitrate; gint gop_size; gint min_qp; gint max_qp; guint qp_i; guint qp_p; guint ref_frames; gboolean aud; gboolean cabac; gboolean smart_access; } GstAmfH264Enc; typedef struct _GstAmfH264EncClass { GstAmfEncoderClass parent_class; GstAmfH264EncDeviceCaps dev_caps; gint64 adapter_luid; } GstAmfH264EncClass; #define GST_AMF_H264_ENC(object) ((GstAmfH264Enc *) (object)) #define GST_AMF_H264_ENC_GET_CLASS(object) \ (G_TYPE_INSTANCE_GET_CLASS ((object),G_TYPE_FROM_INSTANCE (object),GstAmfH264EncClass)) static void gst_amf_h264_enc_finalize (GObject * object); static void gst_amf_h264_enc_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_amf_h264_enc_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static GstCaps *gst_amf_h264_enc_getcaps (GstVideoEncoder * encoder, GstCaps * filter); static gboolean gst_amf_h264_enc_set_format (GstAmfEncoder * encoder, GstVideoCodecState * state, gpointer component); static gboolean gst_amf_h264_enc_set_output_state (GstAmfEncoder * encoder, GstVideoCodecState * state, gpointer component); static gboolean gst_amf_h264_enc_set_surface_prop (GstAmfEncoder * encoder, GstVideoCodecFrame * frame, gpointer surface); static GstBuffer *gst_amf_h264_enc_create_output_buffer (GstAmfEncoder * encoder, gpointer data, gboolean * sync_point); static gboolean gst_amf_h264_enc_check_reconfigure (GstAmfEncoder * encoder); static void gst_amf_h264_enc_class_init (GstAmfH264EncClass * klass, gpointer data) { GObjectClass *object_class = G_OBJECT_CLASS (klass); GstElementClass *element_class = GST_ELEMENT_CLASS (klass); GstVideoEncoderClass *videoenc_class = GST_VIDEO_ENCODER_CLASS (klass); GstAmfEncoderClass *amf_class = GST_AMF_ENCODER_CLASS (klass); GstAmfH264EncClassData *cdata = (GstAmfH264EncClassData *) data; GstAmfH264EncDeviceCaps *dev_caps = &cdata->dev_caps; GParamFlags param_flags = (GParamFlags) (G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING | G_PARAM_STATIC_STRINGS); GstPadTemplate *pad_templ; GstCaps *doc_caps; parent_class = (GTypeClass *) g_type_class_peek_parent (klass); object_class->finalize = gst_amf_h264_enc_finalize; object_class->set_property = gst_amf_h264_enc_set_property; object_class->get_property = gst_amf_h264_enc_get_property; g_object_class_install_property (object_class, PROP_ADAPTER_LUID, g_param_spec_int64 ("adapter-luid", "Adapter LUID", "DXGI Adapter LUID (Locally Unique Identifier) of associated GPU", G_MININT64, G_MAXINT64, 0, (GParamFlags) (GST_PARAM_DOC_SHOW_DEFAULT | G_PARAM_READABLE | G_PARAM_STATIC_STRINGS))); g_object_class_install_property (object_class, PROP_USAGE, g_param_spec_enum ("usage", "Usage", "Target usage", GST_TYPE_AMF_H264_ENC_USAGE, DEFAULT_USAGE, param_flags)); g_object_class_install_property (object_class, PROP_RATE_CONTROL, g_param_spec_enum ("rate-control", "Rate Control", "Rate Control Method", GST_TYPE_AMF_H264_ENC_RATE_CONTROL, DEFAULT_RATE_CONTROL, param_flags)); g_object_class_install_property (object_class, PROP_PRESET, g_param_spec_enum ("preset", "Preset", "Preset", GST_TYPE_AMF_H264_ENC_PRESET, DEFAULT_PRESET, param_flags)); g_object_class_install_property (object_class, PROP_BITRATE, g_param_spec_uint ("bitrate", "Bitrate", "Target bitrate in kbit/sec (0: USAGE default)", 0, G_MAXINT / 1000, DEFAULT_BITRATE, param_flags)); g_object_class_install_property (object_class, PROP_MAX_BITRATE, g_param_spec_uint ("max-bitrate", "Max Bitrate", "Maximum bitrate in kbit/sec (0: USAGE default)", 0, G_MAXINT / 1000, DEFAULT_MAX_BITRATE, param_flags)); g_object_class_install_property (object_class, PROP_GOP_SIZE, g_param_spec_int ("gop-size", "GOP Size", "Number of pictures within a GOP (-1: USAGE default)", -1, G_MAXINT, DEFAULT_GOP_SIZE, param_flags)); g_object_class_install_property (object_class, PROP_MIN_QP, g_param_spec_int ("min-qp", "Min QP", "Minimum allowed QP value (-1: USAGE default)", -1, 51, DEFAULT_MIN_MAX_QP, param_flags)); g_object_class_install_property (object_class, PROP_MAX_QP, g_param_spec_int ("max-qp", "Max QP", "Maximum allowed QP value (-1: USAGE default)", -1, 51, DEFAULT_MIN_MAX_QP, param_flags)); g_object_class_install_property (object_class, PROP_QP_I, g_param_spec_uint ("qp-i", "QP I", "Constant QP for I frames", 0, 51, (guint) dev_caps->default_qp_i, param_flags)); g_object_class_install_property (object_class, PROP_QP_P, g_param_spec_uint ("qp-p", "QP P", "Constant QP for P frames", 0, 51, (guint) dev_caps->default_qp_p, param_flags)); g_object_class_install_property (object_class, PROP_REF_FRAMES, g_param_spec_uint ("ref-frames", "Reference Frames", "Number of reference frames", (guint) dev_caps->min_ref_frames, (guint) dev_caps->max_ref_frames, (guint) dev_caps->min_ref_frames, param_flags)); g_object_class_install_property (object_class, PROP_AUD, g_param_spec_boolean ("aud", "AUD", "Use AU (Access Unit) delimiter", DEFAULT_AUD, param_flags)); g_object_class_install_property (object_class, PROP_CABAC, g_param_spec_boolean ("cabac", "CABAC", "Enable CABAC entropy