/* GStreamer * Copyright (C) 2005 David Schleef * * gstminiobject.h: Header for GstMiniObject * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** * SECTION:gstminiobject * @title: GstMiniObject * @short_description: Lightweight base class for the GStreamer object hierarchy * * #GstMiniObject is a simple structure that can be used to implement refcounted * types. * * Subclasses will include #GstMiniObject as the first member in their structure * and then call gst_mini_object_init() to initialize the #GstMiniObject fields. * * gst_mini_object_ref() and gst_mini_object_unref() increment and decrement the * refcount respectively. When the refcount of a mini-object reaches 0, the * dispose function is called first and when this returns %TRUE, the free * function of the miniobject is called. * * A copy can be made with gst_mini_object_copy(). * * gst_mini_object_is_writable() will return %TRUE when the refcount of the * object is exactly 1 and there is no parent or a single parent exists and is * writable itself, meaning the current caller has the only reference to the * object. gst_mini_object_make_writable() will return a writable version of * the object, which might be a new copy when the refcount was not 1. * * Opaque data can be associated with a #GstMiniObject with * gst_mini_object_set_qdata() and gst_mini_object_get_qdata(). The data is * meant to be specific to the particular object and is not automatically copied * with gst_mini_object_copy() or similar methods. * * A weak reference can be added and remove with gst_mini_object_weak_ref() * and gst_mini_object_weak_unref() respectively. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "gst/gst_private.h" #include "gst/gstminiobject.h" #include "gst/gstinfo.h" #include /* Mutex used for weak referencing */ G_LOCK_DEFINE_STATIC (qdata_mutex); static GQuark weak_ref_quark; #define SHARE_ONE (1 << 16) #define SHARE_TWO (2 << 16) #define SHARE_MASK (~(SHARE_ONE - 1)) #define IS_SHARED(state) (state >= SHARE_TWO) #define LOCK_ONE (GST_LOCK_FLAG_LAST) #define FLAG_MASK (GST_LOCK_FLAG_LAST - 1) #define LOCK_MASK ((SHARE_ONE - 1) - FLAG_MASK) #define LOCK_FLAG_MASK (SHARE_ONE - 1) /* For backwards compatibility reasons we use the * guint and gpointer in the GstMiniObject struct in * a rather complicated way to store the parent(s) and qdata. * Originally the were just the number of qdatas and the qdata. * * The guint is used as an atomic state integer with the following * states: * - Locked: 0, basically a spinlock * - No parent, no qdata: 1 (pointer is NULL) * - One parent: 2 (pointer contains the parent) * - Multiple parents or qdata: 3 (pointer contains a PrivData struct) * * Unless we're in state 3, we always have to move to Locking state * atomically and release that again later to the target state whenever * accessing the pointer. When we're in state 3, we will never move to lower * states again * * FIXME 2.0: We should store this directly inside the struct, possibly * keeping space directly allocated for a couple of parents */ enum { PRIV_DATA_STATE_LOCKED = 0, PRIV_DATA_STATE_NO_PARENT = 1, PRIV_DATA_STATE_ONE_PARENT = 2, PRIV_DATA_STATE_PARENTS_OR_QDATA = 3, }; typedef struct { GQuark quark; GstMiniObjectNotify notify; gpointer data; GDestroyNotify destroy; } GstQData; typedef struct { /* Atomic spinlock: 1 if locked, 0 otherwise */ gint parent_lock; guint n_parents, n_parents_len; GstMiniObject **parents; guint n_qdata, n_qdata_len; GstQData *qdata; } PrivData; #define QDATA(q,i) (q->qdata)[(i)] #define QDATA_QUARK(o,i) (QDATA(o,i).quark) #define QDATA_NOTIFY(o,i) (QDATA(o,i).notify) #define QDATA_DATA(o,i) (QDATA(o,i).data) #define QDATA_DESTROY(o,i) (QDATA(o,i).destroy) void _priv_gst_mini_object_initialize (void) { weak_ref_quark = g_quark_from_static_string ("GstMiniObjectWeakRefQuark"); } /** * gst_mini_object_init: (skip) * @mini_object: a #GstMiniObject * @flags: initial #GstMiniObjectFlags * @type: the #GType of the mini-object to create * @copy_func: (allow-none): the copy function, or %NULL * @dispose_func: (allow-none): the dispose function, or %NULL * @free_func: (allow-none): the free function or %NULL * * Initializes a mini-object with the desired type and copy/dispose/free * functions. */ void gst_mini_object_init (GstMiniObject * mini_object, guint flags, GType type, GstMiniObjectCopyFunction copy_func, GstMiniObjectDisposeFunction dispose_func, GstMiniObjectFreeFunction free_func) { mini_object->type = type; mini_object->refcount = 1; mini_object->lockstate = 0; mini_object->flags = flags; mini_object->copy = copy_func; mini_object->dispose = dispose_func; mini_object->free = free_func; g_atomic_int_set ((gint *) & mini_object->priv_uint, PRIV_DATA_STATE_NO_PARENT); mini_object->priv_pointer = NULL; GST_TRACER_MINI_OBJECT_CREATED (mini_object); } /** * gst_mini_object_copy: (skip) * @mini_object: the mini-object to copy * * Creates a copy of the mini-object. * * MT safe * * Returns: (transfer full) (nullable): the new mini-object if copying is * possible, %NULL otherwise. */ GstMiniObject * gst_mini_object_copy (const GstMiniObject * mini_object) { GstMiniObject *copy; g_return_val_if_fail (mini_object != NULL, NULL); if (mini_object->copy) copy = mini_object->copy (mini_object); else copy = NULL; return copy; } /** * gst_mini_object_lock: * @object: the mini-object to lock * @flags: #GstLockFlags * * Lock the mini-object with the specified access mode in @flags. * * Returns: %TRUE if @object could be locked. */ gboolean gst_mini_object_lock (GstMiniObject * object, GstLockFlags flags) { gint access_mode, state, newstate; g_return_val_if_fail (object != NULL, FALSE); g_return_val_if_fail (GST_MINI_OBJECT_IS_LOCKABLE (object), FALSE); if (G_UNLIKELY (object->flags & GST_MINI_OBJECT_FLAG_LOCK_READONLY && flags & GST_LOCK_FLAG_WRITE)) return FALSE; do { access_mode = flags & FLAG_MASK; newstate = state = g_atomic_int_get (&object->lockstate); GST_CAT_TRACE (GST_CAT_LOCKING, "lock %p: state %08x, access_mode %d", object, state, access_mode); if (access_mode & GST_LOCK_FLAG_EXCLUSIVE) { /* shared ref */ newstate += SHARE_ONE; access_mode &= ~GST_LOCK_FLAG_EXCLUSIVE; } /* shared counter > 1 and write access is not allowed */ if (((state & GST_LOCK_FLAG_WRITE) != 0 || (access_mode & GST_LOCK_FLAG_WRITE) != 0) && IS_SHARED (newstate)) goto lock_failed; if (access_mode) { if ((state & LOCK_FLAG_MASK) == 0) { /* nothing mapped, set access_mode */ newstate |= access_mode; } else { /* access_mode must match */ if ((state & access_mode) != access_mode) goto lock_failed; } /* increase refcount */ newstate += LOCK_ONE; } } while (!g_atomic_int_compare_and_exchange (&object->lockstate, state, newstate)); return TRUE; lock_failed: { GST_CAT_DEBUG (GST_CAT_LOCKING, "lock failed %p: state %08x, access_mode %d", object, state, access_mode); return FALSE; } } /** * gst_mini_object_unlock: * @object: the mini-object to unlock * @flags: #GstLockFlags * * Unlock the mini-object with the specified access mode in @flags. */ void gst_mini_object_unlock (GstMiniObject * object, GstLockFlags flags) { gint access_mode, state, newstate; g_return_if_fail (object != NULL); g_return_if_fail (GST_MINI_OBJECT_IS_LOCKABLE (object)); do { access_mode = flags & FLAG_MASK; newstate = state = g_atomic_int_get (&object->lockstate); GST_CAT_TRACE (GST_CAT_LOCKING, "unlock %p: state %08x, access_mode %d", object, state, access_mode); if (access_mode & GST_LOCK_FLAG_EXCLUSIVE) { /* shared counter */ g_return_if_fail (state >= SHARE_ONE); newstate -= SHARE_ONE; access_mode &= ~GST_LOCK_FLAG_EXCLUSIVE; } if (access_mode) { g_return_if_fail ((state & access_mode) == access_mode); /* decrease the refcount */ newstate -= LOCK_ONE; /* last refcount, unset access_mode */ if ((newstate & LOCK_FLAG_MASK) == access_mode) newstate &= ~LOCK_FLAG_MASK; } } while (!g_atomic_int_compare_and_exchange (&object->lockstate, state, newstate)); } /* Locks the priv pointer and sets the priv uint to PRIV_DATA_STATE_LOCKED, * unless the full struct was already stored in the priv pointer. * * Returns the previous state of the priv uint */ static guint lock_priv_pointer (GstMiniObject * object) { gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint); if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) { /* As long as the struct was not allocated yet and either someone else * locked it or our priv_state is out of date, try to lock it */ while (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA && (priv_state == PRIV_DATA_STATE_LOCKED || !g_atomic_int_compare_and_exchange ((gint *) & object->priv_uint, priv_state, PRIV_DATA_STATE_LOCKED))) priv_state = g_atomic_int_get ((gint *) & object->priv_uint); /* Note that if we got the full struct, we did not store * PRIV_DATA_STATE_LOCKED and did not actually lock the priv pointer */ } return priv_state; } /** * gst_mini_object_is_writable: * @mini_object: the mini-object to check * * If @mini_object has the LOCKABLE flag set, check if the current EXCLUSIVE * lock on @object is the only one, this means that changes to the object will * not be visible to any other object. * * If the LOCKABLE flag is not set, check if the refcount of @mini_object is * exactly 1, meaning that no other reference exists to the object and that the * object is therefore writable. * * Modification of a mini-object should only be done after verifying that it * is writable. * * Returns: %TRUE if the object is writable. */ gboolean gst_mini_object_is_writable (const GstMiniObject * mini_object) { gboolean result; gint priv_state; g_return_val_if_fail (mini_object != NULL, FALSE); /* Let's first check our own writability. If this already fails there's * no point in checking anything else */ if (GST_MINI_OBJECT_IS_LOCKABLE (mini_object)) { result = !IS_SHARED (g_atomic_int_get (&mini_object->lockstate)); } else { result = (GST_MINI_OBJECT_REFCOUNT_VALUE (mini_object) == 1); } if (!result) return result; /* We are writable ourselves, but are there parents and are they all * writable too? */ priv_state = lock_priv_pointer (GST_MINI_OBJECT_CAST (mini_object)); /* Now we either have to check the full struct and all the * parents in there, or if there is exactly one parent we * can check that one */ if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) { PrivData *priv_data = mini_object->priv_pointer; /* Lock parents */ while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1)); /* If we have one parent, we're only writable if that parent is writable. * Otherwise if we have multiple parents we are not writable, and if * we have no parent, we are writable */ if (priv_data->n_parents == 1) result = gst_mini_object_is_writable (priv_data->parents[0]); else if (priv_data->n_parents == 0) result = TRUE; else result = FALSE; /* Unlock again */ g_atomic_int_set (&priv_data->parent_lock, 0); } else { if (priv_state == PRIV_DATA_STATE_ONE_PARENT) { result = gst_mini_object_is_writable (mini_object->priv_pointer); } else { g_assert (priv_state == PRIV_DATA_STATE_NO_PARENT); result = TRUE; } /* Unlock again */ g_atomic_int_set ((gint *) & mini_object->priv_uint, priv_state); } return result; } /** * gst_mini_object_make_writable: (skip) * @mini_object: (transfer full): the mini-object to make writable * * Checks if a mini-object is writable. If not, a writable copy is made and * returned. This gives away the reference to the original mini object, * and returns a reference to the new object. * * MT