/* GStreamer * Copyright (C) 2009 Vincent Penquerc'h * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include "gstkatespu.h" #define MAX_SPU_SIZE 53220 GST_DEBUG_CATEGORY_EXTERN (gst_kateenc_debug); GST_DEBUG_CATEGORY_EXTERN (gst_katedec_debug); /* taken off the dvdsubdec element */ const guint32 gst_kate_spu_default_clut[16] = { 0xb48080, 0x248080, 0x628080, 0xd78080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080, 0x808080 }; #define GST_CAT_DEFAULT gst_kateenc_debug static void gst_kate_spu_decode_colormap (GstKateEnc * ke, const guint8 * ptr) { ke->spu_colormap[3] = ptr[0] >> 4; ke->spu_colormap[2] = ptr[0] & 0x0f; ke->spu_colormap[1] = ptr[1] >> 4; ke->spu_colormap[0] = ptr[1] & 0x0f; } static void gst_kate_spu_decode_alpha (GstKateEnc * ke, const guint8 * ptr) { ke->spu_alpha[3] = ptr[0] >> 4; ke->spu_alpha[2] = ptr[0] & 0x0f; ke->spu_alpha[1] = ptr[1] >> 4; ke->spu_alpha[0] = ptr[1] & 0x0f; } static void gst_kate_spu_decode_area (GstKateEnc * ke, const guint8 * ptr) { ke->spu_left = ((((guint16) ptr[0]) & 0xff) << 4) | (ptr[1] >> 4); ke->spu_top = ((((guint16) ptr[3]) & 0xff) << 4) | (ptr[4] >> 4); ke->spu_right = ((((guint16) ptr[1]) & 0x0f) << 8) | ptr[2]; ke->spu_bottom = ((((guint16) ptr[4]) & 0x0f) << 8) | ptr[5]; GST_DEBUG_OBJECT (ke, "SPU area %u %u -> %u %d", ke->spu_left, ke->spu_top, ke->spu_right, ke->spu_bottom); } static void gst_kate_spu_decode_pixaddr (GstKateEnc * ke, const guint8 * ptr) { ke->spu_pix_data[0] = GST_KATE_UINT16_BE (ptr + 0); ke->spu_pix_data[1] = GST_KATE_UINT16_BE (ptr + 2); } /* heavily inspired from dvdspudec */ static guint16 gst_kate_spu_decode_colcon (GstKateEnc * ke, const guint8 * ptr) { guint16 nbytes = GST_KATE_UINT16_BE (ptr + 0); guint16 nbytes_left = nbytes; GST_LOG_OBJECT (ke, "Number of bytes in color/contrast change command is %u", nbytes); if (G_UNLIKELY (nbytes < 2)) { GST_WARNING_OBJECT (ke, "Number of bytes in color/contrast change command is %u, should be at least 2", nbytes); return 0; } ptr += 2; nbytes_left -= 2; /* we will just skip that data for now */ while (nbytes_left > 0) { guint32 entry, nchanges, sz; GST_LOG_OBJECT (ke, "Reading a color/contrast change entry, %u bytes left", nbytes_left); if (G_UNLIKELY (nbytes_left < 4)) { GST_WARNING_OBJECT (ke, "Not enough bytes to read a full color/contrast entry header"); break; } entry = GST_READ_UINT32_BE (ptr); GST_LOG_OBJECT (ke, "Color/contrast change entry header is %08x", entry); nchanges = CLAMP ((ptr[2] >> 4), 1, 8); ptr += 4; nbytes_left -= 4; if (entry == 0x0fffffff) { GST_LOG_OBJECT (ke, "Encountered color/contrast change termination code, breaking, %u bytes left", nbytes_left); break; } GST_LOG_OBJECT (ke, "Color/contrast change entry has %u changes", nchanges); sz = 6 * nchanges; if (G_UNLIKELY (sz > nbytes_left)) { GST_WARNING_OBJECT (ke, "Not enough bytes to read a full color/contrast entry"); break; } ptr += sz; nbytes_left -= sz; } return nbytes - nbytes_left; } static inline guint8 gst_kate_spu_get_nybble (const guint8 * nybbles, size_t * nybble_offset) { guint8 ret; ret = nybbles[(*nybble_offset) / 2]; /* If the offset is even, we shift the answer down 4 bits, otherwise not */ if ((*nybble_offset) & 0x01) ret &= 0x0f; else ret = ret >> 4; (*nybble_offset)++; return ret; } static guint16 gst_kate_spu_get_rle_code (const guint8 * nybbles, size_t * nybble_offset) { guint16 code; code = gst_kate_spu_get_nybble (nybbles, nybble_offset); if (code < 0x4) { /* 4 .. f */ code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset); if (code < 0x10) { /* 1x .. 