coding", TRUE, param_flags)); if (cdata->dev_caps.smart_access_supported) { g_object_class_install_property (object_class, PROP_SMART_ACCESS, g_param_spec_boolean ("smart-access-video", "Smart Access Video", "Enable AMF SmartAccess Video feature for optimal distribution" " between multiple AMD hardware instances", DEFAULT_SMART_ACCESS, (GParamFlags) (G_PARAM_READWRITE | GST_PARAM_CONDITIONALLY_AVAILABLE | GST_PARAM_MUTABLE_PLAYING | G_PARAM_STATIC_STRINGS))); } gst_element_class_set_metadata (element_class, "AMD AMF H.264 Video Encoder", "Codec/Encoder/Video/Hardware", "Encode H.264 video streams using AMF API", "Seungha Yang "); pad_templ = gst_pad_template_new ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, cdata->sink_caps); doc_caps = gst_caps_from_string (DOC_SINK_CAPS); gst_pad_template_set_documentation_caps (pad_templ, doc_caps); gst_caps_unref (doc_caps); gst_element_class_add_pad_template (element_class, pad_templ); pad_templ = gst_pad_template_new ("src", GST_PAD_SRC, GST_PAD_ALWAYS, cdata->src_caps); doc_caps = gst_caps_from_string (DOC_SRC_CAPS); gst_pad_template_set_documentation_caps (pad_templ, doc_caps); gst_caps_unref (doc_caps); gst_element_class_add_pad_template (element_class, pad_templ); videoenc_class->getcaps = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_getcaps); amf_class->set_format = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_format); amf_class->set_output_state = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_output_state); amf_class->set_surface_prop = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_set_surface_prop); amf_class->create_output_buffer = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_create_output_buffer); amf_class->check_reconfigure = GST_DEBUG_FUNCPTR (gst_amf_h264_enc_check_reconfigure); klass->dev_caps = cdata->dev_caps; klass->adapter_luid = cdata->adapter_luid; gst_caps_unref (cdata->sink_caps); gst_caps_unref (cdata->src_caps); g_free (cdata); gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_USAGE, (GstPluginAPIFlags) 0); gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_RATE_CONTROL, (GstPluginAPIFlags) 0); gst_type_mark_as_plugin_api (GST_TYPE_AMF_H264_ENC_PRESET, (GstPluginAPIFlags) 0); } static void gst_amf_h264_enc_init (GstAmfH264Enc * self) { GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self); GstAmfH264EncDeviceCaps *dev_caps = &klass->dev_caps; gst_amf_encoder_set_subclass_data (GST_AMF_ENCODER (self), klass->adapter_luid, AMFVideoEncoderVCE_AVC); self->parser = gst_h264_nal_parser_new (); g_mutex_init (&self->prop_lock); self->usage = DEFAULT_USAGE; self->rate_control = DEFAULT_RATE_CONTROL; self->preset = DEFAULT_PRESET; self->bitrate = DEFAULT_BITRATE; self->max_bitrate = DEFAULT_MAX_BITRATE; self->gop_size = DEFAULT_GOP_SIZE; self->min_qp = DEFAULT_MIN_MAX_QP; self->max_qp = DEFAULT_MIN_MAX_QP; self->qp_i = (guint) dev_caps->default_qp_i; self->qp_p = (guint) dev_caps->default_qp_p; self->ref_frames = (guint) dev_caps->min_ref_frames; self->aud = DEFAULT_AUD; self->cabac = DEFAULT_CABAC; self->smart_access = DEFAULT_SMART_ACCESS; } static void gst_amf_h264_enc_finalize (GObject * object) { GstAmfH264Enc *self = GST_AMF_H264_ENC (object); gst_h264_nal_parser_free (self->parser); g_mutex_clear (&self->prop_lock); G_OBJECT_CLASS (parent_class)->finalize (object); } static void update_int (GstAmfH264Enc * self, gint * old_val, const GValue * new_val) { gint val = g_value_get_int (new_val); if (*old_val == val) return; *old_val = val; self->property_updated = TRUE; } static void update_uint (GstAmfH264Enc * self, guint * old_val, const GValue * new_val) { guint val = g_value_get_uint (new_val); if (*old_val == val) return; *old_val = val; self->property_updated = TRUE; } static void update_enum (GstAmfH264Enc * self, gint * old_val, const GValue * new_val) { gint val = g_value_get_enum (new_val); if (*old_val == val) return; *old_val = val; self->property_updated = TRUE; } static void update_bool (GstAmfH264Enc * self, gboolean * old_val, const GValue * new_val) { gboolean val = g_value_get_boolean (new_val); if (*old_val == val) return; *old_val = val; self->property_updated = TRUE; } static void gst_amf_h264_enc_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstAmfH264Enc *self = GST_AMF_H264_ENC (object); g_mutex_lock (&self->prop_lock); switch (prop_id) { case PROP_USAGE: update_enum (self, &self->usage, value); break; case PROP_RATE_CONTROL: update_enum (self, &self->rate_control, value); break; case PROP_PRESET: update_enum (self, &self->preset, value); break; case PROP_BITRATE: update_uint (self, &self->bitrate, value); break; case PROP_MAX_BITRATE: update_uint (self, &self->max_bitrate, value); break; case PROP_GOP_SIZE: update_int (self, &self->gop_size, value); break; case PROP_MIN_QP: update_int (self, &self->min_qp, value); break; case PROP_MAX_QP: update_int (self, &self->max_qp, value); break; case PROP_QP_I: update_uint (self, &self->qp_i, value); break; case PROP_QP_P: update_uint (self, &self->qp_p, value); break; case PROP_REF_FRAMES: update_uint (self, &self->ref_frames, value); break; case PROP_AUD: /* This is per frame property, don't need to reset encoder */ self->aud = g_value_get_boolean (value); break; case PROP_CABAC: update_bool (self, &self->cabac, value); break; case PROP_SMART_ACCESS: update_bool (self, &self->smart_access, value); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } g_mutex_unlock (&self->prop_lock); } static void gst_amf_h264_enc_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (object); GstAmfH264Enc *self = GST_AMF_H264_ENC (object); switch (prop_id) { case PROP_ADAPTER_LUID: g_value_set_int64 (value, klass->adapter_luid); break; case PROP_USAGE: g_value_set_enum (value, self->usage); break; case PROP_RATE_CONTROL: g_value_set_enum (value, self->rate_control); break; case PROP_PRESET: g_value_set_enum (value, self->preset); break; case PROP_BITRATE: g_value_set_uint (value, self->bitrate); break; case PROP_MAX_BITRATE: g_value_set_uint (value, self->max_bitrate); break; case PROP_GOP_SIZE: g_value_set_int (value, self->gop_size); break; case PROP_MIN_QP: g_value_set_int (value, self->min_qp); break; case PROP_MAX_QP: g_value_set_int (value, self->max_qp); break; case PROP_QP_I: g_value_set_uint (value, self->qp_i); break; case PROP_QP_P: g_value_set_uint (value, self->qp_p); break; case PROP_REF_FRAMES: g_value_set_uint (value, self->ref_frames); break; case PROP_AUD: g_value_set_boolean (value, self->aud); break; case PROP_CABAC: g_value_set_boolean (value, self->cabac); break; case PROP_SMART_ACCESS: g_value_set_boolean (value, self->smart_access); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_amf_h264_enc_get_downstream_profiles_and_format (GstAmfH264Enc * self, std::set < std::string > &downstream_profiles, gboolean * packetized) { GstCaps *allowed_caps; GstStructure *s; const gchar *stream_format; allowed_caps = gst_pad_get_allowed_caps (GST_VIDEO_ENCODER_SRC_PAD (self)); if (!allowed_caps || gst_caps_is_empty (allowed_caps) || gst_caps_is_any (allowed_caps)) { gst_clear_caps (&allowed_caps); return; } for (guint i = 0; i < gst_caps_get_size (allowed_caps); i++) { const GValue *profile_value; const gchar *profile; s = gst_caps_get_structure (allowed_caps, i); profile_value = gst_structure_get_value (s, "profile"); if (!profile_value) continue; if (GST_VALUE_HOLDS_LIST (profile_value)) { for (guint j = 0; j < gst_value_list_get_size (profile_value); j++) { const GValue *p = gst_value_list_get_value (profile_value, j); if (!G_VALUE_HOLDS_STRING (p)) continue; profile = g_value_get_string (p); if (profile) downstream_profiles.insert (profile); } } else if (G_VALUE_HOLDS_STRING (profile_value)) { profile = g_value_get_string (profile_value); if (profile) downstream_profiles.insert (profile); } } if (packetized) { *packetized = FALSE; allowed_caps = gst_caps_fixate (allowed_caps); s = gst_caps_get_structure (allowed_caps, 0); stream_format = gst_structure_get_string (s, "stream-format"); if (g_strcmp0 (stream_format, "avc") == 0) *packetized = TRUE; } gst_caps_unref (allowed_caps); } static GstCaps * gst_amf_h264_enc_getcaps (GstVideoEncoder * encoder, GstCaps * filter) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self); GstCaps *template_caps; GstCaps *supported_caps; std::set < std::string > downstream_profiles; if (!klass->dev_caps.interlace_supported) return gst_video_encoder_proxy_getcaps (encoder, nullptr, filter); gst_amf_h264_enc_get_downstream_profiles_and_format (self, downstream_profiles, nullptr); GST_DEBUG_OBJECT (self, "Downstream specified %" G_GSIZE_FORMAT " profiles", downstream_profiles.size ()); if (downstream_profiles.size () == 0) return gst_video_encoder_proxy_getcaps (encoder, NULL, filter); /* Profile allows interlaced? */ /* *INDENT-OFF* */ gboolean can_support_interlaced = FALSE; for (const auto &iter: downstream_profiles) { if (iter == "high" || iter == "main" || iter == "constrained-high") { can_support_interlaced = TRUE; break; } } /* *INDENT-ON* */ GST_DEBUG_OBJECT (self, "Downstream %s support interlaced format", can_support_interlaced ? "can" : "cannot"); if (can_support_interlaced) { /* No special handling is needed */ return gst_video_encoder_proxy_getcaps (encoder, nullptr, filter); } template_caps = gst_pad_get_pad_template_caps (encoder->sinkpad); template_caps = gst_caps_make_writable (template_caps); gst_caps_set_simple (template_caps, "interlace-mode", G_TYPE_STRING, "progressive", nullptr); supported_caps = gst_video_encoder_proxy_getcaps (encoder, template_caps, filter); gst_caps_unref (template_caps); GST_DEBUG_OBJECT (self, "Returning %" GST_PTR_FORMAT, supported_caps); return supported_caps; } static gboolean gst_amf_h264_enc_set_format (GstAmfEncoder * encoder, GstVideoCodecState * state, gpointer component) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); GstAmfH264EncClass *klass = GST_AMF_H264_ENC_GET_CLASS (self); GstAmfH264EncDeviceCaps *dev_caps = &klass->dev_caps; AMFComponent *comp = (AMFComponent *) component; GstVideoInfo *info = &state->info; std::set < std::string > downstream_profiles; AMF_VIDEO_ENCODER_PROFILE_ENUM profile = AMF_VIDEO_ENCODER_PROFILE_UNKNOWN; AMF_RESULT result; AMFRate framerate; AMFRatio aspect_ratio; amf_int64 int64_val; amf_bool boolean_val; AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_ENUM rc_mode; AMF_VIDEO_ENCODER_CODING_ENUM cabac = AMF_VIDEO_ENCODER_UNDEFINED; self->packetized = FALSE; gst_amf_h264_enc_get_downstream_profiles_and_format (self, downstream_profiles, &self->packetized); if (downstream_profiles.empty ()) { GST_ERROR_OBJECT (self, "Unable to get downstream profile"); return FALSE; } if (GST_VIDEO_INFO_IS_INTERLACED (info)) { downstream_profiles.erase ("constrained-high"); downstream_profiles.erase ("constrained-baseline"); downstream_profiles.erase ("baseline"); if (downstream_profiles.empty ()) { GST_ERROR_OBJECT (self, "None of downstream profile supports interlaced encoding"); return FALSE; } } if (downstream_profiles.find ("main") != downstream_profiles.end ()) { profile = AMF_VIDEO_ENCODER_PROFILE_MAIN; } else if (downstream_profiles.find ("high") != downstream_profiles.end ()) { profile = AMF_VIDEO_ENCODER_PROFILE_HIGH; } else if (downstream_profiles.find ("constrained-high") != downstream_profiles.end ()) { if (dev_caps->max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH) { profile = AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH; } else { profile = AMF_VIDEO_ENCODER_PROFILE_HIGH; } } else if (downstream_profiles.find ("constrained-baseline") != downstream_profiles.end ()) { if (dev_caps->max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE) { profile = AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE; } else { profile = AMF_VIDEO_ENCODER_PROFILE_BASELINE; } } else if (downstream_profiles.find ("baseline") != downstream_profiles.end ()) { profile = AMF_VIDEO_ENCODER_PROFILE_BASELINE; } else { GST_ERROR_OBJECT (self, "Failed to determine profile"); return FALSE; } g_mutex_lock (&self->prop_lock); /* Configure static properties first before Init() */ result = comp->SetProperty (AMF_VIDEO_ENCODER_FRAMESIZE, AMFConstructSize (info->width, info->height)); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set frame size, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } result = comp->SetProperty (AMF_VIDEO_ENCODER_USAGE, (amf_int64) self->usage); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set usage, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } if (self->preset > AMF_VIDEO_ENCODER_QUALITY_PRESET_UNKNOWN) { result = comp->SetProperty (AMF_VIDEO_ENCODER_QUALITY_PRESET, (amf_int64) self->preset); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set quality preset, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } } result = comp->SetProperty (AMF_VIDEO_ENCODER_PROFILE, (amf_int64) profile); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set profile, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } result = comp->SetProperty (AMF_VIDEO_ENCODER_MAX_NUM_REFRAMES, (amf_int64) self->ref_frames); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set ref-frames, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } aspect_ratio = AMFConstructRatio (info->par_n, info->par_d); result = comp->SetProperty (AMF_VIDEO_ENCODER_ASPECT_RATIO, aspect_ratio); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set aspect ratio, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } if (info->colorimetry.range == GST_VIDEO_COLOR_RANGE_0_255) boolean_val = true; else boolean_val = false; result = comp->SetProperty (AMF_VIDEO_ENCODER_FULL_RANGE_COLOR, boolean_val); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set full-range-color, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } if (self->rate_control != AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_UNKNOWN) { result = comp->SetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD, (amf_int64) self->rate_control); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set rate-control, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } } if (dev_caps->smart_access_supported) { result = comp->SetProperty (AMF_VIDEO_ENCODER_ENABLE_SMART_ACCESS_VIDEO, (amf_bool) self->smart_access); if (result != AMF_OK) { GST_WARNING_OBJECT (self, "Failed to set smart access video, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); } } result = comp->Init (AMF_SURFACE_NV12, info->width, info->height); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to init component, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } /* dynamic properties */ result = comp->GetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD, &int64_val); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to get rate-control method, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } rc_mode = (AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_ENUM) int64_val; if (self->min_qp >= 0) comp->SetProperty (AMF_VIDEO_ENCODER_MIN_QP, (amf_int64) self->min_qp); if (self->max_qp >= 0) comp->SetProperty (AMF_VIDEO_ENCODER_MAX_QP, (amf_int64) self->max_qp); comp->SetProperty (AMF_VIDEO_ENCODER_QP_I, (amf_int64) self->qp_i); comp->SetProperty (AMF_VIDEO_ENCODER_QP_P, (amf_int64) self->qp_p); switch (rc_mode) { case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_CBR: if (self->bitrate > 0) { comp->SetProperty (AMF_VIDEO_ENCODER_TARGET_BITRATE, (amf_int64) self->bitrate * 1000); comp->SetProperty (AMF_VIDEO_ENCODER_PEAK_BITRATE, (amf_int64) self->bitrate * 1000); } break; case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_PEAK_CONSTRAINED_VBR: case AMF_VIDEO_ENCODER_RATE_CONTROL_METHOD_LATENCY_CONSTRAINED_VBR: if (self->bitrate > 0) { comp->SetProperty (AMF_VIDEO_ENCODER_TARGET_BITRATE, (amf_int64) self->bitrate * 1000); } if (self->max_bitrate > 0) { comp->SetProperty (AMF_VIDEO_ENCODER_PEAK_BITRATE, (amf_int64) self->max_bitrate * 1000); } break; default: break; } /* Disable frame skip for now, need investigation the behavior */ result = comp->SetProperty (AMF_VIDEO_ENCODER_RATE_CONTROL_SKIP_FRAME_ENABLE, (amf_bool) false); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to disable skip frame, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } if (info->fps_n > 0 && info->fps_d) { framerate = AMFConstructRate (info->fps_n, info->fps_d); } else { framerate = AMFConstructRate (25, 1); } result = comp->SetProperty (AMF_VIDEO_ENCODER_FRAMERATE, framerate); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set frame rate, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } if (self->gop_size >= 0) { result = comp->SetProperty (AMF_VIDEO_ENCODER_IDR_PERIOD, (amf_int64) self->gop_size); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set IDR period, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } } if (profile != AMF_VIDEO_ENCODER_PROFILE_BASELINE && profile != AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_BASELINE) { if (self->cabac) cabac = AMF_VIDEO_ENCODER_CABAC; else cabac = AMF_VIDEO_ENCODER_CALV; } result = comp->SetProperty (AMF_VIDEO_ENCODER_CABAC_ENABLE, (amf_int64) cabac); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to set cabac, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); goto error; } self->property_updated = FALSE; g_mutex_unlock (&self->prop_lock); return TRUE; error: g_mutex_unlock (&self->prop_lock); return FALSE; } static gboolean gst_amf_h264_enc_set_output_state (GstAmfEncoder * encoder, GstVideoCodecState * state, gpointer component) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); AMFComponent *comp = (AMFComponent *) component; GstVideoCodecState *output_state; GstCaps *caps; const gchar *profile_from_sps; std::set < std::string > downstream_profiles; std::string caps_str; GstTagList *tags; GstBuffer *codec_data = nullptr; GstH264NalUnit sps_nalu, pps_nalu; GstH264ParserResult rst; AMF_RESULT result; AMFInterfacePtr iface; AMFBufferPtr spspps_buf; guint8 *spspps; amf_size spspps_size; result = comp->GetProperty (AMF_VIDEO_ENCODER_EXTRADATA, &iface); if (result != AMF_OK) { GST_ERROR_OBJECT (self, "Failed to get extra data, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); return FALSE; } spspps_buf = AMFBufferPtr (iface); if (!spspps_buf) { GST_ERROR_OBJECT (self, "Failed to set get AMFBuffer interface, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); return FALSE; } spspps_size = spspps_buf->GetSize (); if (spspps_size < 4) { GST_ERROR_OBJECT (self, "Too small spspps size %d", (guint) spspps_size); return FALSE; } spspps = (guint8 *) spspps_buf->GetNative (); if (!spspps) { GST_ERROR_OBJECT (self, "Null SPS/PPS"); return FALSE; } caps_str = "video/x-h264, alignment = (string) au"; gst_amf_h264_enc_get_downstream_profiles_and_format (self, downstream_profiles, nullptr); rst = gst_h264_parser_identify_nalu (self->parser, spspps, 0, spspps_size, &sps_nalu); if (rst != GST_H264_PARSER_OK) { GST_ERROR_OBJECT (self, "Failed to identify SPS nal"); return FALSE; } if (sps_nalu.size < 4) { GST_ERROR_OBJECT (self, "Too small sps nal size %d", sps_nalu.size); return FALSE; } rst = gst_h264_parser_identify_nalu_unchecked (self->parser, spspps, sps_nalu.offset + sps_nalu.size, spspps_size, &pps_nalu); if (rst != GST_H264_PARSER_OK && self->packetized) { GST_ERROR_OBJECT (self, "Failed to identify PPS nal, %d", rst); return FALSE; } if (self->packetized) { GstMapInfo info; guint8 *data; guint8 profile_idc, profile_comp, level_idc; const guint nal_length_size = 4; const guint num_sps = 1; const guint num_pps = 1; data = sps_nalu.data + sps_nalu.offset + sps_nalu.header_bytes; profile_idc = data[0]; profile_comp = data[1]; level_idc = data[2]; /* 5: configuration version, profile, compatibility, level, nal length * 1: num sps * 2: sps size bytes * sizeof (sps) * 1: num pps * 2: pps size bytes * sizeof (pps) * * -> 11 + sps_size + pps_size */ codec_data = gst_buffer_new_and_alloc (11 + sps_nalu.size + pps_nalu.size); gst_buffer_map (codec_data, &info, GST_MAP_WRITE); data = (guint8 *) info.data; data[0] = 1; data[1] = profile_idc; data[2] = profile_comp; data[3] = level_idc; data[4] = 0xfc | (nal_length_size - 1); data[5] = 0xe0 | num_sps; data += 6; GST_WRITE_UINT16_BE (data, sps_nalu.size); data += 2; memcpy (data, sps_nalu.data + sps_nalu.offset, sps_nalu.size); data += sps_nalu.size; data[0] = num_pps; data++; GST_WRITE_UINT16_BE (data, pps_nalu.size); data += 2; memcpy (data, pps_nalu.data + pps_nalu.offset, pps_nalu.size); gst_buffer_unmap (codec_data, &info); } profile_from_sps = gst_codec_utils_h264_get_profile (sps_nalu.data + sps_nalu.offset + sps_nalu.header_bytes, 3); if (!profile_from_sps) { GST_WARNING_OBJECT (self, "Failed to parse profile from SPS"); } else if (!downstream_profiles.empty ()) { if (downstream_profiles.find (profile_from_sps) != downstream_profiles.end ()) { caps_str += ", profile = (string) " + std::string (profile_from_sps); } else if (downstream_profiles.find ("baseline") != downstream_profiles.end () && strcmp (profile_from_sps, "constrained-baseline") == 0) { caps_str += ", profile = (string) baseline"; } else if (downstream_profiles.find ("constrained-baseline") != downstream_profiles.end () && strcmp (profile_from_sps, "constrained-baseline") == 0) { caps_str += ", profile = (string) constrained-baseline"; } } else { caps_str += ", profile = (string) " + std::string (profile_from_sps); } if (self->packetized) { caps_str += ", stream-format = (string) avc"; } else { caps_str += ", stream-format = (string) byte-stream"; } caps = gst_caps_from_string (caps_str.c_str ()); if (self->packetized) { gst_caps_set_simple (caps, "codec_data", GST_TYPE_BUFFER, codec_data, nullptr); gst_buffer_unref (codec_data); } output_state = gst_video_encoder_set_output_state (GST_VIDEO_ENCODER (self), caps, state); GST_INFO_OBJECT (self, "Output caps: %" GST_PTR_FORMAT, output_state->caps); gst_video_codec_state_unref (output_state); tags = gst_tag_list_new_empty (); gst_tag_list_add (tags, GST_TAG_MERGE_REPLACE, GST_TAG_ENCODER, "amfh264enc", nullptr); gst_video_encoder_merge_tags (GST_VIDEO_ENCODER (encoder), tags, GST_TAG_MERGE_REPLACE); gst_tag_list_unref (tags); return TRUE; } static gboolean gst_amf_h264_enc_set_surface_prop (GstAmfEncoder * encoder, GstVideoCodecFrame * frame, gpointer surface) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); AMFSurface *surf = (AMFSurface *) surface; AMF_RESULT result; amf_bool insert_aud = self->aud ? true : false; if (GST_VIDEO_CODEC_FRAME_IS_FORCE_KEYFRAME (frame)) { amf_int64 type = (amf_int64) AMF_VIDEO_ENCODER_PICTURE_TYPE_IDR; result = surf->SetProperty (AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, type); if (result != AMF_OK) { GST_WARNING_OBJECT (encoder, "Failed to set force idr, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); } } result = surf->SetProperty (AMF_VIDEO_ENCODER_INSERT_AUD, &insert_aud); if (result != AMF_OK) { GST_WARNING_OBJECT (encoder, "Failed to set AUD, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); } return TRUE; } static GstBuffer * gst_amf_h264_enc_create_output_buffer (GstAmfEncoder * encoder, gpointer data, gboolean * sync_point) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); AMFBuffer *amf_buf = (AMFBuffer *) data; GstBuffer *buf; GstH264ParserResult rst; GstH264NalUnit nalu; guint8 *data_ptr; gsize data_size; amf_int64 output_type = 0; AMF_RESULT result; data_ptr = (guint8 *) amf_buf->GetNative (); data_size = amf_buf->GetSize (); if (!data_ptr || data_size == 0) { GST_WARNING_OBJECT (self, "Empty buffer"); return nullptr; } if (!self->packetized) { buf = gst_buffer_new_memdup (data_ptr, data_size); } else { buf = gst_buffer_new (); rst = gst_h264_parser_identify_nalu (self->parser, data_ptr, 0, data_size, &nalu); if (rst == GST_H264_PARSER_NO_NAL_END) rst = GST_H264_PARSER_OK; while (rst == GST_H264_PARSER_OK) { GstMemory *mem; guint8 *data; data = (guint8 *) g_malloc0 (nalu.size + 4); GST_WRITE_UINT32_BE (data, nalu.size); memcpy (data + 4, nalu.data + nalu.offset, nalu.size); mem = gst_memory_new_wrapped ((GstMemoryFlags) 0, data, nalu.size + 4, 0, nalu.size + 4, data, (GDestroyNotify) g_free); gst_buffer_append_memory (buf, mem); rst = gst_h264_parser_identify_nalu (self->parser, data_ptr, nalu.offset + nalu.size, data_size, &nalu); if (rst == GST_H264_PARSER_NO_NAL_END) rst = GST_H264_PARSER_OK; } } result = amf_buf->GetProperty (AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE, &output_type); if (result == AMF_OK && output_type == (amf_int64) AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE_IDR) { *sync_point = TRUE; } return buf; } static gboolean gst_amf_h264_enc_check_reconfigure (GstAmfEncoder * encoder) { GstAmfH264Enc *self = GST_AMF_H264_ENC (encoder); gboolean ret; g_mutex_lock (&self->prop_lock); ret = self->property_updated; g_mutex_unlock (&self->prop_lock); return