safe * * Returns: (transfer full): a mini-object (possibly the same pointer) that * is writable. */ GstMiniObject * gst_mini_object_make_writable (GstMiniObject * mini_object) { GstMiniObject *ret; g_return_val_if_fail (mini_object != NULL, NULL); if (gst_mini_object_is_writable (mini_object)) { ret = mini_object; } else { ret = gst_mini_object_copy (mini_object); GST_CAT_DEBUG (GST_CAT_PERFORMANCE, "copy %s miniobject %p -> %p", g_type_name (GST_MINI_OBJECT_TYPE (mini_object)), mini_object, ret); gst_mini_object_unref (mini_object); } return ret; } /** * gst_mini_object_ref: (skip) * @mini_object: the mini-object * * Increase the reference count of the mini-object. * * Note that the refcount affects the writability * of @mini-object, see gst_mini_object_is_writable(). It is * important to note that keeping additional references to * GstMiniObject instances can potentially increase the number * of memcpy operations in a pipeline, especially if the miniobject * is a #GstBuffer. * * Returns: (transfer full): the mini-object. */ GstMiniObject * gst_mini_object_ref (GstMiniObject * mini_object) { gint old_refcount, new_refcount; g_return_val_if_fail (mini_object != NULL, NULL); /* we can't assert that the refcount > 0 since the _free functions * increments the refcount from 0 to 1 again to allow resurrecting * the object g_return_val_if_fail (mini_object->refcount > 0, NULL); */ old_refcount = g_atomic_int_add (&mini_object->refcount, 1); new_refcount = old_refcount + 1; GST_CAT_TRACE (GST_CAT_REFCOUNTING, "%p ref %d->%d", mini_object, old_refcount, new_refcount); GST_TRACER_MINI_OBJECT_REFFED (mini_object, new_refcount); return mini_object; } /* Called with global qdata lock */ static gint find_notify (GstMiniObject * object, GQuark quark, gboolean match_notify, GstMiniObjectNotify notify, gpointer data) { guint i; gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint); PrivData *priv_data; if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) return -1; priv_data = object->priv_pointer; for (i = 0; i < priv_data->n_qdata; i++) { if (QDATA_QUARK (priv_data, i) == quark) { /* check if we need to match the callback too */ if (!match_notify || (QDATA_NOTIFY (priv_data, i) == notify && QDATA_DATA (priv_data, i) == data)) return i; } } return -1; } static void remove_notify (GstMiniObject * object, gint index) { gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint); PrivData *priv_data; g_assert (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA); priv_data = object->priv_pointer; /* remove item */ priv_data->n_qdata--; if (priv_data->n_qdata == 0) { /* we don't shrink but free when everything is gone */ g_free (priv_data->qdata); priv_data->qdata = NULL; priv_data->n_qdata_len = 0; } else if (index != priv_data->n_qdata) { QDATA (priv_data, index) = QDATA (priv_data, priv_data->n_qdata); } } /* Make sure we allocate the PrivData of this object if not happened yet */ static void ensure_priv_data (GstMiniObject * object) { gint priv_state; PrivData *priv_data; GstMiniObject *parent = NULL; GST_CAT_DEBUG (GST_CAT_PERFORMANCE, "allocating private data %s miniobject %p", g_type_name (GST_MINI_OBJECT_TYPE (object)), object); priv_state = lock_priv_pointer (object); if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) return; /* Now we're either locked, or someone has already allocated the struct * before us and we can just go ahead * * Note: if someone else allocated it in the meantime, we don't have to * unlock as we didn't lock! */ if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) { if (priv_state == PRIV_DATA_STATE_ONE_PARENT) parent = object->priv_pointer; object->priv_pointer = priv_data = g_new0 (PrivData, 1); if (parent) { priv_data->parents = g_new (GstMiniObject *, 16); priv_data->n_parents_len = 16; priv_data->n_parents = 1; priv_data->parents[0] = parent; } /* Unlock */ g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_PARENTS_OR_QDATA); } } static void set_notify (GstMiniObject * object, gint index, GQuark quark, GstMiniObjectNotify notify, gpointer data, GDestroyNotify destroy) { PrivData *priv_data; ensure_priv_data (object); priv_data = object->priv_pointer; if (index == -1) { /* add item */ index = priv_data->n_qdata++; if (index >= priv_data->n_qdata_len) { priv_data->n_qdata_len *= 2; if (priv_data->n_qdata_len == 0) priv_data->n_qdata_len = 16; priv_data->qdata = g_realloc (priv_data->qdata, sizeof (GstQData) * priv_data->n_qdata_len); } } QDATA_QUARK (priv_data, index) = quark; QDATA_NOTIFY (priv_data, index) = notify; QDATA_DATA (priv_data, index) = data; QDATA_DESTROY (priv_data, index) = destroy; } static void free_priv_data (GstMiniObject * obj) { guint i; gint priv_state = g_atomic_int_get ((gint *) & obj->priv_uint); PrivData *priv_data; if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) { if (priv_state == PRIV_DATA_STATE_LOCKED) { g_warning ("%s: object finalizing but has locked private data (object:%p)", G_STRFUNC, obj); } else if (priv_state == PRIV_DATA_STATE_ONE_PARENT) { g_warning ("%s: object finalizing but still has parent (object:%p, parent:%p)", G_STRFUNC, obj, obj->priv_pointer); } return; } priv_data = obj->priv_pointer; for (i = 0; i < priv_data->n_qdata; i++) { if (QDATA_QUARK (priv_data, i) == weak_ref_quark) QDATA_NOTIFY (priv_data, i) (QDATA_DATA (priv_data, i), obj); if (QDATA_DESTROY (priv_data, i)) QDATA_DESTROY (priv_data, i) (QDATA_DATA (priv_data, i)); } g_free (priv_data->qdata); if (priv_data->n_parents) g_warning ("%s: object finalizing but still has %d parents (object:%p)", G_STRFUNC, priv_data->n_parents, obj); g_free (priv_data->parents); g_free (priv_data); } /** * gst_mini_object_unref: (skip) * @mini_object: the mini-object * * Decreases the reference count of the mini-object, possibly freeing * the mini-object. */ void gst_mini_object_unref (GstMiniObject * mini_object) { gint old_refcount, new_refcount; g_return_if_fail (mini_object != NULL); g_return_if_fail (GST_MINI_OBJECT_REFCOUNT_VALUE (mini_object) > 0); old_refcount = g_atomic_int_add (&mini_object->refcount, -1); new_refcount = old_refcount - 1; g_return_if_fail (old_refcount > 0); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "%p unref %d->%d", mini_object, old_refcount, new_refcount); GST_TRACER_MINI_OBJECT_UNREFFED (mini_object, new_refcount); if (new_refcount == 0) { gboolean do_free; if (mini_object->dispose) do_free = mini_object->dispose (mini_object); else do_free = TRUE; /* if the subclass recycled the object (and returned FALSE) we don't * want to free the instance anymore */ if (G_LIKELY (do_free)) { /* there should be no outstanding locks */ g_return_if_fail ((g_atomic_int_get (&mini_object->lockstate) & LOCK_MASK) < 4); free_priv_data (mini_object); GST_TRACER_MINI_OBJECT_DESTROYED (mini_object); if (mini_object->free) mini_object->free (mini_object); } } } /** * gst_clear_mini_object: (skip) * @object_ptr: a pointer to a #GstMiniObject reference * * Clears a reference to a #GstMiniObject. * * @object_ptr must not be %NULL. * * If the reference is %NULL then this function does nothing. * Otherwise, the reference count of the object is decreased using * gst_mini_object_unref() and the pointer is set to %NULL. * * A macro is also included that allows this function to be used without * pointer casts. * * Since: 1.16 **/ #undef gst_clear_mini_object void gst_clear_mini_object (GstMiniObject ** object_ptr) { g_clear_pointer (object_ptr, gst_mini_object_unref); } /** * gst_mini_object_replace: * @olddata: (inout) (transfer full) (nullable): pointer to a pointer to a * mini-object to be replaced * @newdata: (allow-none): pointer to new mini-object * * Atomically modifies a pointer to point to a new mini-object. * The reference count of @olddata is decreased and the reference count of * @newdata is increased. * * Either @newdata and the value pointed to by @olddata may be %NULL. * * Returns: %TRUE if @newdata was different from @olddata */ gboolean gst_mini_object_replace (GstMiniObject ** olddata, GstMiniObject * newdata) { GstMiniObject *olddata_val; g_return_val_if_fail (olddata != NULL, FALSE); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "replace %p (%d) with %p (%d)", *olddata, *olddata ? (*olddata)->refcount : 0, newdata, newdata ? newdata->refcount : 0); olddata_val = g_atomic_pointer_get ((gpointer *) olddata); if (G_UNLIKELY (olddata_val == newdata)) return FALSE; if (newdata) gst_mini_object_ref (newdata); while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *) olddata, olddata_val, newdata))) { olddata_val = g_atomic_pointer_get ((gpointer *) olddata); if (G_UNLIKELY (olddata_val == newdata)) break; } if (olddata_val) gst_mini_object_unref (olddata_val); return olddata_val != newdata; } /** * gst_mini_object_steal: (skip) * @olddata: (inout) (transfer full): pointer to a pointer to a mini-object to * be stolen * * Replace the current #GstMiniObject pointer to by @olddata with %NULL and * return the old value. * * Returns: (nullable): the #GstMiniObject at @oldata */ GstMiniObject * gst_mini_object_steal (GstMiniObject ** olddata) { GstMiniObject *olddata_val; g_return_val_if_fail (olddata != NULL, NULL); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "steal %p (%d)", *olddata, *olddata ? (*olddata)->refcount : 0); do { olddata_val = g_atomic_pointer_get ((gpointer *) olddata); if (olddata_val == NULL) break; } while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *) olddata, olddata_val, NULL))); return olddata_val; } /** * gst_mini_object_take: * @olddata: (inout) (transfer full): pointer to a pointer to a mini-object to * be replaced * @newdata: pointer to new mini-object * * Modifies a pointer to point to a new mini-object. The modification * is done atomically. This version is similar to gst_mini_object_replace() * except that it does not increase the refcount of @newdata and thus * takes ownership of @newdata. * * Either @newdata and the value pointed to by @olddata may be %NULL. * * Returns: %TRUE if @newdata was different from @olddata */ gboolean gst_mini_object_take (GstMiniObject ** olddata, GstMiniObject * newdata) { GstMiniObject *olddata_val; g_return_val_if_fail (olddata != NULL, FALSE); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "take %p (%d) with %p (%d)", *olddata, *olddata ? (*olddata)->refcount : 0, newdata, newdata ? newdata->refcount : 0); do { olddata_val = g_atomic_pointer_get ((gpointer *) olddata); if (G_UNLIKELY (olddata_val == newdata)) break; } while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *) olddata, olddata_val, newdata))); if (olddata_val) gst_mini_object_unref (olddata_val); return olddata_val != newdata; } /** * gst_mini_object_weak_ref: (skip) * @object: #GstMiniObject to reference weakly * @notify: callback to invoke before the mini object is freed * @data: extra data to pass to notify * * Adds a weak reference callback to a mini object. Weak references are * used for notification when a mini object is finalized. They are called * "weak references" because they allow you to safely hold a pointer * to the mini object without calling gst_mini_object_ref() * (gst_mini_object_ref() adds a strong reference, that is, forces the object * to stay alive). */ void gst_mini_object_weak_ref (GstMiniObject * object, GstMiniObjectNotify notify, gpointer data) { g_return_if_fail (object != NULL); g_return_if_fail (notify != NULL); g_return_if_fail (GST_MINI_OBJECT_REFCOUNT_VALUE (object) >= 1); G_LOCK (qdata_mutex); set_notify (object, -1, weak_ref_quark, notify, data, NULL); G_UNLOCK (qdata_mutex); } /** * gst_mini_object_weak_unref: (skip) * @object: #GstMiniObject to remove a weak reference from * @notify: callback to search for * @data: data to search for * * Removes a weak reference callback from a mini object. */ void gst_mini_object_weak_unref (GstMiniObject * object, GstMiniObjectNotify notify, gpointer data) { gint i; g_return_if_fail (object != NULL); g_return_if_fail (notify != NULL); G_LOCK (qdata_mutex); if ((i = find_notify (object, weak_ref_quark, TRUE, notify, data)) != -1) { remove_notify (object, i); } else { g_warning ("%s: couldn't find weak ref %p (object:%p data:%p)", G_STRFUNC, notify, object, data); } G_UNLOCK (qdata_mutex); } /** * gst_mini_object_set_qdata: * @object: a #GstMiniObject * @quark: A #GQuark, naming the user data pointer * @data: An opaque user data pointer * @destroy: Function to invoke with @data as argument, when @data * needs to be freed * * This sets an opaque, named pointer on a miniobject. * The name is specified through a #GQuark (retrieved e.g. via * g_quark_from_static_string()), and the pointer * can be gotten back from the @object with gst_mini_object_get_qdata() * until the @object is disposed. * Setting a previously set user data pointer, overrides (frees) * the old pointer set, using %NULL as pointer essentially * removes the data stored. * * @destroy may be specified which is called with @data as argument * when the @object is disposed, or the data is being overwritten by * a call to gst_mini_object_set_qdata() with the same @quark. */ void gst_mini_object_set_qdata (GstMiniObject * object, GQuark quark, gpointer data, GDestroyNotify destroy) { gint i; gpointer old_data = NULL; GDestroyNotify old_notify = NULL; g_return_if_fail (object != NULL); g_return_if_fail (quark > 0); G_LOCK (qdata_mutex); if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) { PrivData *priv_data = object->priv_pointer; old_data = QDATA_DATA (priv_data, i); old_notify = QDATA_DESTROY (priv_data, i); if (data == NULL) remove_notify (object, i); } if (data != NULL) set_notify (object, i, quark, NULL, data, destroy); G_UNLOCK (qdata_mutex); if (old_notify) old_notify (old_data); } /** * gst_mini_object_get_qdata: * @object: The GstMiniObject to get a stored user data pointer from * @quark: A #GQuark, naming the user data pointer * * This function gets back user data pointers stored via * gst_mini_object_set_qdata(). * * Returns: (transfer none) (nullable): The user data pointer set, or * %NULL */ gpointer gst_mini_object_get_qdata (GstMiniObject * object, GQuark quark) { guint i; gpointer result; g_return_val_if_fail (object != NULL, NULL); g_return_val_if_fail (quark > 0, NULL); G_LOCK (qdata_mutex); if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) { PrivData *priv_data = object->priv_pointer; result = QDATA_DATA (priv_data, i); } else { result = NULL; } G_UNLOCK (qdata_mutex); return result; } /** * gst_mini_object_steal_qdata: * @object: The GstMiniObject to get a stored user data pointer from * @quark: A #GQuark, naming the user data pointer * * This function gets back user data pointers stored via gst_mini_object_set_qdata() * and removes the data from @object without invoking its destroy() function (if * any was set). * * Returns: (transfer full) (nullable): The user data pointer set, or * %NULL */ gpointer gst_mini_object_steal_qdata (GstMiniObject * object, GQuark quark) { guint i; gpointer result; g_return_val_if_fail (object != NULL, NULL); g_return_val_if_fail (quark > 0, NULL); G_LOCK (qdata_mutex); if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) { PrivData *priv_data = object->priv_pointer; result = QDATA_DATA (priv_data, i); remove_notify (object, i); } else { result = NULL; } G_UNLOCK (qdata_mutex); return result; } /** * gst_mini_object_add_parent: * @object: a #GstMiniObject * @parent: a parent #GstMiniObject * * This adds @parent as a parent for @object. Having one ore more parents affects the * writability of @object: if a @parent is not writable, @object is also not * writable, regardless of its refcount. @object is only writable if all * the parents are writable and its own refcount is exactly 1. * * Note: This function does not take ownership of @parent and also does not * take an additional reference. It is the responsibility of the caller to * remove the parent again at a later time. * * Since: 1.16 */ void gst_mini_object_add_parent (GstMiniObject * object, GstMiniObject * parent) { gint priv_state; g_return_if_fail (object != NULL); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "adding parent %p to object %p", parent, object); priv_state = lock_priv_pointer (object); /* If we already had one parent, we need to allocate the full struct now */ if (priv_state == PRIV_DATA_STATE_ONE_PARENT) { /* Unlock again */ g_atomic_int_set ((gint *) & object->priv_uint, priv_state); ensure_priv_data (object); priv_state = PRIV_DATA_STATE_PARENTS_OR_QDATA; } /* Now we either have to add the new parent to the full struct, or add * our one and only parent to the pointer field */ if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) { PrivData *priv_data = object->priv_pointer; /* Lock parents */ while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1)); if (priv_data->n_parents >= priv_data->n_parents_len) { priv_data->n_parents_len *= 2; if (priv_data->n_parents_len == 0) priv_data->n_parents_len = 16; priv_data->parents = g_realloc (priv_data->parents, priv_data->n_parents_len * sizeof (GstMiniObject *)); } priv_data->parents[priv_data->n_parents] = parent; priv_data->n_parents++; /* Unlock again */ g_atomic_int_set (&priv_data->parent_lock, 0); } else if (priv_state == PRIV_DATA_STATE_NO_PARENT) { object->priv_pointer = parent; /* Unlock again */ g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_ONE_PARENT); } else { g_assert_not_reached (); } } /** * gst_mini_object_remove_parent: * @object: a #GstMiniObject * @parent: a parent #GstMiniObject * * This removes @parent as a parent for @object. See * gst_mini_object_add_parent(). * * Since: 1.16 */ void gst_mini_object_remove_parent (GstMiniObject * object, GstMiniObject * parent) { gint priv_state; g_return_if_fail (object != NULL); GST_CAT_TRACE (GST_CAT_REFCOUNTING, "removing parent %p from object %p", parent, object); priv_state = lock_priv_pointer (object); /* Now we either have to add the new parent to the full struct, or add * our one and only parent to the pointer field */ if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) { PrivData *priv_data = object->priv_pointer; guint i; /* Lock parents */ while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1)); for (i = 0; i < priv_data->n_parents; i++) if (parent == priv_data->parents[i]) break; if (i != priv_data->n_parents) { priv_data->n_parents--; if (priv_data->n_parents != i) priv_data->parents[i] = priv_data->parents[priv_data->n_parents]; } else { g_warning ("%s: couldn't find parent %p (object:%p)", G_STRFUNC, object, parent); } /* Unlock again */ g_atomic_int_set (&priv_data->parent_lock, 0); } else if (priv_state == PRIV_DATA_STATE_ONE_PARENT) { if (object->priv_pointer != parent) { g_warning ("%s: couldn't find parent %p (object:%p)", G_STRFUNC, object, parent); /* Unlock again */ g_atomic_int_set ((gint *) & object->priv_uint, priv_state); } else { object->priv_pointer = NULL; /* Unlock again */ g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_NO_PARENT); } } else { /* Unlock again */ g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_NO_PARENT); } }