3x */ code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset); if (code < 0x40) { /* 04x .. 0fx */ code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset); } } } return code; } static void gst_kate_spu_crop_bitmap (GstKateEnc * ke, kate_bitmap * kb, guint16 * dx, guint16 * dy) { int top, bottom, left, right; guint8 zero = 0; size_t n, x, y, w, h; #if 0 /* find the zero */ zero = kb->pixels[0]; for (x = 0; x < kb->width; ++x) { if (kb->pixels[x] != zero) { GST_LOG_OBJECT (ke, "top line at %u is not zero: %u", x, kb->pixels[x]); return; } } #endif /* top */ for (top = 0; top < kb->height; ++top) { int empty = 1; for (x = 0; x < kb->width; ++x) { if (G_UNLIKELY (kb->pixels[x + top * kb->width] != zero)) { empty = 0; break; } } if (!empty) break; } /* bottom */ for (bottom = kb->height - 1; bottom >= top; --bottom) { int empty = 1; for (x = 0; x < kb->width; ++x) { if (G_UNLIKELY (kb->pixels[x + bottom * kb->width] != zero)) { empty = 0; break; } } if (!empty) break; } /* left */ for (left = 0; left < kb->width; ++left) { int empty = 1; for (y = top; y <= bottom; ++y) { if (G_UNLIKELY (kb->pixels[left + y * kb->width] != zero)) { empty = 0; break; } } if (!empty) break; } /* right */ for (right = kb->width - 1; right >= left; --right) { int empty = 1; for (y = top; y <= bottom; ++y) { if (G_UNLIKELY (kb->pixels[right + y * kb->width] != zero)) { empty = 0; break; } } if (!empty) break; } w = right - left + 1; h = bottom - top + 1; GST_LOG_OBJECT (ke, "cropped from %" G_GSIZE_FORMAT " %" G_GSIZE_FORMAT " to %" G_GSIZE_FORMAT " %" G_GSIZE_FORMAT, kb->width, kb->height, w, h); *dx += left; *dy += top; n = 0; for (y = 0; y < h; ++y) { memmove (kb->pixels + n, kb->pixels + kb->width * (y + top) + left, w); n += w; } kb->width = w; kb->height = h; } #define CHECK(x) G_STMT_START { \ guint16 _ = (x); \ if (G_UNLIKELY((_) > sz)) { \ GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Read outside buffer")); \ return GST_FLOW_ERROR; \ } \ } G_STMT_END #define ADVANCE(x) G_STMT_START { \ guint16 _ = (x); ptr += (_); sz -= (_); \ } G_STMT_END #define IGNORE(x) G_STMT_START { \ guint16 __ = (x); \ CHECK (__); \ ADVANCE (__); \ } G_STMT_END static GstFlowReturn gst_kate_spu_decode_command_sequence (GstKateEnc * ke, GstBuffer * buf, guint16 command_sequence_offset) { guint16 date; guint16 next_command_sequence; const guint8 *ptr; GstMapInfo info; guint16 sz; if (!gst_buffer_map (buf, &info, GST_MAP_READ)) { GST_ERROR_OBJECT (ke, "Failed to map buffer"); return GST_FLOW_ERROR; } if (command_sequence_offset >= info.size) goto out_of_range; ptr = info.data + command_sequence_offset; sz = info.size - command_sequence_offset; GST_DEBUG_OBJECT (ke, "Decoding command sequence at %u (%u bytes)", command_sequence_offset, sz); CHECK (2); date = GST_KATE_UINT16_BE (ptr); ADVANCE (2); GST_DEBUG_OBJECT (ke, "date %u", date); CHECK (2); next_command_sequence = GST_KATE_UINT16_BE (ptr); ADVANCE (2); GST_DEBUG_OBJECT (ke, "next command sequence at %u", next_command_sequence); while (sz) { guint8 cmd = *ptr++; switch (cmd) { case SPU_CMD_FSTA_DSP: /* 0x00 */ GST_DEBUG_OBJECT (ke, "[0] DISPLAY"); break; case SPU_CMD_DSP: /* 0x01 */ GST_DEBUG_OBJECT (ke, "[1] SHOW"); ke->show_time = date; break; case SPU_CMD_STP_DSP: /* 0x02 */ GST_DEBUG_OBJECT (ke, "[2] HIDE"); ke->hide_time = date; break; case SPU_CMD_SET_COLOR: /* 0x03 */ GST_DEBUG_OBJECT (ke, "[3] SET COLOR"); CHECK (2); gst_kate_spu_decode_colormap (ke, ptr); ADVANCE (2); break; case SPU_CMD_SET_ALPHA: /* 0x04 */ GST_DEBUG_OBJECT (ke, "[4] SET ALPHA"); CHECK (2); gst_kate_spu_decode_alpha (ke, ptr); ADVANCE (2); break; case SPU_CMD_SET_DAREA: /* 0x05 */ GST_DEBUG_OBJECT (ke, "[5] SET DISPLAY AREA"); CHECK (6); gst_kate_spu_decode_area (ke, ptr); ADVANCE (6); break; case SPU_CMD_DSPXA: /* 0x06 */ GST_DEBUG_OBJECT (ke, "[6] SET PIXEL ADDRESSES"); CHECK (4); gst_kate_spu_decode_pixaddr (ke, ptr); GST_DEBUG_OBJECT (ke, " -> first pixel address %u", ke->spu_pix_data[0]); GST_DEBUG_OBJECT (ke, " -> second pixel address %u", ke->spu_pix_data[1]); ADVANCE (4); break; case SPU_CMD_CHG_COLCON: /* 0x07 */ GST_DEBUG_OBJECT (ke, "[7] CHANGE COLOR/CONTRAST"); CHECK (2); ADVANCE (gst_kate_spu_decode_colcon (ke, ptr)); break; case SPU_CMD_END: /* 0xff */ GST_DEBUG_OBJECT (ke, "[0xff] END"); if (next_command_sequence != command_sequence_offset) { GST_DEBUG_OBJECT (ke, "Jumping to next sequence at offset %u", next_command_sequence); gst_buffer_unmap (buf, &info); return gst_kate_spu_decode_command_sequence (ke, buf, next_command_sequence); } else { gst_buffer_unmap (buf, &info); GST_DEBUG_OBJECT (ke, "No more sequences to decode"); return GST_FLOW_OK; } break; default: gst_buffer_unmap (buf, &info); GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Invalid SPU command: %u", cmd)); return GST_FLOW_ERROR; } } gst_buffer_unmap (buf, &info); GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Error parsing SPU")); return GST_FLOW_ERROR; /* ERRORS */ out_of_range: { gst_buffer_unmap (buf, &info); GST_ELEMENT_ERROR (ke, STREAM, DECODE, (NULL), ("Command sequence offset %u is out of range %zu", command_sequence_offset, info.size)); return GST_FLOW_ERROR; } } static inline int gst_kate_spu_clamp (int value) { if (value < 0) return 0; if (value > 255) return 255; return value; } static void gst_kate_spu_yuv2rgb (int y, int u, int v, int *r, int *g, int *b) { #if 0 *r = gst_kate_spu_clamp (y + 1.371 * v); *g = gst_kate_spu_clamp (y - 0.698 * v - 0.336 * u); *b = gst_kate_spu_clamp (y + 1.732 * u); #elif 0 *r = gst_kate_spu_clamp (y + u); *g = gst_kate_spu_clamp (y - (76 * u - 26 * v) / 256); *b = gst_kate_spu_clamp (y + v); #else y = (y - 16) * 255 / 219; u = (u - 128) * 255 / 224; v = (v - 128) * 255 / 224; *r = gst_kate_spu_clamp (y + 1.402 * v); *g = gst_kate_spu_clamp (y - 0.34414 * u - 0.71414 * v); *b = gst_kate_spu_clamp (y + 1.772 * u); #endif } static GstFlowReturn gst_kate_spu_create_spu_palette (GstKateEnc * ke, kate_palette * kp) { size_t n; kate_palette_init (kp); kp->ncolors = 4; kp->colors = (kate_color *) g_malloc (kp->ncolors * sizeof (kate_color)); if (G_UNLIKELY (!kp->colors)) { GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Out of memory")); return GST_FLOW_ERROR; } #if 1 for (n = 0; n < kp->ncolors; ++n) { int idx = ke->spu_colormap[n]; guint32 