/* GStreamer * Copyright (C) 2005 Stefan Kost * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:element-audiotestsrc * * AudioTestSrc can be used to generate basic audio signals. It support several * different waveforms and allows to set the base frequency and volume. * * * Example launch line * |[ * gst-launch audiotestsrc ! audioconvert ! alsasink * ]| This pipeline produces a sine with default frequency, 440 Hz, and the * default volume, 0.8 (relative to a maximum 1.0). * |[ * gst-launch audiotestsrc wave=2 freq=200 ! audioconvert ! tee name=t ! queue ! alsasink t. ! queue ! libvisual_lv_scope ! videoconvert ! xvimagesink * ]| In this example a saw wave is generated. The wave is shown using a * scope visualizer from libvisual, allowing you to visually verify that * the saw wave is correct. * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "gstaudiotestsrc.h" #define M_PI_M2 ( G_PI + G_PI ) GST_DEBUG_CATEGORY_STATIC (audio_test_src_debug); #define GST_CAT_DEFAULT audio_test_src_debug #define DEFAULT_SAMPLES_PER_BUFFER 1024 #define DEFAULT_WAVE GST_AUDIO_TEST_SRC_WAVE_SINE #define DEFAULT_FREQ 440.0 #define DEFAULT_VOLUME 0.8 #define DEFAULT_IS_LIVE FALSE #define DEFAULT_TIMESTAMP_OFFSET G_GINT64_CONSTANT (0) #define DEFAULT_CAN_ACTIVATE_PUSH TRUE #define DEFAULT_CAN_ACTIVATE_PULL FALSE enum { PROP_0, PROP_SAMPLES_PER_BUFFER, PROP_WAVE, PROP_FREQ, PROP_VOLUME, PROP_IS_LIVE, PROP_TIMESTAMP_OFFSET, PROP_CAN_ACTIVATE_PUSH, PROP_CAN_ACTIVATE_PULL, PROP_LAST }; #if G_BYTE_ORDER == G_LITTLE_ENDIAN #define FORMAT_STR "{ S16LE, S32LE, F32LE, F64LE }" #define DEFAULT_FORMAT_STR "S16LE" #else #define FORMAT_STR "{ S16BE, S32BE, F32BE, F64BE }" #define DEFAULT_FORMAT_STR "S16BE" #endif static GstStaticPadTemplate gst_audio_test_src_src_template = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS ("audio/x-raw, " "format = (string) " FORMAT_STR ", " "layout = (string) interleaved, " "rate = (int) [ 1, MAX ], " "channels = (int) 1; " "audio/x-raw, " "format = (string) " FORMAT_STR ", " "layout = (string) interleaved, " "rate = (int) [ 1, MAX ], " "channels = (int) 2, " "channel-mask = (bitmask) 0x3") ); #define gst_audio_test_src_parent_class parent_class G_DEFINE_TYPE (GstAudioTestSrc, gst_audio_test_src, GST_TYPE_BASE_SRC); #define GST_TYPE_AUDIO_TEST_SRC_WAVE (gst_audiostestsrc_wave_get_type()) static GType gst_audiostestsrc_wave_get_type (void) { static GType audiostestsrc_wave_type = 0; static const GEnumValue audiostestsrc_waves[] = { {GST_AUDIO_TEST_SRC_WAVE_SINE, "Sine", "sine"}, {GST_AUDIO_TEST_SRC_WAVE_SQUARE, "Square", "square"}, {GST_AUDIO_TEST_SRC_WAVE_SAW, "Saw", "saw"}, {GST_AUDIO_TEST_SRC_WAVE_TRIANGLE, "Triangle", "triangle"}, {GST_AUDIO_TEST_SRC_WAVE_SILENCE, "Silence", "silence"}, {GST_AUDIO_TEST_SRC_WAVE_WHITE_NOISE, "White uniform noise", "white-noise"}, {GST_AUDIO_TEST_SRC_WAVE_PINK_NOISE, "Pink noise", "pink-noise"}, {GST_AUDIO_TEST_SRC_WAVE_SINE_TAB, "Sine table", "sine-table"}, {GST_AUDIO_TEST_SRC_WAVE_TICKS, "Periodic Ticks", "ticks"}, {GST_AUDIO_TEST_SRC_WAVE_GAUSSIAN_WHITE_NOISE, "White Gaussian noise", "gaussian-noise"}, {GST_AUDIO_TEST_SRC_WAVE_RED_NOISE, "Red (brownian) noise", "red-noise"}, {GST_AUDIO_TEST_SRC_WAVE_BLUE_NOISE, "Blue noise", "blue-noise"}, {GST_AUDIO_TEST_SRC_WAVE_VIOLET_NOISE, "Violet noise", "violet-noise"}, {0, NULL, NULL}, }; if (G_UNLIKELY (audiostestsrc_wave_type == 0)) { audiostestsrc_wave_type = g_enum_register_static ("GstAudioTestSrcWave", audiostestsrc_waves); } return audiostestsrc_wave_type; } static void gst_audio_test_src_finalize (GObject * object); static void gst_audio_test_src_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec); static void gst_audio_test_src_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec); static gboolean gst_audio_test_src_setcaps (GstBaseSrc * basesrc, GstCaps * caps); static GstCaps *gst_audio_test_src_fixate (GstBaseSrc * bsrc, GstCaps * caps); static gboolean gst_audio_test_src_is_seekable (GstBaseSrc * basesrc); static gboolean gst_audio_test_src_do_seek (GstBaseSrc * basesrc, GstSegment * segment); static gboolean gst_audio_test_src_query (GstBaseSrc * basesrc, GstQuery * query); static void gst_audio_test_src_change_wave (GstAudioTestSrc * src); static void gst_audio_test_src_get_times (GstBaseSrc * basesrc, GstBuffer * buffer, GstClockTime * start, GstClockTime * end); static gboolean gst_audio_test_src_start (GstBaseSrc * basesrc); static gboolean gst_audio_test_src_stop (GstBaseSrc * basesrc); static