ret; } static GstAmfH264EncClassData * gst_amf_h264_enc_create_class_data (GstD3D11Device * device, AMFComponent * comp) { AMF_RESULT result; GstAmfH264EncDeviceCaps dev_caps = { 0, }; std::string sink_caps_str; std::string src_caps_str; std::set < std::string > profiles; std::string profile_str; std::string resolution_str; GstAmfH264EncClassData *cdata; AMFCapsPtr amf_caps; AMFIOCapsPtr in_iocaps; AMFIOCapsPtr out_iocaps; amf_int32 in_min_width = 0, in_max_width = 0; amf_int32 in_min_height = 0, in_max_height = 0; amf_int32 out_min_width = 0, out_max_width = 0; amf_int32 out_min_height = 0, out_max_height = 0; amf_bool interlace_supported; amf_bool smart_access_supported; amf_int32 num_val; gboolean have_nv12 = FALSE; gboolean d3d11_supported = FALSE; gint min_width, max_width, min_height, max_height; GstCaps *sink_caps; GstCaps *system_caps; result = comp->GetCaps (&amf_caps); if (result != AMF_OK) { GST_WARNING_OBJECT (device, "Unable to get caps"); return nullptr; } result = amf_caps->GetInputCaps (&in_iocaps); if (result != AMF_OK) { GST_WARNING_OBJECT (device, "Unable to get input io caps"); return nullptr; } in_iocaps->GetWidthRange (&in_min_width, &in_max_width); in_iocaps->GetHeightRange (&in_min_height, &in_max_height); dev_caps.valign = in_iocaps->GetVertAlign (); interlace_supported = in_iocaps->IsInterlacedSupported (); GST_INFO_OBJECT (device, "Input width: [%d, %d], height: [%d, %d], " "valign: %d, interlace supported: %d", in_min_width, in_max_width, in_min_height, in_max_height, dev_caps.valign, interlace_supported); if (interlace_supported) dev_caps.interlace_supported = TRUE; num_val = in_iocaps->GetNumOfFormats (); GST_LOG_OBJECT (device, "Input format count: %d", num_val); for (amf_int32 i = 0; i < num_val; i++) { AMF_SURFACE_FORMAT format; amf_bool native; result = in_iocaps->GetFormatAt (i, &format, &native); if (result != AMF_OK) continue; GST_INFO_OBJECT (device, "Format %d supported, native %d", format, native); if (format == AMF_SURFACE_NV12) have_nv12 = TRUE; } if (!have_nv12) { GST_WARNING_OBJECT (device, "NV12 is not supported"); return nullptr; } num_val = in_iocaps->GetNumOfMemoryTypes (); GST_LOG_OBJECT (device, "Input memory type count: %d", num_val); for (amf_int32 i = 0; i < num_val; i++) { AMF_MEMORY_TYPE type; amf_bool native; result = in_iocaps->GetMemoryTypeAt (i, &type, &native); if (result != AMF_OK) continue; GST_INFO_OBJECT (device, "MemoryType %d supported, native %d", type, native); if (type == AMF_MEMORY_DX11) d3d11_supported = TRUE; } if (!d3d11_supported) { GST_WARNING_OBJECT (device, "D3D11 is not supported"); return nullptr; } result = amf_caps->GetOutputCaps (&out_iocaps); if (result != AMF_OK) { GST_WARNING_OBJECT (device, "Unable to get input io caps"); return nullptr; } out_iocaps->GetWidthRange (&out_min_width, &out_max_width); out_iocaps->GetHeightRange (&out_min_height, &out_max_height); GST_INFO_OBJECT (device, "Output width: [%d, %d], height: [%d, %d]", in_min_width, in_max_width, in_min_height, in_max_height); #define QUERY_CAPS_PROP(prop,val) G_STMT_START { \ amf_int64 _val = 0; \ result = amf_caps->GetProperty (prop, &_val); \ if (result == AMF_OK) { \ GST_INFO_OBJECT (device, G_STRINGIFY (val) ": %" G_GINT64_FORMAT, _val); \ dev_caps.val = _val; \ } \ } G_STMT_END QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_BITRATE, max_bitrate); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_NUM_OF_STREAMS, num_of_streams); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_PROFILE, max_profile); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_LEVEL, max_level); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_BFRAMES, bframes); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MIN_REFERENCE_FRAMES, min_ref_frames); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_REFERENCE_FRAMES, max_ref_frames); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_TEMPORAL_LAYERS, max_temporal_layers); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_FIXED_SLICE_MODE, fixed_slice_mode); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_NUM_OF_HW_INSTANCES, num_of_hw_instances); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_COLOR_CONVERSION, color_conversion); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_PRE_ANALYSIS, pre_analysis); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_ROI, roi_map); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAP_MAX_THROUGHPUT, max_throughput); QUERY_CAPS_PROP (AMF_VIDEO_ENCODER_CAPS_QUERY_TIMEOUT_SUPPORT, query_timeout_support); #undef QUERY_CAPS_PROP #define QUERY_DEFAULT_PROP(prop,val,default_val) G_STMT_START { \ const AMFPropertyInfo *pinfo = nullptr; \ result = comp->GetPropertyInfo (prop, &pinfo); \ if (result == AMF_OK && pinfo) { \ dev_caps.val = AMFVariantGetInt64 (&pinfo->defaultValue); \ GST_INFO_OBJECT (device, G_STRINGIFY (val) ": %" G_GINT64_FORMAT, \ dev_caps.val); \ } else { \ dev_caps.val = default_val; \ } \ } G_STMT_END QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_i, 22); QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_p, 22); QUERY_DEFAULT_PROP (AMF_VIDEO_ENCODER_QP_I, default_qp_b, 22); #undef QUERY_DEFAULT_PROP result = comp->GetProperty (AMF_VIDEO_ENCODER_ENABLE_SMART_ACCESS_VIDEO, &smart_access_supported); if (result == AMF_OK) dev_caps.smart_access_supported = TRUE; min_width = MAX (in_min_width, 1); max_width = in_max_width; if (max_width == 0) { GST_WARNING_OBJECT (device, "Unknown max width, assuming 4096"); max_width = 4096; } min_height = MAX (in_min_height, 1); max_height = in_max_height; if (max_height == 0) { GST_WARNING_OBJECT (device, "Unknown max height, assuming 4096"); max_height = 4096; } if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_BASELINE) { profiles.insert ("baseline"); profiles.insert ("constrained-baseline"); } if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_MAIN) profiles.insert ("main"); if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_HIGH) { profiles.insert ("high"); } if (dev_caps.max_profile >= (gint64) AMF_VIDEO_ENCODER_PROFILE_CONSTRAINED_HIGH) { profiles.insert ("constrained-high"); } if (profiles.empty ()) { GST_WARNING_OBJECT (device, "Failed to determine profile support"); return nullptr; } #define APPEND_STRING(dst,set,str) G_STMT_START { \ if (set.find(str) != set.end()) { \ if (!first) \ dst += ", "; \ dst += str; \ first = FALSE; \ } \ } G_STMT_END if (profiles.size () == 1) { profile_str = "profile = (string) " + *(profiles.begin ()); } else { gboolean first = TRUE; profile_str = "profile = (string) { "; APPEND_STRING (profile_str, profiles, "main"); APPEND_STRING (profile_str, profiles, "high"); APPEND_STRING (profile_str, profiles, "constrained-high"); APPEND_STRING (profile_str, profiles, "constrained-baseline"); APPEND_STRING (profile_str, profiles, "baseline"); profile_str += " } "; } #undef APPEND_STRING resolution_str = "width = (int) [ " + std::to_string (min_width) + ", " + std::to_string (max_width) + " ]"; resolution_str += ", height = (int) [ " + std::to_string (min_height) + ", " + std::to_string (max_height) + " ]"; sink_caps_str = "video/x-raw, format = (string) NV12, " + resolution_str; if (dev_caps.interlace_supported > 0) { sink_caps_str += ", interlace-mode = (string) { interleaved, mixed }"; } else { sink_caps_str += ", interlace-mode = (string) progressive"; } src_caps_str = "video/x-h264, " + resolution_str + ", " + profile_str + ", stream-format = (string) { avc, byte-stream }, alignment = (string) au"; system_caps = gst_caps_from_string (sink_caps_str.c_str ()); sink_caps = gst_caps_copy (system_caps); gst_caps_set_features (sink_caps, 0, gst_caps_features_new (GST_CAPS_FEATURE_MEMORY_D3D11_MEMORY, nullptr)); gst_caps_append (sink_caps, system_caps); cdata = g_new0 (GstAmfH264EncClassData, 1); cdata->sink_caps = sink_caps; cdata->src_caps = gst_caps_from_string (src_caps_str.c_str ()); cdata->dev_caps = dev_caps; g_object_get (device, "adapter-luid", &cdata->adapter_luid, nullptr); GST_MINI_OBJECT_FLAG_SET (cdata->sink_caps, GST_MINI_OBJECT_FLAG_MAY_BE_LEAKED); GST_MINI_OBJECT_FLAG_SET (cdata->src_caps, GST_MINI_OBJECT_FLAG_MAY_BE_LEAKED); GST_DEBUG_OBJECT (device, "Sink caps %" GST_PTR_FORMAT, cdata->sink_caps); GST_DEBUG_OBJECT (device, "Src caps %" GST_PTR_FORMAT, cdata->src_caps); return cdata; } void gst_amf_h264_enc_register_d3d11 (GstPlugin * plugin, GstD3D11Device * device, gpointer context, guint rank) { GstAmfH264EncClassData *cdata; AMFContext *amf_context = (AMFContext *) context; AMFFactory *factory = (AMFFactory *) gst_amf_get_factory (); AMFComponentPtr comp; AMF_RESULT result; GST_DEBUG_CATEGORY_INIT (gst_amf_h264_enc_debug, "amfh264enc", 0, "amfh264enc"); result = factory->CreateComponent (amf_context, AMFVideoEncoderVCE_AVC, &comp); if (result != AMF_OK) { GST_WARNING_OBJECT (device, "Failed to create component, result %" GST_AMF_RESULT_FORMAT, GST_AMF_RESULT_ARGS (result)); return; } cdata = gst_amf_h264_enc_create_class_data (device, comp.GetPtr ()); if (!cdata) return; GType type; gchar *type_name; gchar *feature_name; GTypeInfo type_info = { sizeof (GstAmfH264EncClass), nullptr, nullptr, (GClassInitFunc) gst_amf_h264_enc_class_init, nullptr, cdata, sizeof (GstAmfH264Enc), 0, (GInstanceInitFunc) gst_amf_h264_enc_init, }; type_name = g_strdup ("GstAmfH264Enc"); feature_name = g_strdup ("amfh264enc"); gint index = 0; while (g_type_from_name (type_name)) { index++; g_free (type_name); g_free (feature_name); type_name = g_strdup_printf ("GstAmfH264Device%dEnc", index); feature_name = g_strdup_printf ("amfh264device%denc", index); } type = g_type_register_static (GST_TYPE_AMF_ENCODER, type_name, &type_info, (GTypeFlags) 0); if (rank > 0 && index != 0) rank--; if (index != 0) gst_element_type_set_skip_documentation (type); if (!gst_element_register (plugin, feature_name, rank, type)) GST_WARNING ("Failed to register plugin '%s'", type_name); g_free (type_name); g_free (feature_name); }