color = ke->spu_clut[idx]; int y = (color >> 16) & 0xff; int v = (color >> 8) & 0xff; int u = color & 0xff; int r, g, b; gst_kate_spu_yuv2rgb (y, u, v, &r, &g, &b); kp->colors[n].r = r; kp->colors[n].g = g; kp->colors[n].b = b; kp->colors[n].a = ke->spu_alpha[n] * 17; } #else /* just make a ramp from 0 to 255 for those non transparent colors */ for (n = 0; n < kp->ncolors; ++n) if (ke->spu_alpha[n] == 0) ++ntrans; for (n = 0; n < kp->ncolors; ++n) { kp->colors[n].r = luma; kp->colors[n].g = luma; kp->colors[n].b = luma; kp->colors[n].a = ke->spu_alpha[n] * 17; if (ke->spu_alpha[n]) luma /= 2; } #endif return GST_FLOW_OK; } GstFlowReturn gst_kate_spu_decode_spu (GstKateEnc * ke, GstBuffer * buf, kate_region * kr, kate_bitmap * kb, kate_palette * kp) { GstMapInfo info; const guint8 *ptr; size_t sz; guint16 packet_size; guint16 x, y; size_t n; guint8 *pixptr[2]; size_t nybble_offset[2]; size_t max_nybbles[2]; GstFlowReturn rflow; guint16 next_command_sequence; guint16 code; if (!gst_buffer_map (buf, &info, GST_MAP_READ)) { GST_ERROR_OBJECT (ke, "Failed to map buffer"); } ptr = info.data; sz = info.size; /* before decoding anything, initialize to sensible defaults */ memset (ke->spu_colormap, 0, sizeof (ke->spu_colormap)); memset (ke->spu_alpha, 0, sizeof (ke->spu_alpha)); ke->spu_top = ke->spu_left = 1; ke->spu_bottom = ke->spu_right = 0; ke->spu_pix_data[0] = ke->spu_pix_data[1] = 0; ke->show_time = ke->hide_time = 0; /* read sizes and get to the start of the data */ CHECK (2); packet_size = GST_KATE_UINT16_BE (ptr); ADVANCE (2); GST_DEBUG_OBJECT (ke, "packet size %d (GstBuffer size %zu)", packet_size, info.size); CHECK (2); next_command_sequence = GST_KATE_UINT16_BE (ptr); ADVANCE (2); ptr = info.data + next_command_sequence; sz = info.size - next_command_sequence; GST_DEBUG_OBJECT (ke, "next command sequence at %u for %u", next_command_sequence, (guint) sz); rflow = gst_kate_spu_decode_command_sequence (ke, buf, next_command_sequence); if (G_UNLIKELY (rflow != GST_FLOW_OK)) { gst_buffer_unmap (buf, &info); return rflow; } /* if no addresses or sizes were given, or if they define an empty SPU, nothing more to do */ if (G_UNLIKELY (ke->spu_right - ke->spu_left < 0 || ke->spu_bottom - ke->spu_top < 0 || ke->spu_pix_data[0] == 0 || ke->spu_pix_data[1] == 0)) { GST_DEBUG_OBJECT (ke, "left %d, right %d, top %d, bottom %d, pix data %d %d", ke->spu_left, ke->spu_right, ke->spu_top, ke->spu_bottom, ke->spu_pix_data[0], ke->spu_pix_data[1]); GST_WARNING_OBJECT (ke, "SPU area is empty, nothing to encode"); kate_bitmap_init (kb); kb->width = kb->height = 0; gst_buffer_unmap (buf, &info); return GST_FLOW_OK; } /* create the palette */ rflow = gst_kate_spu_create_spu_palette (ke, kp); if (G_UNLIKELY (rflow != GST_FLOW_OK)) { gst_buffer_unmap (buf, &info); return rflow; } /* create the bitmap */ kate_bitmap_init (kb); kb->width = ke->spu_right - ke->spu_left + 1; kb->height = ke->spu_bottom - ke->spu_top + 1; kb->bpp = 2; kb->type = kate_bitmap_type_paletted; kb->pixels = (unsigned char *) g_malloc (kb->width * kb->height); if (G_UNLIKELY (!kb->pixels)) { gst_buffer_unmap (buf, &info); GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Failed to allocate memory for pixel data")); return GST_FLOW_ERROR; } n = 0; pixptr[0] = info.data + ke->spu_pix_data[0]; pixptr[1] = info.data + ke->spu_pix_data[1]; nybble_offset[0] = 0; nybble_offset[1] = 0; max_nybbles[0] = 2 * (packet_size - ke->spu_pix_data[0]); max_nybbles[1] = 2 * (packet_size - ke->spu_pix_data[1]); for (y = 0; y < kb->height; ++y) { nybble_offset[y & 1] = GST_ROUND_UP_2 (nybble_offset[y & 1]); for (x = 0; x < kb->width;) { if (G_UNLIKELY (nybble_offset[y & 1] >= max_nybbles[y & 1])) { GST_DEBUG_OBJECT (ke, "RLE overflow, clearing the remainder"); memset (kb->pixels + n, 0, kb->width - x); n += kb->width - x; break; } code = gst_kate_spu_get_rle_code (pixptr[y & 1], &nybble_offset[y & 1]); if (code == 0) { memset (kb->pixels + n, 0, kb->width - x); n += kb->width - x; break; } else { guint16 npixels = code >> 2; guint16 pixel = code & 3; if (npixels > kb->width - x) { npixels = kb->width - x; } memset (kb->pixels + n, pixel, npixels); n += npixels; x += npixels; } } } GST_LOG_OBJECT (ke, "%u/%u bytes left in the data packet", (guint) (max_nybbles[0] - nybble_offset[0]), (guint) (max_nybbles[1] - nybble_offset[1])); /* some streams seem to have huge uncropped SPUs, fix those up */ x = ke->spu_left; y = ke->spu_top; gst_kate_spu_crop_bitmap (ke, kb, &x, &y); /* create the region */ kate_region_init (kr); if (ke->original_canvas_width > 0 && ke->original_canvas_height > 0) { /* prefer relative sizes in case we're encoding for a different resolution that what the SPU was created for */ kr->metric = kate_millionths; kr->x = 1000000 * (size_t) x / ke->original_canvas_width; kr->y = 1000000 * (size_t) y / ke->original_canvas_height; kr->w = 1000000 * kb->width / ke->original_canvas_width; kr->h = 1000000 * kb->height / ke->original_canvas_height; } else { kr->metric = kate_pixel; kr->x = x; kr->y = y; kr->w = kb->width; kr->h = kb->height; } /* some SPUs have no hide time */ if (ke->hide_time == 0) { GST_INFO_OBJECT (ke, "SPU has no hide time"); /* now, we don't know when the next SPU is scheduled to go, since we probably haven't received it yet, so we'll just make it a 1 second delay, which is probably going to end before the next one while being readable */ //ke->hide_time = ke->show_time + (1000 * 90 / 1024); } gst_buffer_unmap (buf, &info); return GST_FLOW_OK; } #undef IGNORE #undef ADVANCE #undef CHECK #undef GST_CAT_DEFAULT #define GST_CAT_DEFAULT gst_katedec_debug static void gst_kate_spu_add_nybble (unsigned char *bytes, size_t nbytes, int nybble_offset, unsigned char nybble) { unsigned char *ptr = bytes + nbytes + nybble_offset / 2; if (!(nybble_offset & 1)) { *ptr = nybble << 4; } else { *ptr |= nybble; } } static void gst_kate_spu_rgb2yuv (int r, int g, int b, int *y, int *u, int *v) { *y = gst_kate_spu_clamp (r * 0.299 * 219 / 255 + g * 0.587 * 219 / 255 + b * 0.114 * 219 / 255 + 16); *u = gst_kate_spu_clamp (-r * 0.16874 * 224 / 255 - g * 0.33126 * 224 / 255 + b * 0.5 * 224 / 255 + 128); *v = gst_kate_spu_clamp (r * 0.5 * 224 / 255 - g * 0.41869 * 224 / 255 - b * 0.08131 * 224 / 255 + 128); } static void gst_kate_spu_make_palette (GstKateDec * kd, int palette[4], const kate_palette * kp) { int n; GstStructure *structure; GstEvent *event; char name[16]; int y, u, v; palette[0] = 0; palette[1] = 1; palette[2] = 2; palette[3] = 3; structure = gst_structure_new ("application/x-gst-dvd", "event", G_TYPE_STRING, "dvd-spu-clut-change", NULL); /* Create a separate field for each value in the table. */ for (n = 0; n < 16; n++) { guint32 color = 0; if (n < 4) { gst_kate_spu_rgb2yuv (kp->colors[n].r, kp->colors[n].g, kp->colors[n].b, &y, &u, &v); color = (y << 16) | (v << 8) | u; } g_snprintf (name, sizeof (name), "clut%02d", n); gst_structure_set (structure, name, G_TYPE_INT, (int) color, NULL); } /* Create the DVD event and put the structure into it. */ event = gst_event_new_custom (GST_EVENT_CUSTOM_DOWNSTREAM, structure); GST_LOG_OBJECT (kd, "preparing clut change event %" GST_PTR_FORMAT, event); gst_pad_push_event (kd->srcpad, event); } GstBuffer * gst_kate_spu_encode_spu (GstKateDec * kd, const kate_event * ev) { kate_tracker kin; unsigned char *bytes = NULL; size_t nbytes = 0; GstBuffer *buffer = NULL; int ret; int ocw, och; int top, left, right, bottom; int pass, line, row; int lines_offset[2]; int first_commands_offset, second_commands_offset; int nybble_count; const kate_bitmap *kb; const kate_palette *kp; int palette[4]; int delay; /* we need a region, a bitmap, and a palette */ if (!ev || !ev->region || !ev->bitmap || !ev->palette) return NULL; kb = ev->bitmap; kp = ev->palette; /* these need particular properties */ if (kb->type != kate_bitmap_type_paletted || kb->bpp != 2) return NULL; if (kp->ncolors != 4) return NULL; ret = kate_tracker_init (&kin, ev->ki, ev); if (ret < 0) { GST_WARNING_OBJECT (kd, "Failed to initialize kate tracker"); return NULL; } ocw = ev->ki->original_canvas_width; och = ev->ki->original_canvas_height; ret = kate_tracker_update (&kin, (kate_float) 0, ocw, och, 0, 0, ocw, och); if (ret < 0) goto error; if (kin.has.region) { top = (int) (kin.region_y + (kate_float) 0.5); left = (int) (kin.region_x + (kate_float) 0.5); } else { GST_WARNING_OBJECT (kd, "No region information to place SPU, placing at 0 0"); top = left = 0; } right = left + kb->width - 1; bottom = top + kb->height - 1; /* Allocate space to build the SPU */ bytes = g_malloc (MAX_SPU_SIZE); if (G_UNLIKELY (!bytes)) { GST_WARNING_OBJECT (kd, "Failed to allocate %" G_GSIZE_FORMAT " byte buffer", nbytes); goto error; } nbytes = 4; nybble_count = 0; #define CHKBUFSPC(nybbles) \ do { \ if ((nbytes + (nybbles + nybble_count + 1) / 2) > MAX_SPU_SIZE) { \ GST_WARNING_OBJECT (kd, "Not enough space in SPU buffer"); \ goto error; \ } \ } while(0) /* encode lines */ for (pass = 0; pass <= 1; ++pass) { lines_offset[pass] = nbytes; for (line = pass; line < bottom - top + 1; line += 2) { const unsigned char *ptr = kb->pixels + line * kb->width; for (row = 0; row < kb->width;) { int run = 1; while (row + run < kb->width && run < 255 && ptr[row + run] == ptr[row]) ++run; if (run >= 63 && row + run == kb->width) { /* special end of line marker */ CHKBUFSPC (4); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, ptr[row]); } else if (run >= 1 && run <= 3) { CHKBUFSPC (1); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, (run << 2) | ptr[row]); } else if (run <= 15) { CHKBUFSPC (2); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, run >> 2); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, ((run & 3) << 2) | ptr[row]); } else if (run <= 63) { CHKBUFSPC (3); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, run >> 2); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, ((run & 3) << 2) | ptr[row]); } else { CHKBUFSPC (4); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, (run >> 6)); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, (run >> 2) & 0xf); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, ((run & 3) << 2) | ptr[row]); } row += run; } if (nybble_count & 1) { CHKBUFSPC (1); gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0); } nbytes += nybble_count / 2; nybble_count = 0; } } first_commands_offset = nbytes; gst_kate_spu_make_palette (kd, palette, kp); /* Commands header */ CHKBUFSPC (4 * 2); bytes[nbytes++] = 0; bytes[nbytes++] = 0; /* link to next command chunk will be filled later, when we know where it is */ bytes[nbytes++] = 0; bytes[nbytes++] = 0; CHKBUFSPC (3 * 2); bytes[nbytes++] = SPU_CMD_SET_COLOR; bytes[nbytes++] = (palette[3] << 4) | palette[2]; bytes[nbytes++] = (palette[1] << 4) | palette[0]; CHKBUFSPC (3 * 2); bytes[nbytes++] = SPU_CMD_SET_ALPHA; bytes[nbytes++] = ((kp->colors[palette[3]].a / 17) << 4) | (kp->colors[palette[2]].a / 17); bytes[nbytes++] = ((kp->colors[palette[1]].a / 17) << 4) | (kp->colors[palette[0]].a / 17); CHKBUFSPC (7 * 2); bytes[nbytes++] = SPU_CMD_SET_DAREA; bytes[nbytes++] = left >> 4; bytes[nbytes++] = ((left & 0xf) << 4) | (right >> 8); bytes[nbytes++] = right & 0xff; bytes[nbytes++] = top >> 4; bytes[nbytes++] = ((top & 0xf) << 4) | (bottom >> 8); bytes[nbytes++] = bottom & 0xff; CHKBUFSPC (5 * 2); bytes[nbytes++] = SPU_CMD_DSPXA; bytes[nbytes++] = (lines_offset[0] >> 8) & 0xff; bytes[nbytes++] = lines_offset[0] & 0xff; bytes[nbytes++] = (lines_offset[1] >> 8) & 0xff; bytes[nbytes++] = lines_offset[1] & 0xff; CHKBUFSPC (1 * 2); bytes[nbytes++] = SPU_CMD_DSP; CHKBUFSPC (1 * 2); bytes[nbytes++] = SPU_CMD_END; /* stop display chunk */ CHKBUFSPC (4 * 2); second_commands_offset = nbytes; bytes[first_commands_offset + 2] = (second_commands_offset >> 8) & 0xff; bytes[first_commands_offset + 3] = second_commands_offset & 0xff; delay = GST_KATE_GST_TO_STM (ev->end_time - ev->start_time); bytes[nbytes++] = (delay >> 8) & 0xff; bytes[nbytes++] = delay & 0xff; /* close the loop by linking back to self */ bytes[nbytes++] = (second_commands_offset >> 8) & 0xff; bytes[nbytes++] = second_commands_offset & 0xff; CHKBUFSPC (1 * 2); bytes[nbytes++] = SPU_CMD_STP_DSP; CHKBUFSPC (1 * 2); bytes[nbytes++] = SPU_CMD_END; /* Now that we know the size of the SPU, update the size and pointers */ bytes[0] = (nbytes >> 8) & 0xff; bytes[1] = nbytes & 0xff; bytes[2] = (first_commands_offset >> 8) & 0xff; bytes[3] = first_commands_offset & 0xff; /* Create a buffer with those values */ buffer = gst_buffer_new_wrapped (bytes, nbytes); if (G_UNLIKELY (!buffer)) { GST_WARNING_OBJECT (kd, "Failed to allocate %" G_GSIZE_FORMAT " byte buffer", nbytes); goto error; } GST_BUFFER_OFFSET_END (buffer) = GST_SECOND * (ev->end_time); GST_BUFFER_OFFSET (buffer) = GST_SECOND * (ev->start_time); GST_BUFFER_TIMESTAMP (buffer) = GST_SECOND * (ev->start_time); GST_BUFFER_DURATION (buffer) = GST_SECOND * (ev->end_time - ev->start_time); GST_DEBUG_OBJECT (kd, "SPU uses %" G_GSIZE_FORMAT " bytes", nbytes); kate_tracker_clear (&kin); return buffer; error: kate_tracker_clear (&kin); if (bytes) g_free (bytes); return NULL; }