GstFlowReturn gst_audio_test_src_fill (GstBaseSrc * basesrc, guint64 offset, guint length, GstBuffer * buffer); static void gst_audio_test_src_class_init (GstAudioTestSrcClass * klass) { GObjectClass *gobject_class; GstElementClass *gstelement_class; GstBaseSrcClass *gstbasesrc_class; gobject_class = (GObjectClass *) klass; gstelement_class = (GstElementClass *) klass; gstbasesrc_class = (GstBaseSrcClass *) klass; gobject_class->set_property = gst_audio_test_src_set_property; gobject_class->get_property = gst_audio_test_src_get_property; gobject_class->finalize = gst_audio_test_src_finalize; g_object_class_install_property (gobject_class, PROP_SAMPLES_PER_BUFFER, g_param_spec_int ("samplesperbuffer", "Samples per buffer", "Number of samples in each outgoing buffer", 1, G_MAXINT, DEFAULT_SAMPLES_PER_BUFFER, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_WAVE, g_param_spec_enum ("wave", "Waveform", "Oscillator waveform", GST_TYPE_AUDIO_TEST_SRC_WAVE, GST_AUDIO_TEST_SRC_WAVE_SINE, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_FREQ, g_param_spec_double ("freq", "Frequency", "Frequency of test signal", 0.0, 20000.0, DEFAULT_FREQ, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_VOLUME, g_param_spec_double ("volume", "Volume", "Volume of test signal", 0.0, 1.0, DEFAULT_VOLUME, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_IS_LIVE, g_param_spec_boolean ("is-live", "Is Live", "Whether to act as a live source", DEFAULT_IS_LIVE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (G_OBJECT_CLASS (klass), PROP_TIMESTAMP_OFFSET, g_param_spec_int64 ("timestamp-offset", "Timestamp offset", "An offset added to timestamps set on buffers (in ns)", G_MININT64, G_MAXINT64, DEFAULT_TIMESTAMP_OFFSET, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_CAN_ACTIVATE_PUSH, g_param_spec_boolean ("can-activate-push", "Can activate push", "Can activate in push mode", DEFAULT_CAN_ACTIVATE_PUSH, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_CAN_ACTIVATE_PULL, g_param_spec_boolean ("can-activate-pull", "Can activate pull", "Can activate in pull mode", DEFAULT_CAN_ACTIVATE_PULL, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); gst_element_class_add_pad_template (gstelement_class, gst_static_pad_template_get (&gst_audio_test_src_src_template)); gst_element_class_set_details_simple (gstelement_class, "Audio test source", "Source/Audio", "Creates audio test signals of given frequency and volume", "Stefan Kost "); gstbasesrc_class->set_caps = GST_DEBUG_FUNCPTR (gst_audio_test_src_setcaps); gstbasesrc_class->fixate = GST_DEBUG_FUNCPTR (gst_audio_test_src_fixate); gstbasesrc_class->is_seekable = GST_DEBUG_FUNCPTR (gst_audio_test_src_is_seekable); gstbasesrc_class->do_seek = GST_DEBUG_FUNCPTR (gst_audio_test_src_do_seek); gstbasesrc_class->query = GST_DEBUG_FUNCPTR (gst_audio_test_src_query); gstbasesrc_class->get_times = GST_DEBUG_FUNCPTR (gst_audio_test_src_get_times); gstbasesrc_class->start = GST_DEBUG_FUNCPTR (gst_audio_test_src_start); gstbasesrc_class->stop = GST_DEBUG_FUNCPTR (gst_audio_test_src_stop); gstbasesrc_class->fill = GST_DEBUG_FUNCPTR (gst_audio_test_src_fill); } static void gst_audio_test_src_init (GstAudioTestSrc * src) { src->volume = DEFAULT_VOLUME; src->freq = DEFAULT_FREQ; /* we operate in time */ gst_base_src_set_format (GST_BASE_SRC (src), GST_FORMAT_TIME); gst_base_src_set_live (GST_BASE_SRC (src), DEFAULT_IS_LIVE); src->samples_per_buffer = DEFAULT_SAMPLES_PER_BUFFER; src->generate_samples_per_buffer = src->samples_per_buffer; src->timestamp_offset = DEFAULT_TIMESTAMP_OFFSET; src->can_activate_pull = DEFAULT_CAN_ACTIVATE_PULL; src->gen = NULL; src->wave = DEFAULT_WAVE; gst_base_src_set_blocksize (GST_BASE_SRC (src), -1); } static void gst_audio_test_src_finalize (GObject * object) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (object); if (src->gen) g_rand_free (src->gen); src->gen = NULL; G_OBJECT_CLASS (parent_class)->finalize (object); } static GstCaps * gst_audio_test_src_fixate (GstBaseSrc * bsrc, GstCaps * caps) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (bsrc); GstStructure *structure; caps = gst_caps_make_writable (caps); structure = gst_caps_get_structure (caps, 0); GST_DEBUG_OBJECT (src, "fixating samplerate to %d", GST_AUDIO_DEF_RATE); gst_structure_fixate_field_nearest_int (structure, "rate", GST_AUDIO_DEF_RATE); gst_structure_fixate_field_string (structure, "format", DEFAULT_FORMAT_STR); /* fixate to mono unless downstream requires stereo, for