/* GStreamer * Copyright (C) 2005 Stefan Kost * * gstaudiotestsrc.c: * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:element-audiotestsrc * * * AudioTestSrc can be used to generate basic audio signals. It support several * different waveforms and allows you to set the base frequency and volume. * Example launch line * * * gst-launch audiotestsrc ! audioconvert ! alsasink * * This pipeline produces a sine with default frequency (mid-C) and volume. * * * * gst-launch audiotestsrc wave=2 freq=200 ! audioconvert ! tee name=t ! alsasink t. ! libvisual_lv_scope ! ffmpegcolorspace ! xvimagesink * * In this example a saw wave is generated. The wave is shown using a * scope visualizer from libvisual, allowing you to visually verify that * the saw wave is correct. * * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "gstaudiotestsrc.h" #define M_PI_M2 ( M_PI + M_PI ) GstElementDetails gst_audio_test_src_details = { "Audio test source", "Source/Audio", "Creates audio test signals of given frequency and volume", "Stefan Kost " }; enum { PROP_0, PROP_SAMPLES_PER_BUFFER, PROP_WAVE, PROP_FREQ, PROP_VOLUME, PROP_IS_LIVE, PROP_TIMESTAMP_OFFSET, }; static GstStaticPadTemplate gst_audio_test_src_src_template = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS ("audio/x-raw-int, " "endianness = (int) BYTE_ORDER, " "signed = (boolean) true, " "width = (int) 16, " "depth = (int) 16, " "rate = (int) [ 1, MAX ], " "channels = (int) 1") ); GST_BOILERPLATE (GstAudioTestSrc, gst_audio_test_src, GstBaseSrc, GST_TYPE_BASE_SRC); #define GST_TYPE_AUDIO_TEST_SRC_WAVE (gst_audiostestsrc_wave_get_type()) static GType gst_audiostestsrc_wave_get_type (void) { static GType audiostestsrc_wave_type = 0; static GEnumValue audiostestsrc_waves[] = { {GST_AUDIO_TEST_SRC_WAVE_SINE, "Sine", "sine"}, {GST_AUDIO_TEST_SRC_WAVE_SQUARE, "Square", "square"}, {GST_AUDIO_TEST_SRC_WAVE_SAW, "Saw", "saw"}, {GST_AUDIO_TEST_SRC_WAVE_TRIANGLE, "Triangle", "triangle"}, {GST_AUDIO_TEST_SRC_WAVE_SILENCE, "Silence", "silence"}, {GST_AUDIO_TEST_SRC_WAVE_WHITE_NOISE, "White noise", "white-noise"}, {GST_AUDIO_TEST_SRC_WAVE_PINK_NOISE, "Pink noise", "pink-noise"}, {GST_AUDIO_TEST_SRC_WAVE_SINE_TAB, "Sine table", "sine table"}, {0, NULL, NULL}, }; if (!audiostestsrc_wave_type) { audiostestsrc_wave_type = g_enum_register_static ("GstAudioTestSrcWave", audiostestsrc_waves); } return audiostestsrc_wave_type; } static void gst_audio_test_src_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_audio_test_src_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static gboolean gst_audio_test_src_setcaps (GstBaseSrc * basesrc, GstCaps * caps); static void gst_audio_test_src_src_fixate (GstPad * pad, GstCaps * caps); static gboolean gst_audio_test_src_is_seekable (GstBaseSrc * basesrc); static gboolean gst_audio_test_src_do_seek (GstBaseSrc * basesrc, GstSegment * segment); static gboolean gst_audio_test_src_query (GstBaseSrc * basesrc, GstQuery * query); static void gst_audio_test_src_change_wave (GstAudioTestSrc * src); static void gst_audio_test_src_get_times (GstBaseSrc * basesrc, GstBuffer * buffer, GstClockTime * start, GstClockTime * end); static GstFlowReturn gst_audio_test_src_create (GstBaseSrc * basesrc, guint64 offset, guint length, GstBuffer ** buffer); static void gst_audio_test_src_base_init (gpointer g_class) { GstElementClass *element_class = GST_ELEMENT_CLASS (g_class); gst_element_class_add_pad_template (element_class, gst_static_pad_template_get (&gst_audio_test_src_src_template)); gst_element_class_set_details (element_class, &gst_audio_test_src_details); } static void gst_audio_test_src_class_init (GstAudioTestSrcClass * klass) { GObjectClass *gobject_class; GstBaseSrcClass *gstbasesrc_class; gobject_class = (GObjectClass *) klass; gstbasesrc_class = (GstBaseSrcClass *) klass; gobject_class->set_property = gst_audio_test_src_set_property; gobject_class->get_property = gst_audio_test_src_get_property; g_object_class_install_property (gobject_class, PROP_SAMPLES_PER_BUFFER, g_param_spec_int ("samplesperbuffer", "Samples per buffer", "Number of samples in each outgoing buffer", 1, G_MAXINT, 1024, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_WAVE, g_param_spec_enum ("wave", "Waveform", "Oscillator waveform", GST_TYPE_AUDIO_TEST_SRC_WAVE, /* enum type */ GST_AUDIO_TEST_SRC_WAVE_SINE, /* default value */ G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE)); g_object_class_install_property (gobject_class, PROP_FREQ, g_param_spec_double ("freq", "Frequency", "Frequency of test signal", 0.0, 20000.0, 440.0, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE)); g_object_class_install_property (gobject_class, PROP_VOLUME, g_param_spec_double ("volume", "Volume", "Volume of test signal", 0.0, 1.0, 0.8, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE)); g_object_class_install_property (gobject_class, PROP_IS_LIVE, g_param_spec_boolean ("is-live", "Is Live", "Whether to act as a live source", FALSE, G_PARAM_READWRITE)); g_object_class_install_property (G_OBJECT_CLASS (klass), PROP_TIMESTAMP_OFFSET, g_param_spec_int64 ("timestamp-offset", "Timestamp offset", "An offset added to timestamps set on buffers (in ns)", G_MININT64, G_MAXINT64, 0, G_PARAM_READWRITE)); gstbasesrc_class->set_caps = GST_DEBUG_FUNCPTR (gst_audio_test_src_setcaps); gstbasesrc_class->is_seekable = GST_DEBUG_FUNCPTR (gst_audio_test_src_is_seekable); gstbasesrc_class->do_seek = GST_DEBUG_FUNCPTR (gst_audio_test_src_do_seek); gstbasesrc_class->query = GST_DEBUG_FUNCPTR (gst_audio_test_src_query); gstbasesrc_class->get_times = GST_DEBUG_FUNCPTR (gst_audio_test_src_get_times); gstbasesrc_class->create = GST_DEBUG_FUNCPTR (gst_audio_test_src_create); } static void gst_audio_test_src_init (GstAudioTestSrc * src, GstAudioTestSrcClass * g_class) { GstPad *pad = GST_BASE_SRC_PAD (src); gst_pad_set_fixatecaps_function (pad, gst_audio_test_src_src_fixate); src->samplerate = 44100; src->volume = 1.0; src->freq = 440.0; /* we operate in time */ gst_base_src_set_format (GST_BASE_SRC (src), GST_FORMAT_TIME); gst_base_src_set_live (GST_BASE_SRC (src), FALSE); src->samples_per_buffer = 1024; src->generate_samples_per_buffer = src->samples_per_buffer; src->timestamp_offset = G_GINT64_CONSTANT (0); src->wave = GST_AUDIO_TEST_SRC_WAVE_SINE; gst_audio_test_src_change_wave (src); } static void gst_audio_test_src_src_fixate (GstPad * pad, GstCaps * caps) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (GST_PAD_PARENT (pad)); GstStructure *structure; structure = gst_caps_get_structure (caps, 0); gst_structure_fixate_field_nearest_int (structure, "rate", src->samplerate); } static gboolean gst_audio_test_src_setcaps (GstBaseSrc * basesrc, GstCaps * caps) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); const GstStructure *structure; gboolean ret; structure = gst_caps_get_structure (caps, 0); ret = gst_structure_get_int (structure, "rate", &src->samplerate); return ret; } static gboolean gst_audio_test_src_query (GstBaseSrc * basesrc, GstQuery * query) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); gboolean res = FALSE; switch (GST_QUERY_TYPE (query)) { case GST_QUERY_CONVERT: { GstFormat src_fmt, dest_fmt; gint64 src_val, dest_val; gst_query_parse_convert (query, &src_fmt, &src_val, &dest_fmt, &dest_val); if (src_fmt == dest_fmt) { dest_val = src_val; goto done; } switch (src_fmt) { case GST_FORMAT_DEFAULT: switch (dest_fmt) { case GST_FORMAT_TIME: /* samples to time */ dest_val = src_val / src->samplerate; break; default: goto error; } break; case GST_FORMAT_TIME: switch (dest_fmt) { case GST_FORMAT_DEFAULT: /* time to samples */ dest_val = src_val * src->samplerate; break; default: goto error; } break; default: goto error; } done: gst_query_set_convert (query, src_fmt, src_val, dest_fmt, dest_val); res = TRUE; break; } default: break; } return res; /* ERROR */ error: { GST_DEBUG_OBJECT (src, "query failed"); return FALSE; } } static void gst_audio_test_src_create_sine (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble step, amp; step = M_PI_M2 * src->freq / src->samplerate; amp = src->volume * 32767.0; for (i = 0; i < src->generate_samples_per_buffer; i++) { src->accumulator += step; if (src->accumulator >= M_PI_M2) src->accumulator -= M_PI_M2; samples[i] = (gint16) (sin (src->accumulator) * amp); } } static void gst_audio_test_src_create_square (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble step, amp; step = M_PI_M2 * src->freq / src->samplerate; amp = src->volume * 32767.0; for (i = 0; i < src->generate_samples_per_buffer; i++) { src->accumulator += step; if (src->accumulator >= M_PI_M2) src->accumulator -= M_PI_M2; samples[i] = (gint16) ((src->accumulator < M_PI) ? amp : -amp); } } static void gst_audio_test_src_create_saw (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble step, amp; step = M_PI_M2 * src->freq / src->samplerate; amp = (src->volume * 32767.0) / M_PI; for (i = 0; i < src->generate_samples_per_buffer; i++) { src->accumulator += step; if (src->accumulator >= M_PI_M2) src->accumulator -= M_PI_M2; if (src->accumulator < M_PI) { samples[i] = (gint16) (src->accumulator * amp); } else { samples[i] = (gint16) ((M_PI_M2 - src->accumulator) * -amp); } } } static void gst_audio_test_src_create_triangle (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble step, amp; step = M_PI_M2 * src->freq / src->samplerate; amp = (src->volume * 32767.0) / M_PI_2; for (i = 0; i < src->generate_samples_per_buffer; i++) { src->accumulator += step; if (src->accumulator >= M_PI_M2) src->accumulator -= M_PI_M2; if (src->accumulator < (M_PI * 0.5)) { samples[i] = (gint16) (src->accumulator * amp); } else if (src->accumulator < (M_PI * 1.5)) { samples[i] = (gint16) ((src->accumulator - M_PI) * -amp); } else { samples[i] = (gint16) ((M_PI_M2 - src->accumulator) * -amp); } } } static void gst_audio_test_src_create_silence (GstAudioTestSrc * src, gint16 * samples) { memset (samples, 0, src->generate_samples_per_buffer * sizeof (gint16)); } static void gst_audio_test_src_create_white_noise (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble amp; amp = src->volume * 65535.0; for (i = 0; i < src->generate_samples_per_buffer; i++) { samples[i] = (gint16) (32768 - (amp * rand () / (RAND_MAX + 1.0))); } } /* pink noise calculation is based on * http://www.firstpr.com.au/dsp/pink-noise/phil_burk_19990905_patest_pink.c * which has been released under public domain * Many thanks Phil! */ static void gst_audio_test_src_init_pink_noise (GstAudioTestSrc * src) { gint i; gint num_rows = 12; /* arbitrary: 1 .. PINK_MAX_RANDOM_ROWS */ glong pmax; src->pink.index = 0; src->pink.index_mask = (1 << num_rows) - 1; /* calculate maximum possible signed random value. * Extra 1 for white noise always added. */ pmax = (num_rows + 1) * (1 << (PINK_RANDOM_BITS - 1)); src->pink.scalar = 1.0f / pmax; /* Initialize rows. */ for (i = 0; i < num_rows; i++) src->pink.rows[i] = 0; src->pink.running_sum = 0; } /* Generate Pink noise values between -1.0 and +1.0 */ static gfloat gst_audio_test_src_generate_pink_noise_value (GstPinkNoise * pink) { glong new_random; glong sum; /* Increment and mask index. */ pink->index = (pink->index + 1) & pink->index_mask; /* If index is zero, don't update any random values. */ if (pink->index != 0) { /* Determine how many trailing zeros in PinkIndex. */ /* This algorithm will hang if n==0 so test first. */ gint num_zeros = 0; gint n = pink->index; while ((n & 1) == 0) { n = n >> 1; num_zeros++; } /* Replace the indexed ROWS random value. * Subtract and add back to RunningSum instead of adding all the random * values together. Only one changes each time. */ pink->running_sum -= pink->rows[num_zeros]; //new_random = ((glong)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT; new_random = 32768.0 - (65536.0 * (gulong) rand () / (RAND_MAX + 1.0)); pink->running_sum += new_random; pink->rows[num_zeros] = new_random; } /* Add extra white noise value. */ new_random = 32768.0 - (65536.0 * (gulong) rand () / (RAND_MAX + 1.0)); sum = pink->running_sum + new_random; /* Scale to range of -1.0 to 0.9999. */ return (pink->scalar * sum); } static void gst_audio_test_src_create_pink_noise (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble amp; amp = src->volume * 32767.0; for (i = 0; i < src->generate_samples_per_buffer; i++) { samples[i] = (gint16) (gst_audio_test_src_generate_pink_noise_value (&src->pink) * amp); } } static void gst_audio_test_src_init_sine_table (GstAudioTestSrc * src) { gint i; gdouble ang = 0.0; gdouble step = M_PI_M2 / 1024.0; gdouble amp = src->volume * 32767.0; for (i = 0; i < 1024; i++) { src->wave_table[i] = (gint16) (sin (ang) * amp); ang += step; } } static void gst_audio_test_src_create_sine_table (GstAudioTestSrc * src, gint16 * samples) { gint i; gdouble step, scl; step = M_PI_M2 * src->freq / src->samplerate; scl = 1024.0 / M_PI_M2; for (i = 0; i < src->generate_samples_per_buffer; i++) { src->accumulator += step; if (src->accumulator >= M_PI_M2) src->accumulator -= M_PI_M2; samples[i] = (gint16) src->wave_table[(gint) (src->accumulator * scl)]; } } /* * gst_audio_test_src_change_wave: * Assign function pointer of wave genrator. */ static void gst_audio_test_src_change_wave (GstAudioTestSrc * src) { switch (src->wave) { case GST_AUDIO_TEST_SRC_WAVE_SINE: src->process = gst_audio_test_src_create_sine; break; case GST_AUDIO_TEST_SRC_WAVE_SQUARE: src->process = gst_audio_test_src_create_square; break; case GST_AUDIO_TEST_SRC_WAVE_SAW: src->process = gst_audio_test_src_create_saw; break; case GST_AUDIO_TEST_SRC_WAVE_TRIANGLE: src->process = gst_audio_test_src_create_triangle; break; case GST_AUDIO_TEST_SRC_WAVE_SILENCE: src->process = gst_audio_test_src_create_silence; break; case GST_AUDIO_TEST_SRC_WAVE_WHITE_NOISE: src->process = gst_audio_test_src_create_white_noise; break; case GST_AUDIO_TEST_SRC_WAVE_PINK_NOISE: gst_audio_test_src_init_pink_noise (src); src->process = gst_audio_test_src_create_pink_noise; break; case GST_AUDIO_TEST_SRC_WAVE_SINE_TAB: gst_audio_test_src_init_sine_table (src); src->process = gst_audio_test_src_create_sine_table; break; default: GST_ERROR ("invalid wave-form"); break; } } /* * gst_audio_test_src_change_volume: * Recalc wave tables for precalculated waves. */ static void gst_audio_test_src_change_volume (GstAudioTestSrc * src) { switch (src->wave) { case GST_AUDIO_TEST_SRC_WAVE_SINE_TAB: gst_audio_test_src_init_sine_table (src); break; default: break; } } static void gst_audio_test_src_get_times (GstBaseSrc * basesrc, GstBuffer * buffer, GstClockTime * start, GstClockTime * end) { /* for live sources, sync on the timestamp of the buffer */ if (gst_base_src_is_live (basesrc)) { GstClockTime timestamp = GST_BUFFER_TIMESTAMP (buffer); if (GST_CLOCK_TIME_IS_VALID (timestamp)) { /* get duration to calculate end time */ GstClockTime duration = GST_BUFFER_DURATION (buffer); if (GST_CLOCK_TIME_IS_VALID (duration)) { *end = timestamp + duration; } *start = timestamp; } } else { *start = -1; *end = -1; } } static gboolean gst_audio_test_src_do_seek (GstBaseSrc * basesrc, GstSegment * segment) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); GstClockTime time; time = segment->time = segment->start; /* now move to the time indicated */ src->n_samples = time * src->samplerate / GST_SECOND; src->running_time = src->n_samples * GST_SECOND / src->samplerate; g_assert (src->running_time <= time); if (GST_CLOCK_TIME_IS_VALID (segment->stop)) { time = segment->stop; src->n_samples_stop = time * src->samplerate / GST_SECOND; src->check_seek_stop = TRUE; } else { src->check_seek_stop = FALSE; } src->eos_reached = FALSE; return TRUE; } static gboolean gst_audio_test_src_is_seekable (GstBaseSrc * basesrc) { /* we're seekable... */ return TRUE; } static GstFlowReturn gst_audio_test_src_create (GstBaseSrc * basesrc, guint64 offset, guint length, GstBuffer ** buffer) { GstAudioTestSrc *src; GstBuffer *buf; GstClockTime next_time; gint64 n_samples; src = GST_AUDIO_TEST_SRC (basesrc); if (src->eos_reached) return GST_FLOW_UNEXPECTED; if (!src->tags_pushed) { GstTagList *taglist; GstEvent *event; taglist = gst_tag_list_new (); gst_tag_list_add (taglist, GST_TAG_MERGE_APPEND, GST_TAG_DESCRIPTION, "audiotest wave", NULL); event = gst_event_new_tag (taglist); gst_pad_push_event (basesrc->srcpad, event); src->tags_pushed = TRUE; } if (src->check_seek_stop && (src->n_samples_stop > src->n_samples) && (src->n_samples_stop < src->n_samples + src->samples_per_buffer) ) { /* calculate only partial buffer */ src->generate_samples_per_buffer = src->n_samples_stop - src->n_samples; n_samples = src->n_samples_stop; src->eos_reached = TRUE; } else { /* calculate full buffer */ src->generate_samples_per_buffer = src->samples_per_buffer; n_samples = src->n_samples + src->samples_per_buffer; } next_time = n_samples * GST_SECOND / src->samplerate; buf = gst_buffer_new_and_alloc (src->generate_samples_per_buffer * sizeof (gint16)); gst_buffer_set_caps (buf, GST_PAD_CAPS (basesrc->srcpad)); GST_BUFFER_TIMESTAMP (buf) = src->timestamp_offset + src->running_time; GST_BUFFER_OFFSET (buf) = src->n_samples; GST_BUFFER_OFFSET_END (buf) = n_samples; GST_BUFFER_DURATION (buf) = next_time - src->running_time; gst_object_sync_values (G_OBJECT (src), src->running_time); src->running_time = next_time; src->n_samples = n_samples; src->process (src, (gint16 *) GST_BUFFER_DATA (buf)); *buffer = buf; return GST_FLOW_OK; } static void gst_audio_test_src_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (object); switch (prop_id) { case PROP_SAMPLES_PER_BUFFER: src->samples_per_buffer = g_value_get_int (value); break; case PROP_WAVE: src->wave = g_value_get_enum (value); gst_audio_test_src_change_wave (src); break; case PROP_FREQ: src->freq = g_value_get_double (value); break; case PROP_VOLUME: src->volume = g_value_get_double (value); gst_audio_test_src_change_volume (src); break; case PROP_IS_LIVE: gst_base_src_set_live (GST_BASE_SRC (src), g_value_get_boolean (value)); break; case PROP_TIMESTAMP_OFFSET: src->timestamp_offset = g_value_get_int64 (value); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_audio_test_src_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (object); switch (prop_id) { case PROP_SAMPLES_PER_BUFFER: g_value_set_int (value, src->samples_per_buffer); break; case PROP_WAVE: g_value_set_enum (value, src->wave); break; case PROP_FREQ: g_value_set_double (value, src->freq); break; case PROP_VOLUME: g_value_set_double (value, src->volume); break; case PROP_IS_LIVE: g_value_set_boolean (value, gst_base_src_is_live (GST_BASE_SRC (src))); break; case PROP_TIMESTAMP_OFFSET: g_value_set_int64 (value, src->timestamp_offset); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static gboolean plugin_init (GstPlugin * plugin) { return gst_element_register (plugin, "audiotestsrc", GST_RANK_NONE, GST_TYPE_AUDIO_TEST_SRC); } GST_PLUGIN_DEFINE (GST_VERSION_MAJOR, GST_VERSION_MINOR, "audiotestsrc", "Creates audio test signals of given frequency and volume", plugin_init, VERSION, "LGPL", GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN);