/* GStreamer * Copyright (C) <2015> Wim Taymans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #ifdef HAVE_ORC #include #endif #include "audio-resampler.h" typedef struct _Tap { gpointer taps; gint sample_inc; gint next_phase; gint size; } Tap; typedef void (*MakeTapsFunc) (GstAudioResampler * resampler, Tap * t, gint j); typedef void (*ResampleFunc) (GstAudioResampler * resampler, gpointer in[], gsize in_len, gpointer out[], gsize out_len, gsize * consumed); typedef void (*DeinterleaveFunc) (GstAudioResampler * resampler, gpointer * sbuf, gpointer in[], gsize in_frames); #define MEM_ALIGN(m,a) ((gint8 *)((guintptr)((gint8 *)(m) + ((a)-1)) & ~((a)-1))) #define ALIGN 16 #define TAPS_OVERREAD 16 struct _GstAudioResampler { GstAudioResamplerMethod method; GstAudioResamplerFlags flags; GstAudioFormat format; GstStructure *options; gint channels; gint in_rate; gint out_rate; gint bps; gint ostride; gdouble cutoff; gdouble kaiser_beta; /* for cubic */ gdouble b, c; guint n_taps; Tap *taps; gpointer coeff; gpointer coeffmem; gsize cstride; gpointer tmpcoeff; DeinterleaveFunc deinterleave; ResampleFunc resample; guint blocks; guint inc; gint samp_inc; gint samp_frac; gint samp_index; gint samp_phase; gint skip; gpointer samples; gsize samples_len; gsize samples_avail; gpointer *sbuf; }; GST_DEBUG_CATEGORY_STATIC (audio_resampler_debug); #define GST_CAT_DEFAULT audio_resampler_debug /** * SECTION:gstaudioresampler * @short_description: Utility structure for resampler information * * #GstAudioResampler is a structure which holds the information * required to perform various kinds of resampling filtering. * */ typedef struct { gdouble cutoff; gdouble downsample_cutoff_factor; gdouble stopband_attenuation; gdouble transition_bandwidth; } KaiserQualityMap; static const KaiserQualityMap kaiser_qualities[] = { {0.860, 0.96511, 60, 0.7}, /* 8 taps */ {0.880, 0.96591, 65, 0.29}, /* 16 taps */ {0.910, 0.96923, 70, 0.145}, /* 32 taps */ {0.920, 0.97600, 80, 0.105}, /* 48 taps */ {0.940, 0.97979, 85, 0.087}, /* 64 taps default quality */ {0.940, 0.98085, 95, 0.077}, /* 80 taps */ {0.945, 0.99471, 100, 0.068}, /* 96 taps */ {0.950, 1.0, 105, 0.055}, /* 128 taps */ {0.960, 1.0, 110, 0.045}, /* 160 taps */ {0.968, 1.0, 115, 0.039}, /* 192 taps */ {0.975, 1.0, 120, 0.0305} /* 256 taps */ }; typedef struct { guint n_taps; gdouble cutoff; } BlackmanQualityMap; static const BlackmanQualityMap blackman_qualities[] = { {8, 0.5,}, {16, 0.6,}, {24, 0.72,}, {32, 0.8,}, {48, 0.85,}, /* default */ {64, 0.90,}, {80, 0.92,}, {96, 0.933,}, {128, 0.950,}, {148, 0.955,}, {160, 0.960,} }; #define DEFAULT_QUALITY GST_AUDIO_RESAMPLER_QUALITY_DEFAULT #define DEFAULT_OPT_CUBIC_B 1.0 #define DEFAULT_OPT_CUBIC_C 0.0 static gdouble get_opt_double (GstStructure * options, const gchar * name, gdouble def) { gdouble res; if (!options || !gst_structure_get_double (options, name, &res)) res = def; return res; } static gint get_opt_int (GstStructure * options, const gchar * name, gint def) { gint res; if (!options || !gst_structure_get_int (options, name, &res)) res = def; return res; } #define GET_OPT_CUTOFF(options,def) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_CUTOFF,def) #define GET_OPT_DOWN_CUTOFF_FACTOR(options,def) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_DOWN_CUTOFF_FACTOR, def) #define GET_OPT_STOP_ATTENUATION(options,def) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_STOP_ATTENUATION, def) #define GET_OPT_TRANSITION_BANDWIDTH(options,def) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_TRANSITION_BANDWIDTH, def) #define GET_OPT_CUBIC_B(options) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_CUBIC_B, DEFAULT_OPT_CUBIC_B) #define GET_OPT_CUBIC_C(options) get_opt_double(options, \ GST_AUDIO_RESAMPLER_OPT_CUBIC_C, DEFAULT_OPT_CUBIC_C) #define GET_OPT_N_TAPS(options,def) get_opt_int(options, \ GST_AUDIO_RESAMPLER_OPT_N_TAPS, def) #include "dbesi0.c" #define bessel dbesi0 static inline gdouble get_nearest_tap (GstAudioResampler * resampler, gdouble x) { gdouble a = fabs (x); if (a < 0.5) return 1.0; else return 0.0; } static inline gdouble get_linear_tap (GstAudioResampler * resampler, gdouble x) { gdouble a; a = fabs (x) / resampler->n_taps; if (a < 1.0) return 1.0 - a; else return 0.0; } static inline gdouble get_cubic_tap (GstAudioResampler * resampler, gdouble x) { gdouble a, a2, a3, b, c; a = fabs (x * 4.0) / resampler->n_taps; a2 = a * a; a3 = a2 * a; b = resampler->b; c = resampler->c; if (a <= 1.0) return ((12.0 - 9.0 * b - 6.0 * c) * a3 + (-18.0 + 12.0 * b + 6.0 * c) * a2 + (6.0 - 2.0 * b)) / 6.0; else if (a <= 2.0) return ((-b - 6.0 * c) * a3 + (6.0 * b + 30.0 * c) * a2 + (-12.0 * b - 48.0 * c) * a + (8.0 * b + 24.0 * c)) / 6.0; else return 0.0; } static inline gdouble get_blackman_nuttall_tap (GstAudioResampler * resampler, gdouble x) { gdouble s, y, w, Fc = resampler->cutoff; y = G_PI * x; s = (y == 0.0 ? Fc : sin (y * Fc) / y); w = 2.0 * y / resampler->n_taps + G_PI; return s * (0.3635819 - 0.4891775 * cos (w) + 0.1365995 * cos (2 * w) - 0.0106411 * cos (3 * w)); } static inline gdouble get_kaiser_tap (GstAudioResampler * resampler, gdouble x) { gdouble s, y, w, Fc = resampler->cutoff; y = G_PI * x; s = (y == 0.0 ? Fc : sin (y * Fc) / y); w = 2.0 * x / resampler->n_taps; return s * bessel (resampler->kaiser_beta * sqrt (MAX (1 - w * w, 0))); } #define CONVERT_TAPS(type, precision) \ G_STMT_START { \ type *taps = res = t->taps = (type *) ((gint8*)resampler->coeff + j * resampler->cstride); \ gdouble multiplier = (1 << precision); \ gint i, j; \ gdouble offset, l_offset, h_offset; \ gboolean exact = FALSE; \ /* Round to integer, but with an adjustable bias that we use to */ \ /* eliminate the DC error. */ \ l_offset = 0.0; \ h_offset = 1.0; \ offset = 0.5; \ for (i = 0; i < 32; i++) { \ gint64 sum = 0; \ for (j = 0; j < n_taps; j++) \ sum += taps[j] = floor (offset + tmpcoeff[j] * multiplier / weight); \ if (sum == (1 << precision)) { \ exact = TRUE; \ break; \ } \ if (l_offset == h_offset) \ break; \ if (sum < (1 << precision)) { \ if (offset > l_offset) \ l_offset = offset; \ offset += (h_offset - l_offset) / 2; \ } else { \ if (offset < h_offset) \ h_offset = offset; \ offset -= (h_offset - l_offset) / 2; \ } \ } \ if (!exact) \ GST_WARNING ("can't find exact taps"); \ } G_STMT_END #define PRECISION_S16 15 #define PRECISION_S32 30 static gpointer make_taps (GstAudioResampler * resampler, Tap * t, gint j) { gpointer res; gint n_taps = resampler->n_taps; gdouble x, weight = 0.0; gdouble *tmpcoeff = resampler->tmpcoeff; gint tap_offs = n_taps / 2; gint out_rate = resampler->out_rate; gint l; x = ((double) (1.0 - tap_offs) - (double) j / out_rate); switch (resampler->method) { case GST_AUDIO_RESAMPLER_METHOD_NEAREST: for (l = 0; l < n_taps; l++, x += 1.0) weight += tmpcoeff[l] = get_nearest_tap (resampler, x); break; case GST_AUDIO_RESAMPLER_METHOD_LINEAR: for (l = 0; l < n_taps; l++, x += 1.0) weight += tmpcoeff[l] = get_linear_tap (resampler, x); break; case GST_AUDIO_RESAMPLER_METHOD_CUBIC: for (l = 0; l < n_taps; l++, x += 1.0) weight += tmpcoeff[l] = get_cubic_tap (resampler, x); break; case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL: for (l = 0; l < n_taps; l++, x += 1.0) weight += tmpcoeff[l] = get_blackman_nuttall_tap (resampler, x); break; case GST_AUDIO_RESAMPLER_METHOD_KAISER: for (l = 0; l < n_taps; l++, x += 1.0) weight += tmpcoeff[l] = get_kaiser_tap (resampler, x); break; default: break; } switch (resampler->format) { case GST_AUDIO_FORMAT_F64: { gdouble *taps = res = t->taps = (gdouble *) ((gint8 *) resampler->coeff + j * resampler->cstride); for (l = 0; l < n_taps; l++) taps[l] = tmpcoeff[l] / weight; break; } case GST_AUDIO_FORMAT_F32: { gfloat *taps = res = t->taps = (gfloat *) ((gint8 *) resampler->coeff + j * resampler->cstride); for (l = 0; l < n_taps; l++) taps[l] = tmpcoeff[l] / weight; break; } case GST_AUDIO_FORMAT_S32: CONVERT_TAPS (gint32, PRECISION_S32); break; case GST_AUDIO_FORMAT_S16: CONVERT_TAPS (gint16, PRECISION_S16); break; default: g_assert_not_reached (); break; } return res; } static inline void inner_product_gint16_1_c (gint16 * o, const gint16 * a, const gint16 * b, gint len) { gint i; gint32 res = 0; for (i = 0; i < len; i++) res += (gint32) a[i] * (gint32) b[i]; res = (res + (1 << (PRECISION_S16 - 1))) >> PRECISION_S16; *o = CLAMP (res, -(1L << 15), (1L << 15) - 1); } static inline void inner_product_gint32_1_c (gint32 * o, const gint32 * a, const gint32 * b, gint len) { gint i; gint64 res = 0; for (i = 0; i < len; i++) res += (gint64) a[i] * (gint64) b[i]; res = (res + (1 << (PRECISION_S32 - 1))) >> PRECISION_S32; *o = CLAMP (res, -(1L << 31), (1L << 31) - 1); } static inline void inner_product_gfloat_1_c (gfloat * o, const gfloat * a, const gfloat * b, gint len) { gint i; gfloat res = 0.0; for (i = 0; i < len; i++) res += a[i] * b[i]; *o = res; } static inline void inner_product_gdouble_1_c (gdouble * o, const gdouble * a, const gdouble * b, gint len) { gint i; gdouble res = 0.0; for (i = 0; i < len; i++) res += a[i] * b[i]; *o = res; } #define MAKE_RESAMPLE_FUNC(type,channels,arch) \ static void \ resample_ ##type## _ ##channels## _ ##arch (GstAudioResampler * resampler, \ gpointer in[], gsize in_len, gpointer out[], gsize out_len, \ gsize * consumed) \ { \ gint c, di = 0; \ gint n_taps = resampler->n_taps; \ gint blocks = resampler->blocks; \ gint ostride = resampler->ostride; \ gint samp_index = 0; \ gint samp_phase = 0; \ \ for (c = 0; c < blocks; c++) { \ type *ip = in[c]; \ type *op = ostride == 1 ? out[c] : (type *)out[0] + c; \ \ samp_index = resampler->samp_index; \ samp_phase = resampler->samp_phase; \ \ for (di = 0; di < out_len; di++) { \ Tap *t = &resampler->taps[samp_phase]; \ type *ipp = &ip[samp_index * channels]; \ gpointer taps; \ \ if (G_UNLIKELY ((taps = t->taps) == NULL)) \ taps = make_taps (resampler, t, samp_phase); \ \ inner_product_ ##type## _##channels##_##arch (op, ipp, taps, n_taps); \ op += ostride; \ \ samp_phase = t->next_phase; \ samp_index += t->sample_inc; \ } \ memmove (ip, &ip[samp_index * channels], \ (in_len - samp_index) * sizeof(type) * channels); \ } \ *consumed = samp_index - resampler->samp_index; \ \ resampler->samp_index = 0; \ resampler->samp_phase = samp_phase; \ } MAKE_RESAMPLE_FUNC (gint16, 1, c); MAKE_RESAMPLE_FUNC (gint32, 1, c); MAKE_RESAMPLE_FUNC (gfloat, 1, c); MAKE_RESAMPLE_FUNC (gdouble, 1, c); static ResampleFunc resample_funcs[] = { resample_gint16_1_c, resample_gint32_1_c, resample_gfloat_1_c, resample_gdouble_1_c, NULL, NULL, NULL, NULL, }; #define resample_gint16_1 resample_funcs[0] #define resample_gint32_1 resample_funcs[1] #define resample_gfloat_1 resample_funcs[2] #define resample_gdouble_1 resample_funcs[3] #define resample_gint16_2 resample_funcs[4] #define resample_gint32_2 resample_funcs[5] #define resample_gfloat_2 resample_funcs[6] #define resample_gdouble_2 resample_funcs[7] #if defined HAVE_ORC && !defined DISABLE_ORC # if defined (__i386__) || defined (__x86_64__) # define CHECK_X86 # include "audio-resampler-x86.h" # endif #endif static void audio_resampler_init (void) { static gsize init_gonce = 0; if (g_once_init_enter (&init_gonce)) { GST_DEBUG_CATEGORY_INIT (audio_resampler_debug, "audio-resampler", 0, "audio-resampler object"); #if defined HAVE_ORC && !defined DISABLE_ORC orc_init (); { OrcTarget *target = orc_target_get_default (); gint i; if (target) { unsigned int flags = orc_target_get_default_flags (target); const gchar *name; name = orc_target_get_name (target); GST_DEBUG ("target %s, default flags %08x", name, flags); for (i = 0; i < 32; ++i) { if (flags & (1U << i)) { name = orc_target_get_flag_name (target, i); GST_DEBUG ("target flag %s", name); #ifdef CHECK_X86 audio_resampler_check_x86 (name); #endif } } } } #endif g_once_init_leave (&init_gonce, 1); } } #define MAKE_DEINTERLEAVE_FUNC(type) \ static void \ deinterleave_ ##type (GstAudioResampler * resampler, gpointer sbuf[], \ gpointer in[], gsize in_frames) \ { \ guint i, c, channels = resampler->channels; \ gsize samples_avail = resampler->samples_avail; \ for (c = 0; c < channels; c++) { \ type *s = (type *) sbuf[c] + samples_avail; \ if (G_UNLIKELY (in == NULL)) { \ for (i = 0; i < in_frames; i++) \ s[i] = 0; \ } else { \ type *ip = (type *) in[0] + c; \ for (i = 0; i < in_frames; i++, ip += channels) \ s[i] = *ip; \ } \ } \ } MAKE_DEINTERLEAVE_FUNC (gdouble); MAKE_DEINTERLEAVE_FUNC (gfloat); MAKE_DEINTERLEAVE_FUNC (gint32); MAKE_DEINTERLEAVE_FUNC (gint16); static void deinterleave_copy (GstAudioResampler * resampler, gpointer sbuf[], gpointer in[], gsize in_frames) { guint c, blocks = resampler->blocks; gsize bytes_avail, in_bytes, bpf; bpf = resampler->bps * resampler->inc; bytes_avail = resampler->samples_avail * bpf; in_bytes = in_frames * bpf; for (c = 0; c < blocks; c++) { if (G_UNLIKELY (in == NULL)) memset ((guint8 *) sbuf[c] + bytes_avail, 0, in_bytes); else memcpy ((guint8 *) sbuf[c] + bytes_avail, in[c], in_bytes); } } static void calculate_kaiser_params (GstAudioResampler * resampler) { gdouble A, B, dw, tr_bw, Fc; gint n; const KaiserQualityMap *q = &kaiser_qualities[DEFAULT_QUALITY]; /* default cutoff */ Fc = q->cutoff; if (resampler->out_rate < resampler->in_rate) Fc *= q->downsample_cutoff_factor; Fc = GET_OPT_CUTOFF (resampler->options, Fc); A = GET_OPT_STOP_ATTENUATION (resampler->options, q->stopband_attenuation); tr_bw = GET_OPT_TRANSITION_BANDWIDTH (resampler->options, q->transition_bandwidth); GST_LOG ("Fc %f, A %f, tr_bw %f", Fc, A, tr_bw); /* calculate Beta */ if (A > 50) B = 0.1102 * (A - 8.7); else if (A >= 21) B = 0.5842 * pow (A - 21, 0.4) + 0.07886 * (A - 21); else B = 0.0; /* calculate transition width in radians */ dw = 2 * G_PI * (tr_bw); /* order of the filter */ n = (A - 8.0) / (2.285 * dw); resampler->kaiser_beta = B; resampler->n_taps = n + 1; resampler->cutoff = Fc; GST_LOG ("using Beta %f n_taps %d cutoff %f", resampler->kaiser_beta, resampler->n_taps, resampler->cutoff); } static void resampler_calculate_taps (GstAudioResampler * resampler) { gint bps; gint j; gint n_taps; gint out_rate; gint in_rate; gboolean non_interleaved; DeinterleaveFunc deinterleave; ResampleFunc resample, resample_2; switch (resampler->method) { case GST_AUDIO_RESAMPLER_METHOD_NEAREST: resampler->n_taps = 2; break; case GST_AUDIO_RESAMPLER_METHOD_LINEAR: resampler->n_taps = GET_OPT_N_TAPS (resampler->options, 2); break; case GST_AUDIO_RESAMPLER_METHOD_CUBIC: resampler->n_taps = GET_OPT_N_TAPS (resampler->options, 4); resampler->b = GET_OPT_CUBIC_B (resampler->options); resampler->c = GET_OPT_CUBIC_C (resampler->options);; break; case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL: { const BlackmanQualityMap *q = &blackman_qualities[DEFAULT_QUALITY]; resampler->n_taps = GET_OPT_N_TAPS (resampler->options, q->n_taps); resampler->cutoff = GET_OPT_CUTOFF (resampler->options, q->cutoff); break; } case GST_AUDIO_RESAMPLER_METHOD_KAISER: calculate_kaiser_params (resampler); break; } in_rate = resampler->in_rate; out_rate = resampler->out_rate; if (out_rate < in_rate) { resampler->cutoff = resampler->cutoff * out_rate / in_rate; resampler->n_taps = resampler->n_taps * in_rate / out_rate; } /* only round up for bigger taps, the small taps are used for nearest, * linear and cubic and we want to use less taps for those. */ if (resampler->n_taps > 4) resampler->n_taps = GST_ROUND_UP_8 (resampler->n_taps); n_taps = resampler->n_taps; bps = resampler->bps; GST_LOG ("using n_taps %d cutoff %f", n_taps, resampler->cutoff); resampler->taps = g_realloc_n (resampler->taps, out_rate, sizeof (Tap)); resampler->cstride = GST_ROUND_UP_32 (bps * (n_taps + TAPS_OVERREAD)); g_free (resampler->coeffmem); resampler->coeffmem = g_malloc0 (out_rate * resampler->cstride + ALIGN - 1); resampler->coeff = MEM_ALIGN (resampler->coeffmem, ALIGN); resampler->tmpcoeff = g_realloc_n (resampler->tmpcoeff, n_taps, sizeof (gdouble)); resampler->samp_inc = in_rate / out_rate; resampler->samp_frac = in_rate % out_rate; for (j = 0; j < out_rate; j++) { Tap *t = &resampler->taps[j]; t->taps = NULL; t->sample_inc = (j + in_rate) / out_rate; t->next_phase = (j + in_rate) % out_rate; } non_interleaved = (resampler->flags & GST_AUDIO_RESAMPLER_FLAG_NON_INTERLEAVED); resampler->ostride = non_interleaved ? 1 : resampler->channels; /* we resample each channel separately */ resampler->blocks = resampler->channels; resampler->inc = 1; switch (resampler->format) { case GST_AUDIO_FORMAT_S16: resample = resample_gint16_1; resample_2 = resample_gint16_2; deinterleave = deinterleave_gint16; break; case GST_AUDIO_FORMAT_S32: resample = resample_gint32_1; resample_2 = resample_gint32_2; deinterleave = deinterleave_gint32; break; case GST_AUDIO_FORMAT_F32: resample = resample_gfloat_1; resample_2 = resample_gfloat_2; deinterleave = deinterleave_gfloat; break; case GST_AUDIO_FORMAT_F64: resample = resample_gdouble_1; resample_2 = resample_gdouble_2; deinterleave = deinterleave_gdouble; break; default: g_assert_not_reached (); break; } if (!non_interleaved && resampler->channels == 2 && n_taps >= 4 && resample_2) { resampler->resample = resample_2; resampler->deinterleave = deinterleave_copy; resampler->blocks = 1; resampler->inc = resampler->channels;; } else { resampler->resample = resample; resampler->deinterleave = deinterleave; } } #define PRINT_TAPS(type,print) \ G_STMT_START { \ type sum = 0.0, *taps; \ \ if ((taps = t->taps) == NULL) \ taps = make_taps (resampler, t, i); \ \ for (j = 0; j < n_taps; j++) { \ type tap = taps[j]; \ fprintf (stderr, "\t%" print " ", tap); \ sum += tap; \ } \ fprintf (stderr, "\t: sum %" print "\n", sum);\ } G_STMT_END static void resampler_dump (GstAudioResampler * resampler) { #if 0 gint i, n_taps, out_rate; gint64 a; out_rate = resampler->out_rate; n_taps = resampler->n_taps; fprintf (stderr, "out size %d, max taps %d\n", out_rate, n_taps); a = g_get_monotonic_time (); for (i = 0; i < out_rate; i++) { gint j; Tap *t = &resampler->taps[i]; fprintf (stderr, "%u: %d %d\t ", i, t->sample_inc, t->next_phase); switch (resampler->format) { case GST_AUDIO_FORMAT_F64: PRINT_TAPS (gdouble, "f"); break; case GST_AUDIO_FORMAT_F32: PRINT_TAPS (gfloat, "f"); break; case GST_AUDIO_FORMAT_S32: PRINT_TAPS (gint32, "d"); break; case GST_AUDIO_FORMAT_S16: PRINT_TAPS (gint16, "d"); break; default: break; } } fprintf (stderr, "time %" G_GUINT64_FORMAT "\n", g_get_monotonic_time () - a); #endif } /** * gst_audio_resampler_options_set_quality: * @method: a #GstAudioResamplerMethod * @quality: the quality * @in_rate: the input rate * @out_rate: the output rate * @options: a #GstStructure * * Set the parameters for resampling from @in_rate to @out_rate using @method * for @quality in @options. */ void gst_audio_resampler_options_set_quality (GstAudioResamplerMethod method, guint quality, gint in_rate, gint out_rate, GstStructure * options) { g_return_if_fail (options != NULL); g_return_if_fail (quality <= GST_AUDIO_RESAMPLER_QUALITY_MAX); g_return_if_fail (in_rate > 0 && out_rate > 0); switch (method) { case GST_AUDIO_RESAMPLER_METHOD_NEAREST: break; case GST_AUDIO_RESAMPLER_METHOD_LINEAR: gst_structure_set (options, GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, 2, NULL); break; case GST_AUDIO_RESAMPLER_METHOD_CUBIC: gst_structure_set (options, GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, 4, GST_AUDIO_RESAMPLER_OPT_CUBIC_B, G_TYPE_DOUBLE, DEFAULT_OPT_CUBIC_B, GST_AUDIO_RESAMPLER_OPT_CUBIC_C, G_TYPE_DOUBLE, DEFAULT_OPT_CUBIC_C, NULL); break; case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL: { const BlackmanQualityMap *map = &blackman_qualities[quality]; gst_structure_set (options, GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, map->n_taps, GST_AUDIO_RESAMPLER_OPT_CUTOFF, G_TYPE_DOUBLE, map->cutoff, NULL); break; } case GST_AUDIO_RESAMPLER_METHOD_KAISER: { const KaiserQualityMap *map = &kaiser_qualities[quality]; gdouble cutoff; cutoff = map->cutoff; if (out_rate < in_rate) cutoff *= map->downsample_cutoff_factor; gst_structure_set (options, GST_AUDIO_RESAMPLER_OPT_CUTOFF, G_TYPE_DOUBLE, cutoff, GST_AUDIO_RESAMPLER_OPT_STOP_ATTENUATION, G_TYPE_DOUBLE, map->stopband_attenuation, GST_AUDIO_RESAMPLER_OPT_TRANSITION_BANDWIDTH, G_TYPE_DOUBLE, map->transition_bandwidth, NULL); break; } } } /** * gst_audio_resampler_new: * @resampler: a #GstAudioResampler * @method: a #GstAudioResamplerMethod * @flags: #GstAudioResamplerFlags * @in_rate: input rate * @out_rate: output rate * @options: extra options * * Make a new resampler. * * Returns: %TRUE on success */ GstAudioResampler * gst_audio_resampler_new (GstAudioResamplerMethod method, GstAudioResamplerFlags flags, GstAudioFormat format, gint channels, gint in_rate, gint out_rate, GstStructure * options) { GstAudioResampler *resampler; const GstAudioFormatInfo *info; g_return_val_if_fail (channels > 0, FALSE); g_return_val_if_fail (in_rate > 0, FALSE); g_return_val_if_fail (out_rate > 0, FALSE); audio_resampler_init (); resampler = g_slice_new0 (GstAudioResampler); resampler->method = method; resampler->flags = flags; resampler->format = format; resampler->channels = channels; info = gst_audio_format_get_info (format); resampler->bps = GST_AUDIO_FORMAT_INFO_WIDTH (info) / 8; resampler->sbuf = g_malloc0 (sizeof (gpointer) * channels); GST_DEBUG ("method %d, bps %d, channels %d", method, resampler->bps, resampler->channels); gst_audio_resampler_update (resampler, in_rate, out_rate, options); /* half of the filter is filled with 0 */ resampler->samp_index = 0; resampler->samples_avail = resampler->n_taps / 2 - 1; return resampler; } /* make the buffers to hold the (deinterleaved) samples */ static inline gpointer * get_sample_bufs (GstAudioResampler * resampler, gsize need) { if (G_LIKELY (resampler->samples_len < need)) { guint c, blocks = resampler->blocks; gsize bytes, to_move = 0; gint8 *ptr, *samples; GST_LOG ("realloc %d -> %d", (gint) resampler->samples_len, (gint) need); bytes = GST_ROUND_UP_N (need * resampler->bps * resampler->inc, ALIGN); samples = g_malloc0 (blocks * bytes + ALIGN - 1); ptr = MEM_ALIGN (samples, ALIGN); /* if we had some data, move history */ if (resampler->samples_len > 0) to_move = resampler->samples_avail * resampler->bps * resampler->inc; /* set up new pointers */ for (c = 0; c < blocks; c++) { memcpy (ptr + (c * bytes), resampler->sbuf[c], to_move); resampler->sbuf[c] = ptr + (c * bytes); } g_free (resampler->samples); resampler->samples = samples; resampler->samples_len = need; } return resampler->sbuf; } /** * gst_audio_resampler_reset: * @resampler: a #GstAudioResampler * * Reset @resampler to the state it was when it was first created, discarding * all sample history. */ void gst_audio_resampler_reset (GstAudioResampler * resampler) { g_return_if_fail (resampler != NULL); if (resampler->samples) { gsize bytes; gint c, blocks, bpf; bpf = resampler->bps * resampler->inc; bytes = (resampler->n_taps / 2) * bpf; blocks = resampler->blocks; for (c = 0; c < blocks; c++) memset (resampler->sbuf[c], 0, bytes); } /* half of the filter is filled with 0 */ resampler->samp_index = 0; resampler->samples_avail = resampler->n_taps / 2 - 1; } /** * gst_audio_resampler_update: * @resampler: a #GstAudioResampler * @in_rate: new input rate * @out_rate: new output rate * @options: new options or %NULL * * Update the resampler parameters for @resampler. This function should * not be called concurrently with any other function on @resampler. * * When @in_rate or @out_rate is 0, its value is unchanged. * * When @options is %NULL, the previously configured options are reused. * * Returns: %TRUE if the new parameters could be set */ gboolean gst_audio_resampler_update (GstAudioResampler * resampler, gint in_rate, gint out_rate, GstStructure * options) { gint gcd, samp_phase, old_n_taps; g_return_val_if_fail (resampler != NULL, FALSE); if (in_rate <= 0) in_rate = resampler->in_rate; if (out_rate <= 0) out_rate = resampler->out_rate; if (resampler->out_rate > 0) samp_phase = gst_util_uint64_scale_int (resampler->samp_phase, out_rate, resampler->out_rate); else samp_phase = 0; gcd = gst_util_greatest_common_divisor (in_rate, out_rate); if (gcd > 1) { gdouble ph1 = (gdouble) samp_phase / out_rate; gint factor = 2; /* reduce the factor until we have a phase error of less than 10% */ do { gdouble ph2 = (gdouble) (samp_phase / gcd) / (out_rate / gcd); if (fabs (ph1 - ph2) < 0.1) break; while (gcd % factor != 0) factor++; gcd /= factor; GST_INFO ("divide by factor %d, gcd %d", factor, gcd); } while (gcd > 1); } GST_INFO ("phase %d, out_rate %d, in_rate %d, gcd %d", samp_phase, out_rate, in_rate, gcd); resampler->samp_phase = samp_phase / gcd; resampler->in_rate = in_rate / gcd; resampler->out_rate = out_rate / gcd; if (options) { if (resampler->options) gst_structure_free (resampler->options); resampler->options = gst_structure_copy (options); } old_n_taps = resampler->n_taps; resampler_calculate_taps (resampler); resampler_dump (resampler); GST_DEBUG ("rate %u->%u, taps %d->%d", resampler->in_rate, resampler->out_rate, old_n_taps, resampler->n_taps); if (old_n_taps > 0) { gpointer *sbuf; gint i, bpf, bytes, soff, doff, diff; sbuf = get_sample_bufs (resampler, resampler->n_taps); bpf = resampler->bps * resampler->inc; bytes = resampler->samples_avail * bpf; soff = doff = resampler->samp_index * bpf; diff = ((gint) resampler->n_taps - old_n_taps) / 2; if (diff < 0) { /* diff < 0, decrease taps, adjust source */ soff += -diff * bpf; bytes -= -diff * bpf; } else { /* diff > 0, increase taps, adjust dest */ doff += diff * bpf; } /* now shrink or enlarge the history buffer, when we enlarge we * just leave the old samples in there. FIXME, probably do something better * like mirror or fill with zeroes. */ for (i = 0; i < resampler->blocks; i++) memmove ((gint8 *) sbuf[i] + doff, (gint8 *) sbuf[i] + soff, bytes); resampler->samples_avail += diff; } return TRUE; } /** * gst_audio_resampler_free: * @resampler: a #GstAudioResampler * * Free a previously allocated #GstAudioResampler @resampler. * * Since: 1.6 */ void gst_audio_resampler_free (GstAudioResampler * resampler) { g_return_if_fail (resampler != NULL); g_free (resampler->taps); g_free (resampler->coeffmem); g_free (resampler->tmpcoeff); g_free (resampler->samples); g_free (resampler->sbuf); if (resampler->options) gst_structure_free (resampler->options); g_slice_free (GstAudioResampler, resampler); } static inline gsize calc_out (GstAudioResampler * resampler, gsize in) { gsize out; out = in * resampler->out_rate; if (out < resampler->samp_phase) return 0; out = ((out - resampler->samp_phase) / resampler->in_rate) + 1; GST_LOG ("out %d = ((%d * %d - %d) / %d) + 1", (gint) out, (gint) in, resampler->out_rate, resampler->samp_phase, resampler->in_rate); return out; } /** * gst_audio_resampler_get_out_frames: * @resampler: a #GstAudioResampler * @in_frames: number of input frames * * Get the number of output frames that would be currently available when * @in_frames are given to @resampler. * * Returns: The number of frames that would be availabe after giving * @in_frames as input to @resampler. */ gsize gst_audio_resampler_get_out_frames (GstAudioResampler * resampler, gsize in_frames) { gsize need, avail; g_return_val_if_fail (resampler != NULL, 0); need = resampler->n_taps + resampler->samp_index + resampler->skip; avail = resampler->samples_avail + in_frames; GST_LOG ("need %d = %d + %d + %d, avail %d = %d + %d", (gint) need, resampler->n_taps, resampler->samp_index, resampler->skip, (gint) avail, (gint) resampler->samples_avail, (gint) in_frames); if (avail < need) return 0; return calc_out (resampler, avail - need); } /** * gst_audio_resampler_get_in_frames: * @resampler: a #GstAudioResampler * @out_frames: number of input frames * * Get the number of input frames that would currently be needed * to produce @out_frames from @resampler. * * Returns: The number of input frames needed for producing * @out_frames of data from @resampler. */ gsize gst_audio_resampler_get_in_frames (GstAudioResampler * resampler, gsize out_frames) { gsize in_frames; g_return_val_if_fail (resampler != NULL, 0); in_frames = (resampler->samp_phase + out_frames * resampler->samp_frac) / resampler->out_rate; in_frames += out_frames * resampler->samp_inc; return in_frames; } /** * gst_audio_resampler_get_max_latency: * @resampler: a #GstAudioResampler * * Get the maximum number of input samples that the resampler would * need before producing output. * * Returns: the latency of @resampler as expressed in the number of * frames. */ gsize gst_audio_resampler_get_max_latency (GstAudioResampler * resampler) { g_return_val_if_fail (resampler != NULL, 0); return resampler->n_taps / 2; } /** * gst_audio_resampler_resample: * @resampler: a #GstAudioResampler * @in: input samples * @in_frames: number of input frames * @out: output samples * @out_frames: number of output frames * * Perform resampling on @in_frames frames in @in and write @out_frames to @out. * * In case the samples are interleaved, @in and @out must point to an * array with a single element pointing to a block of interleaved samples. * * If non-interleaved samples are used, @in and @out must point to an * array with pointers to memory blocks, one for each channel. * * @in may be %NULL, in which case @in_frames of silence samples are pushed * into the resampler. * * This function always produces @out_frames of output and consumes @in_frames of * input. Use gst_audio_resampler_get_out_frames() and * gst_audio_resampler_get_in_frames() to make sure @in_frames and @out_frames * are matching and @in and @out point to enough memory. */ void gst_audio_resampler_resample (GstAudioResampler * resampler, gpointer in[], gsize in_frames, gpointer out[], gsize out_frames) { gsize samples_avail; gsize need, consumed; gpointer *sbuf; /* do sample skipping */ if (G_UNLIKELY (resampler->skip >= in_frames)) { /* we need tp skip all input */ resampler->skip -= in_frames; return; } /* skip the last samples by advancing the sample index */ resampler->samp_index += resampler->skip; samples_avail = resampler->samples_avail; /* make sure we have enough space to copy our samples */ sbuf = get_sample_bufs (resampler, in_frames + samples_avail); /* copy/deinterleave the samples */ resampler->deinterleave (resampler, sbuf, in, in_frames); /* update new amount of samples in our buffer */ resampler->samples_avail = samples_avail += in_frames; need = resampler->n_taps + resampler->samp_index; if (G_UNLIKELY (samples_avail < need)) { /* not enough samples to start */ return; } /* resample all channels */ resampler->resample (resampler, sbuf, samples_avail, out, out_frames, &consumed); GST_LOG ("in %" G_GSIZE_FORMAT ", used %" G_GSIZE_FORMAT ", consumed %" G_GSIZE_FORMAT, in_frames, samples_avail, consumed); /* update pointers */ if (G_LIKELY (consumed > 0)) { gssize left = samples_avail - consumed; if (left > 0) { /* we consumed part of our samples */ resampler->samples_avail = left; } else { /* we consumed all our samples, empty our buffers */ resampler->samples_avail = 0; resampler->skip = -left; } } }