/* GStreamer * Copyright (C) <2007> Wim Taymans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "rtpstats.h" /** * rtp_stats_init_defaults: * @stats: an #RTPSessionStats struct * * Initialize @stats with its default values. */ void rtp_stats_init_defaults (RTPSessionStats * stats) { rtp_stats_set_bandwidths (stats, -1, -1, -1, -1); stats->min_interval = RTP_STATS_MIN_INTERVAL; stats->bye_timeout = RTP_STATS_BYE_TIMEOUT; } /** * rtp_stats_set_bandwidths: * @stats: an #RTPSessionStats struct * @rtp_bw: RTP bandwidth * @rtcp_bw: RTCP bandwidth * @rs: sender RTCP bandwidth * @rr: receiver RTCP bandwidth * * Configure the bandwidth parameters in the stats. When an input variable is * set to -1, it will be calculated from the other input variables and from the * defaults. */ void rtp_stats_set_bandwidths (RTPSessionStats * stats, guint rtp_bw, guint rtcp_bw, guint rs, guint rr) { /* when given, sender and receive bandwidth add up to the total * rtcp bandwidth */ if (rs != -1 && rr != -1) rtcp_bw = rs + rr; /* RTCP is 5% of the RTP bandwidth */ if (rtp_bw == -1 && rtcp_bw != -1) rtp_bw = rtcp_bw * 20; else if (rtp_bw != -1 && rtcp_bw == -1) rtcp_bw = rtp_bw / 20; else if (rtp_bw == -1 && rtcp_bw == -1) { /* nothing given, take defaults */ rtp_bw = RTP_STATS_BANDWIDTH; rtcp_bw = RTP_STATS_RTCP_BANDWIDTH; } stats->bandwidth = rtp_bw; stats->rtcp_bandwidth = rtcp_bw; /* now figure out the fractions */ if (rs == -1) { /* rs unknown */ if (rr == -1) { /* both not given, use defaults */ rs = stats->rtcp_bandwidth * RTP_STATS_SENDER_FRACTION; rr = stats->rtcp_bandwidth * RTP_STATS_RECEIVER_FRACTION; } else { /* rr known, calculate rs */ if (stats->rtcp_bandwidth > rr) rs = stats->rtcp_bandwidth - rr; else rs = 0; } } else if (rr == -1) { /* rs known, calculate rr */ if (stats->rtcp_bandwidth > rs) rr = stats->rtcp_bandwidth - rs; else rr = 0; } if (stats->rtcp_bandwidth > 0) { stats->sender_fraction = ((gdouble) rs) / ((gdouble) stats->rtcp_bandwidth); stats->receiver_fraction = 1.0 - stats->sender_fraction; } else { /* no RTCP bandwidth, set dummy values */ stats->sender_fraction = 0.0; stats->receiver_fraction = 0.0; } GST_DEBUG ("bandwidths: RTP %u, RTCP %u, RS %f, RR %f", stats->bandwidth, stats->rtcp_bandwidth, stats->sender_fraction, stats->receiver_fraction); } /** * rtp_stats_calculate_rtcp_interval: * @stats: an #RTPSessionStats struct * @sender: if we are a sender * @first: if this is the first time * * Calculate the RTCP interval. The result of this function is the amount of * time to wait (in nanoseconds) before sending a new RTCP message. * * Returns: the RTCP interval. */ GstClockTime rtp_stats_calculate_rtcp_interval (RTPSessionStats * stats, gboolean we_send, gboolean first) { gdouble members, senders, n; gdouble avg_rtcp_size, rtcp_bw; gdouble interval; gdouble rtcp_min_time; /* Very first call at application start-up uses half the min * delay for quicker notification while still allowing some time * before reporting for randomization and to learn about other * sources so the report interval will converge to the correct * interval more quickly. */ rtcp_min_time = stats->min_interval; if (first) rtcp_min_time /= 2.0; /* Dedicate a fraction of the RTCP bandwidth to senders unless * the number of senders is large enough that their share is * more than that fraction. */ n = members = stats->active_sources; senders = (gdouble) stats->sender_sources; rtcp_bw = stats->rtcp_bandwidth; if (senders <= members * stats->sender_fraction) { if (we_send) { rtcp_bw *= stats->sender_fraction; n = senders; } else { rtcp_bw *= stats->receiver_fraction; n -= senders; } } /* no bandwidth for RTCP, return NONE to signal that we don't want to send * RTCP packets */ if (rtcp_bw <= 0.00001) return GST_CLOCK_TIME_NONE; avg_rtcp_size = stats->avg_rtcp_packet_size / 16.0; /* * The effective number of sites times the average packet size is * the total number of octets sent when each site sends a report. * Dividing this by the effective bandwidth gives the time * interval over which those packets must be sent in order to * meet the bandwidth target, with a minimum enforced. In that * time interval we send one report so this time is also our * average time between reports. */ interval = avg_rtcp_size * n / rtcp_bw; if (interval < rtcp_min_time) interval = rtcp_min_time; return interval * GST_SECOND; } /** * rtp_stats_add_rtcp_jitter: * @stats: an #RTPSessionStats struct * @interval: an RTCP interval * * Apply a random jitter to the @interval. @interval is typically obtained with * rtp_stats_calculate_rtcp_interval(). * * Returns: the new RTCP interval. */ GstClockTime rtp_stats_add_rtcp_jitter (RTPSessionStats * stats, GstClockTime interval) { gdouble temp; /* see RFC 3550 p 30 * To compensate for "unconditional reconsideration" converging to a * value below the intended average. */ #define COMPENSATION (2.71828 - 1.5); temp = (interval * g_random_double_range (0.5, 1.5)) / COMPENSATION; return (GstClockTime) temp; } /** * rtp_stats_calculate_bye_interval: * @stats: an #RTPSessionStats struct * * Calculate the BYE interval. The result of this function is the amount of * time to wait (in nanoseconds) before sending a BYE message. * * Returns: the BYE interval. */ GstClockTime rtp_stats_calculate_bye_interval (RTPSessionStats * stats) { gdouble members; gdouble avg_rtcp_size, rtcp_bw; gdouble interval; gdouble rtcp_min_time; /* no interval when we have less than 50 members */ if (stats->active_sources < 50) return 0; rtcp_min_time = (stats->min_interval) / 2.0; /* Dedicate a fraction of the RTCP bandwidth to senders unless * the number of senders is large enough that their share is * more than that fraction. */ members = stats->bye_members; rtcp_bw = stats->rtcp_bandwidth * stats->receiver_fraction; /* no bandwidth for RTCP, return NONE to signal that we don't want to send * RTCP packets */ if (rtcp_bw <= 0.0001) return GST_CLOCK_TIME_NONE; avg_rtcp_size = stats->avg_rtcp_packet_size / 16.0; /* * The effective number of sites times the average packet size is * the total number of octets sent when each site sends a report. * Dividing this by the effective bandwidth gives the time * interval over which those packets must be sent in order to * meet the bandwidth target, with a minimum enforced. In that * time interval we send one report so this time is also our * average time between reports. */ interval = avg_rtcp_size * members / rtcp_bw; if (interval < rtcp_min_time) interval = rtcp_min_time; return interval * GST_SECOND; }