backwards compat */ gst_structure_fixate_field_nearest_int (structure, "channels", 1); caps = GST_BASE_SRC_CLASS (parent_class)->fixate (bsrc, caps); return caps; } static gboolean gst_audio_test_src_setcaps (GstBaseSrc * basesrc, GstCaps * caps) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); GstAudioInfo info; if (!gst_audio_info_from_caps (&info, caps)) goto invalid_caps; GST_DEBUG_OBJECT (src, "negotiated to caps %" GST_PTR_FORMAT, caps); src->info = info; gst_base_src_set_blocksize (basesrc, GST_AUDIO_INFO_BPF (&info) * src->samples_per_buffer); gst_audio_test_src_change_wave (src); return TRUE; /* ERROR */ invalid_caps: { GST_ERROR_OBJECT (basesrc, "received invalid caps"); return FALSE; } } static gboolean gst_audio_test_src_query (GstBaseSrc * basesrc, GstQuery * query) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); gboolean res = FALSE; switch (GST_QUERY_TYPE (query)) { case GST_QUERY_CONVERT: { GstFormat src_fmt, dest_fmt; gint64 src_val, dest_val; gst_query_parse_convert (query, &src_fmt, &src_val, &dest_fmt, &dest_val); if (!gst_audio_info_convert (&src->info, src_fmt, src_val, dest_fmt, &dest_val)) goto error; gst_query_set_convert (query, src_fmt, src_val, dest_fmt, dest_val); res = TRUE; break; } case GST_QUERY_SCHEDULING: { /* if we can operate in pull mode */ gst_query_set_scheduling (query, GST_SCHEDULING_FLAG_SEEKABLE, 1, -1, 0); gst_query_add_scheduling_mode (query, GST_PAD_MODE_PUSH); if (src->can_activate_pull) gst_query_add_scheduling_mode (query, GST_PAD_MODE_PULL); res = TRUE; break; } default: res = GST_BASE_SRC_CLASS (parent_class)->query (basesrc, query); break; } return res; /* ERROR */ error: { GST_DEBUG_OBJECT (src, "query failed"); return FALSE; } } #define DEFINE_SINE(type,scale) \ static void \ gst_audio_test_src_create_sine_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble step, amp; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ step = M_PI_M2 * src->freq / GST_AUDIO_INFO_RATE (&src->info); \ amp = src->volume * scale; \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ for (c = 0; c < channels; ++c) { \ samples[i++] = (g##type) (sin (src->accumulator) * amp); \ } \ } \ } DEFINE_SINE (int16, 32767.0); DEFINE_SINE (int32, 2147483647.0); DEFINE_SINE (float, 1.0); DEFINE_SINE (double, 1.0); static const ProcessFunc sine_funcs[] = { (ProcessFunc) gst_audio_test_src_create_sine_int16, (ProcessFunc) gst_audio_test_src_create_sine_int32, (ProcessFunc) gst_audio_test_src_create_sine_float, (ProcessFunc) gst_audio_test_src_create_sine_double }; #define DEFINE_SQUARE(type,scale) \ static void \ gst_audio_test_src_create_square_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble step, amp; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ step = M_PI_M2 * src->freq / GST_AUDIO_INFO_RATE (&src->info); \ amp = src->volume * scale; \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ for (c = 0; c < channels; ++c) { \ samples[i++] = (g##type) ((src->accumulator < G_PI) ? amp : -amp); \ } \ } \ } DEFINE_SQUARE (int16, 32767.0); DEFINE_SQUARE (int32, 2147483647.0); DEFINE_SQUARE (float, 1.0); DEFINE_SQUARE (double, 1.0); static const ProcessFunc square_funcs[] = { (ProcessFunc) gst_audio_test_src_create_square_int16, (ProcessFunc) gst_audio_test_src_create_square_int32, (ProcessFunc) gst_audio_test_src_create_square_float, (ProcessFunc) gst_audio_test_src_create_square_double }; #define DEFINE_SAW(type,scale) \ static void \ gst_audio_test_src_create_saw_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble step, amp; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ step = M_PI_M2 * src->freq / GST_AUDIO_INFO_RATE (&src->info); \ amp = (src->volume * scale) / G_PI; \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ if (src->accumulator < G_PI) { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) (src->accumulator * amp); \ } else { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) ((M_PI_M2 - src->accumulator) * -amp); \ } \ } \ } DEFINE_SAW (int16, 32767.0); DEFINE_SAW (int32, 2147483647.0); DEFINE_SAW (float, 1.0); DEFINE_SAW (double, 1.0); static const ProcessFunc saw_funcs[] = { (ProcessFunc) gst_audio_test_src_create_saw_int16, (ProcessFunc) gst_audio_test_src_create_saw_int32, (ProcessFunc) gst_audio_test_src_create_saw_float, (ProcessFunc) gst_audio_test_src_create_saw_double }; #define DEFINE_TRIANGLE(type,scale) \ static void \ gst_audio_test_src_create_triangle_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble step, amp; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ step = M_PI_M2 * src->freq / GST_AUDIO_INFO_RATE (&src->info); \ amp = (src->volume * scale) / G_PI_2; \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ if (src->accumulator < (G_PI_2)) { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) (src->accumulator * amp); \ } else if (src->accumulator < (G_PI * 1.5)) { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) ((src->accumulator - G_PI) * -amp); \ } else { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) ((M_PI_M2 - src->accumulator) * -amp); \ } \ } \ } DEFINE_TRIANGLE (int16, 32767.0); DEFINE_TRIANGLE (int32, 2147483647.0); DEFINE_TRIANGLE (float, 1.0); DEFINE_TRIANGLE (double, 1.0); static const ProcessFunc triangle_funcs[] = { (ProcessFunc) gst_audio_test_src_create_triangle_int16, (ProcessFunc) gst_audio_test_src_create_triangle_int32, (ProcessFunc) gst_audio_test_src_create_triangle_float, (ProcessFunc) gst_audio_test_src_create_triangle_double }; #define DEFINE_SILENCE(type) \ static void \ gst_audio_test_src_create_silence_##type (GstAudioTestSrc * src, g##type * samples) \ { \ memset (samples, 0, src->generate_samples_per_buffer * sizeof (g##type) * src->info.channels); \ } DEFINE_SILENCE (int16); DEFINE_SILENCE (int32); DEFINE_SILENCE (float); DEFINE_SILENCE (double); static const ProcessFunc silence_funcs[] = { (ProcessFunc) gst_audio_test_src_create_silence_int16, (ProcessFunc) gst_audio_test_src_create_silence_int32, (ProcessFunc) gst_audio_test_src_create_silence_float, (ProcessFunc) gst_audio_test_src_create_silence_double }; #define DEFINE_WHITE_NOISE(type,scale) \ static void \ gst_audio_test_src_create_white_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c; \ gdouble amp = (src->volume * scale); \ gint channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) (amp * g_rand_double_range (src->gen, -1.0, 1.0)); \ } \ } DEFINE_WHITE_NOISE (int16, 32767.0); DEFINE_WHITE_NOISE (int32, 2147483647.0); DEFINE_WHITE_NOISE (float, 1.0); DEFINE_WHITE_NOISE (double, 1.0); static const ProcessFunc white_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_white_noise_int16, (ProcessFunc) gst_audio_test_src_create_white_noise_int32, (ProcessFunc) gst_audio_test_src_create_white_noise_float, (ProcessFunc) gst_audio_test_src_create_white_noise_double }; /* pink noise calculation is based on * http://www.firstpr.com.au/dsp/pink-noise/phil_burk_19990905_patest_pink.c * which has been released under public domain * Many thanks Phil! */ static void gst_audio_test_src_init_pink_noise (GstAudioTestSrc * src) { gint i; gint num_rows = 12; /* arbitrary: 1 .. PINK_MAX_RANDOM_ROWS */ glong pmax; src->pink.index = 0; src->pink.index_mask = (1 << num_rows) - 1; /* calculate maximum possible signed random value. * Extra 1 for white noise always added. */ pmax = (num_rows + 1) * (1 << (PINK_RANDOM_BITS - 1)); src->pink.scalar = 1.0f / pmax; /* Initialize rows. */ for (i = 0; i < num_rows; i++) src->pink.rows[i] = 0; src->pink.running_sum = 0; } /* Generate Pink noise values between -1.0 and +1.0 */ static gdouble gst_audio_test_src_generate_pink_noise_value (GstAudioTestSrc * src) { GstPinkNoise *pink = &src->pink; glong new_random; glong sum; /* Increment and mask index. */ pink->index = (pink->index + 1) & pink->index_mask; /* If index is zero, don't update any random values. */ if (pink->index != 0) { /* Determine how many trailing zeros in PinkIndex. */ /* This algorithm will hang if n==0 so test first. */ gint num_zeros = 0; gint n = pink->index; while ((n & 1) == 0) { n = n >> 1; num_zeros++; } /* Replace the indexed ROWS random value. * Subtract and add back to RunningSum instead of adding all the random * values together. Only one changes each time. */ pink->running_sum -= pink->rows[num_zeros]; new_random = 32768.0 - (65536.0 * (gulong) g_rand_int (src->gen) / (G_MAXUINT32 + 1.0)); pink->running_sum += new_random; pink->rows[num_zeros] = new_random; } /* Add extra white noise value. */ new_random = 32768.0 - (65536.0 * (gulong) g_rand_int (src->gen) / (G_MAXUINT32 + 1.0)); sum = pink->running_sum + new_random; /* Scale to range of -1.0 to 0.9999. */ return (pink->scalar * sum); } #define DEFINE_PINK(type, scale) \ static void \ gst_audio_test_src_create_pink_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble amp; \ \ amp = src->volume * scale; \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ for (c = 0; c < channels; ++c) { \ samples[i++] = \ (g##type) (gst_audio_test_src_generate_pink_noise_value (src) * \ amp); \ } \ } \ } DEFINE_PINK (int16, 32767.0); DEFINE_PINK (int32, 2147483647.0); DEFINE_PINK (float, 1.0); DEFINE_PINK (double, 1.0); static const ProcessFunc pink_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_pink_noise_int16, (ProcessFunc) gst_audio_test_src_create_pink_noise_int32, (ProcessFunc) gst_audio_test_src_create_pink_noise_float, (ProcessFunc) gst_audio_test_src_create_pink_noise_double }; static void gst_audio_test_src_init_sine_table (GstAudioTestSrc * src) { gint i; gdouble ang = 0.0; gdouble step = M_PI_M2 / 1024.0; gdouble amp = src->volume; for (i = 0; i < 1024; i++) { src->wave_table[i] = sin (ang) * amp; ang += step; } } #define DEFINE_SINE_TABLE(type,scale) \ static void \ gst_audio_test_src_create_sine_table_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels; \ gdouble step, scl; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ step = M_PI_M2 * src->freq / GST_AUDIO_INFO_RATE (&src->info); \ scl = 1024.0 / M_PI_M2; \ \ i = 0; \ while (i < (src->generate_samples_per_buffer * channels)) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ for (c = 0; c < channels; ++c) \ samples[i++] = (g##type) scale * src->wave_table[(gint) (src->accumulator * scl)]; \ } \ } DEFINE_SINE_TABLE (int16, 32767.0); DEFINE_SINE_TABLE (int32, 2147483647.0); DEFINE_SINE_TABLE (float, 1.0); DEFINE_SINE_TABLE (double, 1.0); static const ProcessFunc sine_table_funcs[] = { (ProcessFunc) gst_audio_test_src_create_sine_table_int16, (ProcessFunc) gst_audio_test_src_create_sine_table_int32, (ProcessFunc) gst_audio_test_src_create_sine_table_float, (ProcessFunc) gst_audio_test_src_create_sine_table_double }; #define DEFINE_TICKS(type,scale) \ static void \ gst_audio_test_src_create_tick_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c, channels, samplerate; \ gdouble step, scl; \ \ channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ samplerate = GST_AUDIO_INFO_RATE (&src->info); \ step = M_PI_M2 * src->freq / samplerate; \ scl = 1024.0 / M_PI_M2; \ \ for (i = 0; i < src->generate_samples_per_buffer; i++) { \ src->accumulator += step; \ if (src->accumulator >= M_PI_M2) \ src->accumulator -= M_PI_M2; \ \ if ((src->next_sample + i)%samplerate < 1600) { \ for (c = 0; c < channels; ++c) \ samples[(i * channels) + c] = (g##type) scale * src->wave_table[(gint) (src->accumulator * scl)]; \ } else { \ for (c = 0; c < channels; ++c) \ samples[(i * channels) + c] = 0; \ } \ } \ } DEFINE_TICKS (int16, 32767.0); DEFINE_TICKS (int32, 2147483647.0); DEFINE_TICKS (float, 1.0); DEFINE_TICKS (double, 1.0); static const ProcessFunc tick_funcs[] = { (ProcessFunc) gst_audio_test_src_create_tick_int16, (ProcessFunc) gst_audio_test_src_create_tick_int32, (ProcessFunc) gst_audio_test_src_create_tick_float, (ProcessFunc) gst_audio_test_src_create_tick_double }; /* Gaussian white noise using Box-Muller algorithm. unit variance * normally-distributed random numbers are generated in pairs as the real * and imaginary parts of a compex random variable with * uniformly-distributed argument and \chi^{2}-distributed modulus. */ #define DEFINE_GAUSSIAN_WHITE_NOISE(type,scale) \ static void \ gst_audio_test_src_create_gaussian_white_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c; \ gdouble amp = (src->volume * scale); \ gint channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ for (i = 0; i < src->generate_samples_per_buffer * channels; ) { \ for (c = 0; c < channels; ++c) { \ gdouble mag = sqrt (-2 * log (1.0 - g_rand_double (src->gen))); \ gdouble phs = g_rand_double_range (src->gen, 0.0, M_PI_M2); \ \ samples[i++] = (g##type) (amp * mag * cos (phs)); \ if (++c >= channels) \ break; \ samples[i++] = (g##type) (amp * mag * sin (phs)); \ } \ } \ } DEFINE_GAUSSIAN_WHITE_NOISE (int16, 32767.0); DEFINE_GAUSSIAN_WHITE_NOISE (int32, 2147483647.0); DEFINE_GAUSSIAN_WHITE_NOISE (float, 1.0); DEFINE_GAUSSIAN_WHITE_NOISE (double, 1.0); static const ProcessFunc gaussian_white_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_gaussian_white_noise_int16, (ProcessFunc) gst_audio_test_src_create_gaussian_white_noise_int32, (ProcessFunc) gst_audio_test_src_create_gaussian_white_noise_float, (ProcessFunc) gst_audio_test_src_create_gaussian_white_noise_double }; /* Brownian (Red) Noise: noise where the power density decreases by 6 dB per * octave with increasing frequency * * taken from http://vellocet.com/dsp/noise/VRand.html * by Andrew Simper of Vellocet (andy@vellocet.com) */ #define DEFINE_RED_NOISE(type,scale) \ static void \ gst_audio_test_src_create_red_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c; \ gdouble amp = (src->volume * scale); \ gdouble state = src->red.state; \ gint channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ for (i = 0; i < src->generate_samples_per_buffer * channels; ) { \ for (c = 0; c < channels; ++c) { \ while (TRUE) { \ gdouble r = g_rand_double_range (src->gen, -1.0, 1.0); \ state += r; \ if (state < -8.0f || state > 8.0f) state -= r; \ else break; \ } \ samples[i++] = (g##type) (amp * state * 0.0625f); /* /16.0 */ \ } \ } \ src->red.state = state; \ } DEFINE_RED_NOISE (int16, 32767.0); DEFINE_RED_NOISE (int32, 2147483647.0); DEFINE_RED_NOISE (float, 1.0); DEFINE_RED_NOISE (double, 1.0); static const ProcessFunc red_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_red_noise_int16, (ProcessFunc) gst_audio_test_src_create_red_noise_int32, (ProcessFunc) gst_audio_test_src_create_red_noise_float, (ProcessFunc) gst_audio_test_src_create_red_noise_double }; /* Blue Noise: apply spectral inversion to pink noise */ #define DEFINE_BLUE_NOISE(type) \ static void \ gst_audio_test_src_create_blue_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c; \ static gdouble flip=1.0; \ gint channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ gst_audio_test_src_create_pink_noise_##type (src, samples); \ for (i = 0; i < src->generate_samples_per_buffer * channels; ) { \ for (c = 0; c < channels; ++c) { \ samples[i++] *= flip; \ } \ flip *= -1.0; \ } \ } DEFINE_BLUE_NOISE (int16); DEFINE_BLUE_NOISE (int32); DEFINE_BLUE_NOISE (float); DEFINE_BLUE_NOISE (double); static const ProcessFunc blue_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_blue_noise_int16, (ProcessFunc) gst_audio_test_src_create_blue_noise_int32, (ProcessFunc) gst_audio_test_src_create_blue_noise_float, (ProcessFunc) gst_audio_test_src_create_blue_noise_double }; /* Violet Noise: apply spectral inversion to red noise */ #define DEFINE_VIOLET_NOISE(type) \ static void \ gst_audio_test_src_create_violet_noise_##type (GstAudioTestSrc * src, g##type * samples) \ { \ gint i, c; \ static gdouble flip=1.0; \ gint channels = GST_AUDIO_INFO_CHANNELS (&src->info); \ \ gst_audio_test_src_create_red_noise_##type (src, samples); \ for (i = 0; i < src->generate_samples_per_buffer * channels; ) { \ for (c = 0; c < channels; ++c) { \ samples[i++] *= flip; \ } \ flip *= -1.0; \ } \ } DEFINE_VIOLET_NOISE (int16); DEFINE_VIOLET_NOISE (int32); DEFINE_VIOLET_NOISE (float); DEFINE_VIOLET_NOISE (double); static const ProcessFunc violet_noise_funcs[] = { (ProcessFunc) gst_audio_test_src_create_violet_noise_int16, (ProcessFunc) gst_audio_test_src_create_violet_noise_int32, (ProcessFunc) gst_audio_test_src_create_violet_noise_float, (ProcessFunc) gst_audio_test_src_create_violet_noise_double }; /* * gst_audio_test_src_change_wave: * Assign function pointer of wave generator. */ static void gst_audio_test_src_change_wave (GstAudioTestSrc * src) { gint idx; /* not negotiated yet? */ if (src->info.finfo == NULL) { src->process = NULL; return; } switch (GST_AUDIO_FORMAT_INFO_FORMAT (src->info.finfo)) { case GST_AUDIO_FORMAT_S16: idx = 0; break; case GST_AUDIO_FORMAT_S32: idx = 1; break; case GST_AUDIO_FORMAT_F32: idx = 2; break; case GST_AUDIO_FORMAT_F64: idx = 3; break; default: src->process = NULL; return; } switch (src->wave) { case GST_AUDIO_TEST_SRC_WAVE_SINE: src->process = sine_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_SQUARE: src->process = square_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_SAW: src->process = saw_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_TRIANGLE: src->process = triangle_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_SILENCE: src->process = silence_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_WHITE_NOISE: if (!(src->gen)) src->gen = g_rand_new (); src->process = white_noise_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_PINK_NOISE: if (!(src->gen)) src->gen = g_rand_new (); gst_audio_test_src_init_pink_noise (src); src->process = pink_noise_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_SINE_TAB: gst_audio_test_src_init_sine_table (src); src->process = sine_table_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_TICKS: gst_audio_test_src_init_sine_table (src); src->process = tick_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_GAUSSIAN_WHITE_NOISE: if (!(src->gen)) src->gen = g_rand_new (); src->process = gaussian_white_noise_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_RED_NOISE: if (!(src->gen)) src->gen = g_rand_new (); src->red.state = 0.0; src->process = red_noise_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_BLUE_NOISE: if (!(src->gen)) src->gen = g_rand_new (); gst_audio_test_src_init_pink_noise (src); src->process = blue_noise_funcs[idx]; break; case GST_AUDIO_TEST_SRC_WAVE_VIOLET_NOISE: if (!(src->gen)) src->gen = g_rand_new (); src->red.state = 0.0; src->process = violet_noise_funcs[idx]; break; default: GST_ERROR ("invalid wave-form"); break; } } /* * gst_audio_test_src_change_volume: * Recalc wave tables for precalculated waves. */ static void gst_audio_test_src_change_volume (GstAudioTestSrc * src) { switch (src->wave) { case GST_AUDIO_TEST_SRC_WAVE_SINE_TAB: gst_audio_test_src_init_sine_table (src); break; default: break; } } static void gst_audio_test_src_get_times (GstBaseSrc * basesrc, GstBuffer * buffer, GstClockTime * start, GstClockTime * end) { /* for live sources, sync on the timestamp of the buffer */ if (gst_base_src_is_live (basesrc)) { GstClockTime timestamp = GST_BUFFER_TIMESTAMP (buffer); if (GST_CLOCK_TIME_IS_VALID (timestamp)) { /* get duration to calculate end time */ GstClockTime duration = GST_BUFFER_DURATION (buffer); if (GST_CLOCK_TIME_IS_VALID (duration)) { *end = timestamp + duration; } *start = timestamp; } } else { *start = -1; *end = -1; } } static gboolean gst_audio_test_src_start (GstBaseSrc * basesrc) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); src->next_sample = 0; src->next_byte = 0; src->next_time = 0; src->check_seek_stop = FALSE; src->eos_reached = FALSE; src->tags_pushed = FALSE; src->accumulator = 0; return TRUE; } static gboolean gst_audio_test_src_stop (GstBaseSrc * basesrc) { return TRUE; } /* seek to time, will be called when we operate in push mode. In pull mode we * get the requested byte offset. */ static gboolean gst_audio_test_src_do_seek (GstBaseSrc * basesrc, GstSegment * segment) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (basesrc); GstClockTime time; gint samplerate, bpf; GST_DEBUG_OBJECT (src, "seeking %" GST_SEGMENT_FORMAT, segment); time = segment->position; src->reverse = (segment->rate < 0.0); samplerate = GST_AUDIO_INFO_RATE (&src->info); bpf = GST_AUDIO_INFO_BPF (&src->info); /* now move to the time indicated */ src->next_sample = gst_util_uint64_scale_int (time, samplerate, GST_SECOND); src->next_byte = src->next_sample * bpf; if (samplerate == 0) src->next_time = 0; else src->next_time = gst_util_uint64_scale_int (src->next_sample, GST_SECOND, samplerate); GST_DEBUG_OBJECT (src, "seeking next_sample=%" G_GINT64_FORMAT " next_time=%" GST_TIME_FORMAT, src->next_sample, GST_TIME_ARGS (src->next_time)); g_assert (src->next_time <= time); if (!src->reverse) { if (GST_CLOCK_TIME_IS_VALID (segment->start)) { segment->time = segment->start; } } else { if (GST_CLOCK_TIME_IS_VALID (segment->stop)) { segment->time = segment->stop; } } if (GST_CLOCK_TIME_IS_VALID (segment->stop)) { time = segment->stop; src->sample_stop = gst_util_uint64_scale_int (time, samplerate, GST_SECOND); src->check_seek_stop = TRUE; } else { src->check_seek_stop = FALSE; } src->eos_reached = FALSE; return TRUE; } static gboolean gst_audio_test_src_is_seekable (GstBaseSrc * basesrc) { /* we're seekable... */ return TRUE; } static GstFlowReturn gst_audio_test_src_fill (GstBaseSrc * basesrc, guint64 offset, guint length, GstBuffer * buffer) { GstAudioTestSrc *src; GstClockTime next_time; gint64 next_sample, next_byte; gint bytes, samples; GstElementClass *eclass; GstMapInfo map; gint samplerate, bpf; src = GST_AUDIO_TEST_SRC (basesrc); /* example for tagging generated data */ if (!src->tags_pushed) { GstTagList *taglist; taglist = gst_tag_list_new (GST_TAG_DESCRIPTION, "audiotest wave", NULL); eclass = GST_ELEMENT_CLASS (parent_class); if (eclass->send_event) eclass->send_event (GST_ELEMENT_CAST (basesrc), gst_event_new_tag (taglist)); else gst_tag_list_free (taglist); src->tags_pushed = TRUE; } if (src->eos_reached) { GST_INFO_OBJECT (src, "eos"); return GST_FLOW_EOS; } samplerate = GST_AUDIO_INFO_RATE (&src->info); bpf = GST_AUDIO_INFO_BPF (&src->info); /* if no length was given, use our default length in samples otherwise convert * the length in bytes to samples. */ if (length == -1) samples = src->samples_per_buffer; else samples = length / bpf; /* if no offset was given, use our next logical byte */ if (offset == -1) offset = src->next_byte; /* now see if we are at the byteoffset we think we are */ if (offset != src->next_byte) { GST_DEBUG_OBJECT (src, "seek to new offset %" G_GUINT64_FORMAT, offset); /* we have a discont in the expected sample offset, do a 'seek' */ src->next_sample = offset / bpf; src->next_time = gst_util_uint64_scale_int (src->next_sample, GST_SECOND, samplerate); src->next_byte = offset; } /* check for eos */ if (src->check_seek_stop && (src->sample_stop > src->next_sample) && (src->sample_stop < src->next_sample + samples) ) { /* calculate only partial buffer */ src->generate_samples_per_buffer = src->sample_stop - src->next_sample; next_sample = src->sample_stop; src->eos_reached = TRUE; } else { /* calculate full buffer */ src->generate_samples_per_buffer = samples; next_sample = src->next_sample + (src->reverse ? (-samples) : samples); } bytes = src->generate_samples_per_buffer * bpf; next_byte = src->next_byte + (src->reverse ? (-bytes) : bytes); next_time = gst_util_uint64_scale_int (next_sample, GST_SECOND, samplerate); GST_LOG_OBJECT (src, "samplerate %d", samplerate); GST_LOG_OBJECT (src, "next_sample %" G_GINT64_FORMAT ", ts %" GST_TIME_FORMAT, next_sample, GST_TIME_ARGS (next_time)); GST_BUFFER_OFFSET (buffer) = src->next_sample; GST_BUFFER_OFFSET_END (buffer) = next_sample; if (!src->reverse) { GST_BUFFER_TIMESTAMP (buffer) = src->timestamp_offset + src->next_time; GST_BUFFER_DURATION (buffer) = next_time - src->next_time; } else { GST_BUFFER_TIMESTAMP (buffer) = src->timestamp_offset + next_time; GST_BUFFER_DURATION (buffer) = src->next_time - next_time; } gst_object_sync_values (GST_OBJECT (src), GST_BUFFER_TIMESTAMP (buffer)); src->next_time = next_time; src->next_sample = next_sample; src->next_byte = next_byte; GST_LOG_OBJECT (src, "generating %u samples at ts %" GST_TIME_FORMAT, src->generate_samples_per_buffer, GST_TIME_ARGS (GST_BUFFER_TIMESTAMP (buffer))); gst_buffer_map (buffer, &map, GST_MAP_WRITE); src->process (src, map.data); gst_buffer_unmap (buffer, &map); if (G_UNLIKELY ((src->wave == GST_AUDIO_TEST_SRC_WAVE_SILENCE) || (src->volume == 0.0))) { GST_BUFFER_FLAG_SET (buffer, GST_BUFFER_FLAG_GAP); } return GST_FLOW_OK; } static void gst_audio_test_src_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (object); switch (prop_id) { case PROP_SAMPLES_PER_BUFFER: src->samples_per_buffer = g_value_get_int (value); gst_base_src_set_blocksize (GST_BASE_SRC_CAST (src), GST_AUDIO_INFO_BPF (&src->info) * src->samples_per_buffer); break; case PROP_WAVE: src->wave = g_value_get_enum (value); gst_audio_test_src_change_wave (src); break; case PROP_FREQ: src->freq = g_value_get_double (value); break; case PROP_VOLUME: src->volume = g_value_get_double (value); gst_audio_test_src_change_volume (src); break; case PROP_IS_LIVE: gst_base_src_set_live (GST_BASE_SRC (src), g_value_get_boolean (value)); break; case PROP_TIMESTAMP_OFFSET: src->timestamp_offset = g_value_get_int64 (value); break; case PROP_CAN_ACTIVATE_PUSH: GST_BASE_SRC (src)->can_activate_push = g_value_get_boolean (value); break; case PROP_CAN_ACTIVATE_PULL: src->can_activate_pull = g_value_get_boolean (value); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_audio_test_src_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstAudioTestSrc *src = GST_AUDIO_TEST_SRC (object); switch (prop_id) { case PROP_SAMPLES_PER_BUFFER: g_value_set_int (value, src->samples_per_buffer); break; case PROP_WAVE: g_value_set_enum (value, src->wave); break; case PROP_FREQ: g_value_set_double (value, src->freq); break; case PROP_VOLUME: g_value_set_double (value, src->volume); break; case PROP_IS_LIVE: g_value_set_boolean (value, gst_base_src_is_live (GST_BASE_SRC (src))); break; case PROP_TIMESTAMP_OFFSET: g_value_set_int64 (value, src->timestamp_offset); break; case PROP_CAN_ACTIVATE_PUSH: g_value_set_boolean (value, GST_BASE_SRC (src)->can_activate_push); break; case PROP_CAN_ACTIVATE_PULL: g_value_set_boolean (value, src->can_activate_pull); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static gboolean plugin_init (GstPlugin * plugin) { GST_DEBUG_CATEGORY_INIT (audio_test_src_debug, "audiotestsrc", 0, "Audio Test Source"); return gst_element_register (plugin, "audiotestsrc", GST_RANK_NONE, GST_TYPE_AUDIO_TEST_SRC); } GST_PLUGIN_DEFINE (GST_VERSION_MAJOR, GST_VERSION_MINOR, audiotestsrc, "Creates audio test signals of given frequency and volume", plugin_init, VERSION, "LGPL", GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN);