/* GStreamer * * unit test for audioconvert * * Copyright (C) <2005> Thomas Vander Stichele * Copyright (C) <2007> Tim-Philipp Müller * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include /* For ease of programming we use globals to keep refs for our floating * src and sink pads we create; otherwise we always have to do get_pad, * get_peer, and then remove references in every test function */ static GstPad *mysrcpad, *mysinkpad; #define FORMATS "{ F32LE, F32BE, F64LE, F64BE, " \ "S32LE, S32BE, U32LE, U32BE, " \ "S24LE, S24BE, U24LE, U24BE, " \ "S16LE, S16BE, U16LE, U16BE, " \ "S8, U8 } " #define CONVERT_CAPS_TEMPLATE_STRING \ "audio/x-raw, " \ "format = (string) "FORMATS", " \ "rate = (int) [ 1, MAX ], " \ "channels = (int) [ 1, MAX ]" /* takes over reference for outcaps */ static GstElement * setup_audioconvert (GstCaps * outcaps, gboolean use_mix_matrix, GValue * mix_matrix) { GstPadTemplate *sinktemplate; static GstStaticPadTemplate srctemplate = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS (CONVERT_CAPS_TEMPLATE_STRING) ); GstElement *audioconvert; sinktemplate = gst_pad_template_new ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, outcaps); GST_DEBUG ("setup_audioconvert with caps %" GST_PTR_FORMAT, outcaps); audioconvert = gst_check_setup_element ("audioconvert"); g_object_set (G_OBJECT (audioconvert), "dithering", 0, NULL); g_object_set (G_OBJECT (audioconvert), "noise-shaping", 0, NULL); if (use_mix_matrix) { g_object_set_property (G_OBJECT (audioconvert), "mix-matrix", mix_matrix); } mysrcpad = gst_check_setup_src_pad (audioconvert, &srctemplate); mysinkpad = gst_check_setup_sink_pad_from_template (audioconvert, sinktemplate); /* this installs a getcaps func that will always return the caps we set * later */ gst_pad_use_fixed_caps (mysinkpad); gst_pad_set_active (mysrcpad, TRUE); gst_pad_set_active (mysinkpad, TRUE); gst_object_unref (sinktemplate); return audioconvert; } static void cleanup_audioconvert (GstElement * audioconvert) { GST_DEBUG ("cleanup_audioconvert"); gst_pad_set_active (mysrcpad, FALSE); gst_pad_set_active (mysinkpad, FALSE); gst_check_teardown_src_pad (audioconvert); gst_check_teardown_sink_pad (audioconvert); gst_check_teardown_element (audioconvert); } /* returns a newly allocated caps */ static GstCaps * get_int_caps (guint channels, gint endianness, guint width, guint depth, gboolean signedness, GstAudioLayout layout) { GstCaps *caps; GstAudioFormat fmt; GstAudioInfo info; g_assert (channels <= 2); GST_DEBUG ("channels:%d, endianness:%d, width:%d, depth:%d, signedness:%d", channels, endianness, width, depth, signedness); fmt = gst_audio_format_build_integer (signedness, endianness, width, depth); gst_audio_info_init (&info); gst_audio_info_set_format (&info, fmt, GST_AUDIO_DEF_RATE, channels, NULL); info.layout = layout; caps = gst_audio_info_to_caps (&info); fail_unless (caps != NULL); GST_DEBUG ("returning caps %" GST_PTR_FORMAT, caps); return caps; } static GstAudioFormat get_float_format (gint endianness, gint width) { if (endianness == G_LITTLE_ENDIAN) { if (width == 32) return GST_AUDIO_FORMAT_F32LE; else return GST_AUDIO_FORMAT_F64LE; } else { if (width == 32) return GST_AUDIO_FORMAT_F32BE; else return GST_AUDIO_FORMAT_F64BE; } } /* returns a newly allocated caps */ static GstCaps * get_float_caps (guint channels, gint endianness, guint width, GstAudioLayout layout) { GstCaps *caps; GstAudioInfo info; g_assert (channels <= 2); gst_audio_info_init (&info); gst_audio_info_set_format (&info, get_float_format (endianness, width), GST_AUDIO_DEF_RATE, channels, NULL); info.layout = layout; caps = gst_audio_info_to_caps (&info); fail_unless (caps != NULL); GST_DEBUG ("returning caps %" GST_PTR_FORMAT, caps); return caps; } /* Copied from vorbis; the particular values used don't matter */ static GstAudioChannelPosition channelpositions[][6] = { { /* Mono */ GST_AUDIO_CHANNEL_POSITION_MONO}, { /* Stereo */ GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT}, { /* Stereo + Centre */ GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER}, { /* Quadraphonic */ GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, }, { /* Stereo + Centre + rear stereo */ GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, }, { /* Full 5.1 Surround */ GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_LFE1, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, } }; /* we get this when recording from a soundcard with lots of input channels */ static GstAudioChannelPosition undefined_positions[][15] = { { GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE}, { GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE, GST_AUDIO_CHANNEL_POSITION_NONE} }; /* For channels > 2, caps have to have channel positions. This adds some simple * ones. Only implemented for channels between 1 and 6. */ static GstCaps * get_float_mc_caps (guint channels, gint endianness, guint width, GstAudioLayout layout, const GstAudioChannelPosition * position) { GstCaps *caps; GstAudioInfo info; gst_audio_info_init (&info); if (position) { gst_audio_info_set_format (&info, get_float_format (endianness, width), GST_AUDIO_DEF_RATE, channels, position); } else if (channels <= 6) { gst_audio_info_set_format (&info, get_float_format (endianness, width), GST_AUDIO_DEF_RATE, channels, channelpositions[channels - 1]); } else { GstAudioChannelPosition pos[64]; gint i; for (i = 0; i < 64; i++) pos[i] = GST_AUDIO_CHANNEL_POSITION_NONE; gst_audio_info_set_format (&info, get_float_format (endianness, width), GST_AUDIO_DEF_RATE, channels, pos); } info.layout = layout; caps = gst_audio_info_to_caps (&info); fail_unless (caps != NULL); GST_DEBUG ("returning caps %" GST_PTR_FORMAT, caps); return caps; } static GstCaps * get_int_mc_caps (guint channels, gint endianness, guint width, guint depth, gboolean signedness, GstAudioLayout layout, const GstAudioChannelPosition * position) { GstCaps *caps; GstAudioFormat fmt; GstAudioInfo info; fmt = gst_audio_format_build_integer (signedness, endianness, width, depth); gst_audio_info_init (&info); if (position) { gst_audio_info_set_format (&info, fmt, GST_AUDIO_DEF_RATE, channels, position); } else if (channels <= 6) { gst_audio_info_set_format (&info, fmt, GST_AUDIO_DEF_RATE, channels, channelpositions[channels - 1]); } else { GstAudioChannelPosition pos[64]; gint i; for (i = 0; i < 64; i++) pos[i] = GST_AUDIO_CHANNEL_POSITION_NONE; gst_audio_info_set_format (&info, fmt, GST_AUDIO_DEF_RATE, channels, pos); } info.layout = layout; caps = gst_audio_info_to_caps (&info); fail_unless (caps != NULL); GST_DEBUG ("returning caps %" GST_PTR_FORMAT, caps); return caps; } /* eats the refs to the caps */ static void verify_convert (const gchar * which, void *in, int inlength, GstCaps * incaps, void *out, int outlength, GstCaps * outcaps, GstFlowReturn expected_flow, gboolean in_place_allowed, gboolean use_mix_matrix, GValue * mix_matrix) { GstBuffer *inbuffer, *outbuffer; GstElement *audioconvert; GstAudioInfo in_info; GST_DEBUG ("verifying conversion %s", which); GST_DEBUG ("incaps: %" GST_PTR_FORMAT, incaps); GST_DEBUG ("outcaps: %" GST_PTR_FORMAT, outcaps); ASSERT_CAPS_REFCOUNT (incaps, "incaps", 1); ASSERT_CAPS_REFCOUNT (outcaps, "outcaps", 1); audioconvert = setup_audioconvert (outcaps, use_mix_matrix, mix_matrix); ASSERT_CAPS_REFCOUNT (outcaps, "outcaps", 2); fail_unless (gst_element_set_state (audioconvert, GST_STATE_PLAYING) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); gst_check_setup_events (mysrcpad, audioconvert, incaps, GST_FORMAT_TIME); GST_DEBUG ("Creating buffer of %d bytes", inlength); inbuffer = gst_buffer_new_and_alloc (inlength); gst_buffer_fill (inbuffer, 0, in, inlength); ASSERT_BUFFER_REFCOUNT (inbuffer, "inbuffer", 1); fail_unless (gst_audio_info_from_caps (&in_info, incaps)); gst_buffer_add_audio_meta (inbuffer, &in_info, inlength / in_info.bpf, NULL); if (!in_place_allowed) { /* take extra ref to force processing */ gst_buffer_ref (inbuffer); gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (audioconvert), FALSE); } /* pushing gives away my reference ... */ GST_DEBUG ("push it"); fail_unless_equals_int (gst_pad_push (mysrcpad, inbuffer), expected_flow); GST_DEBUG ("pushed it"); if (expected_flow != GST_FLOW_OK) goto done; /* ... and puts a new buffer on the global list */ fail_unless (g_list_length (buffers) == 1); fail_if ((outbuffer = (GstBuffer *) buffers->data) == NULL); if (!in_place_allowed) { /* release extra ref */ gst_buffer_unref (inbuffer); } ASSERT_BUFFER_REFCOUNT (outbuffer, "outbuffer", 1); fail_unless_equals_int (gst_buffer_get_size (outbuffer), outlength); gst_check_buffer_data (outbuffer, out, outlength); /* make sure that the channel positions are not lost */ { GstStructure *in_s, *out_s; gint out_chans; GstCaps *ccaps; in_s = gst_caps_get_structure (incaps, 0); ccaps = gst_pad_get_current_caps (mysinkpad); out_s = gst_caps_get_structure (ccaps, 0); fail_unless (gst_structure_get_int (out_s, "channels", &out_chans)); /* positions for 1 and 2 channels are implicit if not provided */ if (out_chans > 2 && gst_structure_has_field (in_s, "channel-mask")) { if (!gst_structure_has_field (out_s, "channel-mask")) { gst_printerrln ("In : %" GST_PTR_FORMAT, in_s); gst_printerrln ("Out : %" GST_PTR_FORMAT, out_s); g_error ("Channel layout got lost somewhere\n"); } } gst_caps_unref (ccaps); } buffers = g_list_remove (buffers, outbuffer); gst_buffer_unref (outbuffer); done: fail_unless (gst_element_set_state (audioconvert, GST_STATE_NULL) == GST_STATE_CHANGE_SUCCESS, "could not set to null"); /* cleanup */ GST_DEBUG ("cleanup audioconvert"); cleanup_audioconvert (audioconvert); GST_DEBUG ("cleanup, unref incaps"); gst_caps_unref (incaps); gst_caps_unref (outcaps); } #define RUN_CONVERSION(which, inarray, in_get_caps, outarray, out_get_caps) \ verify_convert (which, inarray, sizeof (inarray), \ in_get_caps, outarray, sizeof (outarray), out_get_caps, GST_FLOW_OK, \ TRUE, FALSE, &(GValue) G_VALUE_INIT); #define RUN_CONVERSION_WITH_MATRIX(which, inarray, in_get_caps, outarray, out_get_caps, mix_matrix) \ verify_convert (which, inarray, sizeof (inarray), \ in_get_caps, outarray, sizeof (outarray), out_get_caps, GST_FLOW_OK, \ TRUE, TRUE, mix_matrix); #define RUN_CONVERSION_TO_FAIL(which, inarray, in_caps, outarray, out_caps) \ verify_convert (which, inarray, sizeof (inarray), \ in_caps, outarray, sizeof (outarray), out_caps, \ GST_FLOW_NOT_NEGOTIATED, TRUE, FALSE, &(GValue) G_VALUE_INIT); #define RUN_CONVERSION_NOT_INPLACE(which, inarray, in_get_caps, outarray, out_get_caps) \ verify_convert (which, inarray, sizeof (inarray), \ in_get_caps, outarray, sizeof (outarray), out_get_caps, GST_FLOW_OK, \ FALSE, FALSE, &(GValue) G_VALUE_INIT); #define INTERLEAVED GST_AUDIO_LAYOUT_INTERLEAVED #define PLANAR GST_AUDIO_LAYOUT_NON_INTERLEAVED GST_START_TEST (test_int16) { /* stereo to mono */ { gint16 in_i[] = { 16384, -256, 1024, 1024 }; gint16 in_p[] = { 16384, 1024, -256, 1024 }; gint16 out[] = { 8064, 1024 }; RUN_CONVERSION ("int16 stereo to mono interleaved", in_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("int16 stereo to mono planar", in_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); } /* mono to stereo */ { gint16 in[] = { 512, 1024 }; gint16 out_i[] = { 512, 512, 1024, 1024 }; gint16 out_p[] = { 512, 1024, 512, 1024 }; RUN_CONVERSION ("int16 mono to stereo interleaved", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("int16 mono to stereo planar", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); } /* signed -> unsigned */ { gint16 in[] = { 0, -32767, 32767, -32768 }; guint16 out[] = { 32768, 1, 65535, 0 }; RUN_CONVERSION ("int16 signed to unsigned interleaved", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED)); RUN_CONVERSION ("int16 unsigned to signed interleaved", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED), in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("int16 signed to unsigned planar", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, PLANAR)); RUN_CONVERSION ("int16 unsigned to signed planar", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, PLANAR), in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); } } GST_END_TEST; GST_START_TEST (test_float32) { /* stereo to mono */ { gfloat in_i[] = { 0.6, -0.0078125, 0.03125, 0.03125 }; gfloat in_p[] = { 0.6, 0.03125, -0.0078125, 0.03125 }; gfloat out[] = { 0.29609375, 0.03125 }; RUN_CONVERSION ("float32 stereo to mono interleaved", in_i, get_float_caps (2, G_BYTE_ORDER, 32, INTERLEAVED), out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED)); RUN_CONVERSION ("float32 stereo to mono planar", in_p, get_float_caps (2, G_BYTE_ORDER, 32, PLANAR), out, get_float_caps (1, G_BYTE_ORDER, 32, PLANAR)); } /* mono to stereo */ { gfloat in[] = { 0.015625, 0.03125 }; gfloat out_i[] = { 0.015625, 0.015625, 0.03125, 0.03125 }; gfloat out_p[] = { 0.015625, 0.03125, 0.015625, 0.03125 }; RUN_CONVERSION ("float32 mono to stereo interleaved", in, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED), out_i, get_float_caps (2, G_BYTE_ORDER, 32, INTERLEAVED)); RUN_CONVERSION ("float32 mono to stereo planar", in, get_float_caps (1, G_BYTE_ORDER, 32, PLANAR), out_p, get_float_caps (2, G_BYTE_ORDER, 32, PLANAR)); } } GST_END_TEST; GST_START_TEST (test_int_conversion) { /* 8 <-> 16 signed */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gint8 in[] = { 0, 1, 2, 127, -127 }; gint16 out[] = { 0, 256, 512, 32512, -32512 }; RUN_CONVERSION ("int 8bit to 16bit signed", in, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED) ); RUN_CONVERSION ("int 16bit signed to 8bit", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), in, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED) ); } /* 16 -> 8 signed */ { gint16 in[] = { 0, 127, 128, 256, 256 + 127, 256 + 128 }; gint8 out[] = { 0, 0, 1, 1, 1, 2 }; RUN_CONVERSION ("16 bit to 8 signed", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED) ); } /* 8 unsigned <-> 16 signed */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { guint8 in[] = { 128, 129, 130, 255, 1 }; gint16 out[] = { 0, 256, 512, 32512, -32512 }; GstCaps *incaps, *outcaps; /* exploded for easier valgrinding */ incaps = get_int_caps (1, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED); outcaps = get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED); GST_DEBUG ("incaps: %" GST_PTR_FORMAT, incaps); GST_DEBUG ("outcaps: %" GST_PTR_FORMAT, outcaps); RUN_CONVERSION ("8 unsigned to 16 signed", in, incaps, out, outcaps); RUN_CONVERSION ("16 signed to 8 unsigned", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), in, get_int_caps (1, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED) ); } /* 8 <-> 24 signed */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gint8 in[] = { 0, 1, 127 }; guint8 out[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x7f }; /* out has the bytes in little-endian, so that's how they should be * interpreted during conversion */ RUN_CONVERSION ("8 to 24 signed", in, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED), out, get_int_caps (1, G_LITTLE_ENDIAN, 24, 24, TRUE, INTERLEAVED) ); RUN_CONVERSION ("24 signed to 8", out, get_int_caps (1, G_LITTLE_ENDIAN, 24, 24, TRUE, INTERLEAVED), in, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED) ); } /* 16 bit signed <-> unsigned */ { gint16 in[] = { 0, 128, -128 }; guint16 out[] = { 32768, 32896, 32640 }; RUN_CONVERSION ("16 signed to 16 unsigned", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED) ); RUN_CONVERSION ("16 unsigned to 16 signed", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED), in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED) ); } /* 32 bit signed -> 16 bit signed for rounding check */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gint32 in[] = { 0, G_MININT32, G_MAXINT32, (32 << 16), (32 << 16) + (1 << 15), (32 << 16) - (1 << 15), (32 << 16) + (2 << 15), (32 << 16) - (2 << 15), (-(32 << 16)) + (1 << 15), (-(32 << 16)) - (1 << 15), (-(32 << 16)) + (2 << 15), (-(32 << 16)) - (2 << 15), (-(32 << 16)) }; gint16 out[] = { 0, G_MININT16, G_MAXINT16, 32, 33, 32, 33, 31, -31, -32, -31, -33, -32 }; RUN_CONVERSION ("32 signed to 16 signed for rounding", in, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED) ); } /* 32 bit signed -> 16 bit unsigned for rounding check */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gint32 in[] = { 0, G_MININT32, G_MAXINT32, (32 << 16), (32 << 16) + (1 << 15), (32 << 16) - (1 << 15), (32 << 16) + (2 << 15), (32 << 16) - (2 << 15), (-(32 << 16)) + (1 << 15), (-(32 << 16)) - (1 << 15), (-(32 << 16)) + (2 << 15), (-(32 << 16)) - (2 << 15), (-(32 << 16)) }; guint16 out[] = { (1 << 15), 0, G_MAXUINT16, (1 << 15) + 32, (1 << 15) + 33, (1 << 15) + 32, (1 << 15) + 33, (1 << 15) + 31, (1 << 15) - 31, (1 << 15) - 32, (1 << 15) - 31, (1 << 15) - 33, (1 << 15) - 32 }; RUN_CONVERSION ("32 signed to 16 unsigned for rounding", in, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED) ); } } GST_END_TEST; GST_START_TEST (test_float_conversion) { /* 64-bit float <-> 32-bit float */ { gdouble in[] = { 0.0, 1.0, -1.0, 0.5, -0.5 }; gfloat out[] = { 0.0, 1.0, -1.0, 0.5, -0.5 }; RUN_CONVERSION ("64 float to 32 float", in, get_float_caps (1, G_BYTE_ORDER, 64, INTERLEAVED), out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED)); RUN_CONVERSION ("32 float to 64 float", out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED), in, get_float_caps (1, G_BYTE_ORDER, 64, INTERLEAVED)); } /* 32-bit float little endian <-> big endian */ { gfloat le[] = { GFLOAT_TO_LE (0.0), GFLOAT_TO_LE (1.0), GFLOAT_TO_LE (-1.0), GFLOAT_TO_LE (0.5), GFLOAT_TO_LE (-0.5) }; gfloat be[] = { GFLOAT_TO_BE (0.0), GFLOAT_TO_BE (1.0), GFLOAT_TO_BE (-1.0), GFLOAT_TO_BE (0.5), GFLOAT_TO_BE (-0.5) }; RUN_CONVERSION ("32 float LE to BE", le, get_float_caps (1, G_LITTLE_ENDIAN, 32, INTERLEAVED), be, get_float_caps (1, G_BIG_ENDIAN, 32, INTERLEAVED)); RUN_CONVERSION ("32 float BE to LE", be, get_float_caps (1, G_BIG_ENDIAN, 32, INTERLEAVED), le, get_float_caps (1, G_LITTLE_ENDIAN, 32, INTERLEAVED)); } /* 64-bit float little endian <-> big endian */ { gdouble le[] = { GDOUBLE_TO_LE (0.0), GDOUBLE_TO_LE (1.0), GDOUBLE_TO_LE (-1.0), GDOUBLE_TO_LE (0.5), GDOUBLE_TO_LE (-0.5) }; gdouble be[] = { GDOUBLE_TO_BE (0.0), GDOUBLE_TO_BE (1.0), GDOUBLE_TO_BE (-1.0), GDOUBLE_TO_BE (0.5), GDOUBLE_TO_BE (-0.5) }; RUN_CONVERSION ("64 float LE to BE", le, get_float_caps (1, G_LITTLE_ENDIAN, 64, INTERLEAVED), be, get_float_caps (1, G_BIG_ENDIAN, 64, INTERLEAVED)); RUN_CONVERSION ("64 float BE to LE", be, get_float_caps (1, G_BIG_ENDIAN, 64, INTERLEAVED), le, get_float_caps (1, G_LITTLE_ENDIAN, 64, INTERLEAVED)); } } GST_END_TEST; GST_START_TEST (test_int_float_conversion) { /* 32 float <-> 16 signed */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gfloat in_le[] = { GFLOAT_TO_LE (0.0), GFLOAT_TO_LE (1.0), GFLOAT_TO_LE (-1.0), GFLOAT_TO_LE (0.5), GFLOAT_TO_LE (-0.5), GFLOAT_TO_LE (1.1), GFLOAT_TO_LE (-1.1) }; gfloat in_be[] = { GFLOAT_TO_BE (0.0), GFLOAT_TO_BE (1.0), GFLOAT_TO_BE (-1.0), GFLOAT_TO_BE (0.5), GFLOAT_TO_BE (-0.5), GFLOAT_TO_BE (1.1), GFLOAT_TO_BE (-1.1) }; gint16 out[] = { 0, 32767, -32768, 16384, -16384, 32767, -32768 }; /* only one direction conversion, the other direction does * not produce exactly the same as the input due to floating * point rounding errors etc. */ RUN_CONVERSION ("32 float le to 16 signed", in_le, get_float_caps (1, G_LITTLE_ENDIAN, 32, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("32 float be to 16 signed", in_be, get_float_caps (1, G_BIG_ENDIAN, 32, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } { gint16 in[] = { 0, -32768, 16384, -16384 }; gfloat out[] = { 0.0, -1.0, 0.5, -0.5 }; RUN_CONVERSION ("16 signed to 32 float", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED)); } /* 64 float <-> 16 signed */ /* NOTE: if audioconvert was doing dithering we'd have a problem */ { gdouble in_le[] = { GDOUBLE_TO_LE (0.0), GDOUBLE_TO_LE (1.0), GDOUBLE_TO_LE (-1.0), GDOUBLE_TO_LE (0.5), GDOUBLE_TO_LE (-0.5), GDOUBLE_TO_LE (1.1), GDOUBLE_TO_LE (-1.1) }; gdouble in_be[] = { GDOUBLE_TO_BE (0.0), GDOUBLE_TO_BE (1.0), GDOUBLE_TO_BE (-1.0), GDOUBLE_TO_BE (0.5), GDOUBLE_TO_BE (-0.5), GDOUBLE_TO_BE (1.1), GDOUBLE_TO_BE (-1.1) }; gint16 out[] = { 0, 32767, -32768, 16384, -16384, 32767, -32768 }; /* only one direction conversion, the other direction does * not produce exactly the same as the input due to floating * point rounding errors etc. */ RUN_CONVERSION ("64 float LE to 16 signed", in_le, get_float_caps (1, G_LITTLE_ENDIAN, 64, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("64 float BE to 16 signed", in_be, get_float_caps (1, G_BIG_ENDIAN, 64, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } { gint16 in[] = { 0, -32768, 16384, -16384 }; gdouble out[] = { 0.0, (gdouble) (-(G_GINT64_CONSTANT (32768) << 16)) / 2147483648.0, /* ~ -1.0 */ (gdouble) (16384L << 16) / 2147483648.0, /* ~ 0.5 */ (gdouble) (-(16384L << 16)) / 2147483648.0, /* ~ -0.5 */ }; RUN_CONVERSION ("16 signed to 64 float", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_float_caps (1, G_BYTE_ORDER, 64, INTERLEAVED)); } { gint32 in[] = { 0, (-(G_GINT64_CONSTANT (1) << 31)), (1L << 30), (-(1L << 30)) }; gdouble out[] = { 0.0, (gdouble) (-(G_GINT64_CONSTANT (1) << 31)) / 2147483648.0, /* ~ -1.0 */ (gdouble) (1L << 30) / 2147483648.0, /* ~ 0.5 */ (gdouble) (-(1L << 30)) / 2147483648.0, /* ~ -0.5 */ }; RUN_CONVERSION ("32 signed to 64 float", in, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED), out, get_float_caps (1, G_BYTE_ORDER, 64, INTERLEAVED)); } } GST_END_TEST; GST_START_TEST (test_multichannel_conversion) { { gfloat in[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; gfloat out[] = { 0.0, 0.0 }; RUN_CONVERSION ("3 channels to 1", in, get_float_mc_caps (3, G_BYTE_ORDER, 32, INTERLEAVED, NULL), out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED)); RUN_CONVERSION ("1 channels to 3", out, get_float_caps (1, G_BYTE_ORDER, 32, INTERLEAVED), in, get_float_mc_caps (3, G_BYTE_ORDER, 32, INTERLEAVED, NULL)); } { gint16 in[] = { 0, 0, 0, 0, 0, 0 }; gint16 out[] = { 0, 0 }; RUN_CONVERSION ("3 channels to 1", in, get_int_mc_caps (3, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("1 channels to 3", out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), in, get_int_mc_caps (3, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL)); } { gint16 in[] = { 1, 2 }; gint16 out[] = { 1, 1, 2, 2 }; GstAudioChannelPosition in_layout[1] = { GST_AUDIO_CHANNEL_POSITION_MONO }; GstAudioChannelPosition out_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT }; GstCaps *in_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("1 channels to 2 with standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 1, 2 }; gint16 out[] = { 1, 1, 2, 2 }; GstCaps *in_caps = get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED); GstCaps *out_caps = get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED); RUN_CONVERSION ("1 channels to 2 with standard layout and no positions set", in, gst_caps_copy (in_caps), out, gst_caps_copy (out_caps)); RUN_CONVERSION ("2 channels to 1 with standard layout and no positions set", out, out_caps, in, in_caps); } { gint16 in[] = { 1, 2 }; gint16 out[] = { 1, 0, 2, 0 }; GstAudioChannelPosition in_layout[1] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT }; GstAudioChannelPosition out_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT }; GstCaps *in_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("1 channels to 2 with non-standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 1, 2, 3, 4 }; gint16 out[] = { 2, 4 }; GstAudioChannelPosition in_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT }; GstAudioChannelPosition out_layout[1] = { GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("2 channels to 1 with non-standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 1, 2, 3, 4 }; gint16 out[] = { 2, 4 }; GstAudioChannelPosition in_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT }; GstAudioChannelPosition out_layout[1] = { GST_AUDIO_CHANNEL_POSITION_MONO }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("2 channels to 1 with standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 1, 2, 3, 4 }; gint16 out[] = { 1, 3 }; GstAudioChannelPosition in_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER }; GstAudioChannelPosition out_layout[1] = { GST_AUDIO_CHANNEL_POSITION_MONO }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("2 channels to 1 with non-standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 1, 2, 3, 4 }; gint16 out[] = { 1, 3 }; GstAudioChannelPosition in_layout[2] = { GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT }; GstAudioChannelPosition out_layout[1] = { GST_AUDIO_CHANNEL_POSITION_MONO }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("2 channels to 1 with non-standard layout", in, in_caps, out, out_caps); } { gint16 in[] = { 4, 5, 4, 2, 2, 1 }; gint16 out[] = { 3, 3 }; GstCaps *in_caps = get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL); GstCaps *out_caps = get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED); RUN_CONVERSION ("5.1 to 2 channels", in, in_caps, out, out_caps); } { gint16 in[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; gint16 out[] = { 0, 0 }; GstAudioChannelPosition in_layout[11] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_LFE1, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT, GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT, }; GstCaps *in_caps = get_int_mc_caps (11, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, in_layout); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL); RUN_CONVERSION ("11 channels to 2", in, in_caps, out, out_caps); } { gint16 in[] = { 0, 0 }; gint16 out[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; GstAudioChannelPosition out_layout[11] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_LFE1, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER, GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT, GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT, }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL); GstCaps *out_caps = get_int_mc_caps (11, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, out_layout); RUN_CONVERSION ("2 channels to 11", in, in_caps, out, out_caps); } } GST_END_TEST; GST_START_TEST (test_passthrough) { /* int 8 bit */ { gint8 data[] = { 0, 1, 2, 127, -127 }; RUN_CONVERSION ("int 8 bit passthrough", data, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED) ); RUN_CONVERSION_NOT_INPLACE ("int 8 bit passthrough", data, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 8, 8, TRUE, INTERLEAVED) ); } /* int 16 bit signed */ { gint16 data[] = { 0, 256, 512, 32512, -32512 }; RUN_CONVERSION ("int 16 bit signed passthrough", data, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED) ); RUN_CONVERSION_NOT_INPLACE ("int 16 bit signed passthrough", data, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED) ); } /* int 32 bit signed */ { gint32 data[] = { 0, G_MININT32, G_MAXINT32, (32 << 16), (32 << 16) + (1 << 15), (32 << 16) - (1 << 15), (32 << 16) + (2 << 15), (32 << 16) - (2 << 15), (-(32 << 16)) + (1 << 15), (-(32 << 16)) - (1 << 15), (-(32 << 16)) + (2 << 15), (-(32 << 16)) - (2 << 15), (-(32 << 16)) }; RUN_CONVERSION ("int 32 bit signed passthrough", data, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED) ); RUN_CONVERSION_NOT_INPLACE ("int 32 bit signed passthrough", data, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED), data, get_int_caps (1, G_BYTE_ORDER, 32, 32, TRUE, INTERLEAVED) ); } /* int 16 bit signed stereo */ { gint16 data[] = { 0, 0, 1, 1, 2, 2, 3, 3 }; RUN_CONVERSION ("int 16 bit signed 2 channel passthrough", data, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), data, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION_NOT_INPLACE ("int 16 bit signed 2 channel passthrough", data, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), data, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } } GST_END_TEST; GST_START_TEST (test_caps_negotiation) { GstElement *src, *ac1, *ac2, *ac3, *sink; GstElement *pipeline; GstPad *ac3_src; GstCaps *caps1, *caps2; pipeline = gst_pipeline_new ("test"); /* create elements */ src = gst_element_factory_make ("audiotestsrc", "src"); ac1 = gst_element_factory_make ("audioconvert", "ac1"); ac2 = gst_element_factory_make ("audioconvert", "ac2"); ac3 = gst_element_factory_make ("audioconvert", "ac3"); sink = gst_element_factory_make ("fakesink", "sink"); ac3_src = gst_element_get_static_pad (ac3, "src"); /* test with 2 audioconvert elements */ gst_bin_add_many (GST_BIN (pipeline), src, ac1, ac3, sink, NULL); gst_element_link_many (src, ac1, ac3, sink, NULL); /* Set to PAUSED and wait for PREROLL */ fail_if (gst_element_set_state (pipeline, GST_STATE_PAUSED) == GST_STATE_CHANGE_FAILURE, "Failed to set test pipeline to PAUSED"); fail_if (gst_element_get_state (pipeline, NULL, NULL, GST_CLOCK_TIME_NONE) != GST_STATE_CHANGE_SUCCESS, "Failed to set test pipeline to PAUSED"); caps1 = gst_pad_query_caps (ac3_src, NULL); fail_if (caps1 == NULL, "gst_pad_query_caps returned NULL"); GST_DEBUG ("Caps size 1 : %d", gst_caps_get_size (caps1)); fail_if (gst_element_set_state (pipeline, GST_STATE_READY) == GST_STATE_CHANGE_FAILURE, "Failed to set test pipeline back to READY"); fail_if (gst_element_get_state (pipeline, NULL, NULL, GST_CLOCK_TIME_NONE) != GST_STATE_CHANGE_SUCCESS, "Failed to set test pipeline back to READY"); /* test with 3 audioconvert elements */ gst_element_unlink (ac1, ac3); gst_bin_add (GST_BIN (pipeline), ac2); gst_element_link_many (ac1, ac2, ac3, NULL); fail_if (gst_element_set_state (pipeline, GST_STATE_PAUSED) == GST_STATE_CHANGE_FAILURE, "Failed to set test pipeline back to PAUSED"); fail_if (gst_element_get_state (pipeline, NULL, NULL, GST_CLOCK_TIME_NONE) != GST_STATE_CHANGE_SUCCESS, "Failed to set test pipeline back to PAUSED"); caps2 = gst_pad_query_caps (ac3_src, NULL); fail_if (caps2 == NULL, "gst_pad_query_caps returned NULL"); GST_DEBUG ("Caps size 2 : %d", gst_caps_get_size (caps2)); fail_unless (gst_caps_get_size (caps1) == gst_caps_get_size (caps2)); gst_caps_unref (caps1); gst_caps_unref (caps2); fail_if (gst_element_set_state (pipeline, GST_STATE_NULL) == GST_STATE_CHANGE_FAILURE, "Failed to set test pipeline back to NULL"); fail_if (gst_element_get_state (pipeline, NULL, NULL, GST_CLOCK_TIME_NONE) != GST_STATE_CHANGE_SUCCESS, "Failed to set test pipeline back to NULL"); gst_object_unref (ac3_src); gst_object_unref (pipeline); } GST_END_TEST; GST_START_TEST (test_convert_undefined_multichannel) { /* (A) CONVERSION FROM 'WORSE' TO 'BETTER' FORMAT */ /* 1 channel, NONE positions, int8 => int16 */ { guint16 out[] = { 0x2000 }; guint8 in[] = { 0x20 }; GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[1 - 1]); GstCaps *in_caps = get_int_mc_caps (1, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[1 - 1]); RUN_CONVERSION ("1 channel, undefined layout, identity conversion, " "int8 => int16", in, in_caps, out, out_caps); } /* 2 channels, NONE positions, int8 => int16 */ { guint16 out[] = { 0x8000, 0x2000 }; guint8 in[] = { 0x80, 0x20 }; GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[2 - 1]); GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[2 - 1]); RUN_CONVERSION ("2 channels, undefined layout, identity conversion, " "int8 => int16", in, in_caps, out, out_caps); } /* 6 channels, NONE positions, int8 => int16 */ { guint16 out[] = { 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00 }; guint8 in[] = { 0x00, 0x20, 0x80, 0x20, 0x00, 0xff }; GstCaps *out_caps = get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[6 - 1]); GstCaps *in_caps = get_int_mc_caps (6, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[6 - 1]); RUN_CONVERSION ("6 channels, undefined layout, identity conversion, " "int8 => int16", in, in_caps, out, out_caps); } /* 9 channels, NONE positions, int8 => int16 */ { guint16 out[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000 }; guint8 in[] = { 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00, 0xff, 0x00 }; GstCaps *out_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[9 - 1]); RUN_CONVERSION ("9 channels, undefined layout, identity conversion, " "int8 => int16", in, in_caps, out, out_caps); } /* 15 channels, NONE positions, int8 => int16 */ { guint16 out[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000 }; guint8 in[] = { 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00, 0xff, 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00 }; GstCaps *out_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); GstCaps *in_caps = get_int_mc_caps (15, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[15 - 1]); RUN_CONVERSION ("15 channels, undefined layout, identity conversion, " "int8 => int16", in, in_caps, out, out_caps); } /* (B) CONVERSION FROM 'BETTER' TO 'WORSE' FORMAT */ /* 1 channel, NONE positions, int16 => int8 */ { guint16 in[] = { 0x2000 }; guint8 out[] = { 0x20 }; GstCaps *in_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[1 - 1]); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[1 - 1]); RUN_CONVERSION ("1 channel, undefined layout, identity conversion, " "int16 => int8", in, in_caps, out, out_caps); } /* 2 channels, NONE positions, int16 => int8 */ { guint16 in[] = { 0x8000, 0x2000 }; guint8 out[] = { 0x80, 0x20 }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[2 - 1]); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[2 - 1]); RUN_CONVERSION ("2 channels, undefined layout, identity conversion, " "int16 => int8", in, in_caps, out, out_caps); } /* 6 channels, NONE positions, int16 => int8 */ { guint16 in[] = { 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00 }; guint8 out[] = { 0x00, 0x20, 0x80, 0x20, 0x00, 0xff }; GstCaps *in_caps = get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[6 - 1]); GstCaps *out_caps = get_int_mc_caps (6, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[6 - 1]); RUN_CONVERSION ("6 channels, undefined layout, identity conversion, " "int16 => int8", in, in_caps, out, out_caps); } /* 9 channels, NONE positions, int16 => int8 */ { guint16 in[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000 }; guint8 out[] = { 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00, 0xff, 0x00 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_int_mc_caps (9, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[9 - 1]); RUN_CONVERSION ("9 channels, undefined layout, identity conversion, " "int16 => int8", in, in_caps, out, out_caps); } /* 15 channels, NONE positions, int16 => int8 */ { guint16 in[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000 }; guint8 out[] = { 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00, 0xff, 0x00, 0xff, 0x00, 0x20, 0x80, 0x20, 0x00 }; GstCaps *in_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); GstCaps *out_caps = get_int_mc_caps (15, G_BYTE_ORDER, 8, 8, FALSE, INTERLEAVED, undefined_positions[15 - 1]); RUN_CONVERSION ("15 channels, undefined layout, identity conversion, " "int16 => int8", in, in_caps, out, out_caps); } /* (C) NO CONVERSION, SAME FORMAT */ /* 1 channel, NONE positions, int16 => int16 */ { guint16 in[] = { 0x2000 }; guint16 out[] = { 0x2000 }; GstCaps *in_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[1 - 1]); GstCaps *out_caps = get_int_mc_caps (1, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[1 - 1]); RUN_CONVERSION ("1 channel, undefined layout, identity conversion, " "int16 => int16", in, in_caps, out, out_caps); } /* 2 channels, NONE positions, int16 => int16 */ { guint16 in[] = { 0x8000, 0x2000 }; guint16 out[] = { 0x8000, 0x2000 }; GstCaps *in_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[2 - 1]); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[2 - 1]); RUN_CONVERSION ("2 channels, undefined layout, identity conversion, " "int16 => int16", in, in_caps, out, out_caps); } /* 6 channels, NONE positions, int16 => int16 */ { guint16 in[] = { 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00 }; guint16 out[] = { 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00 }; GstCaps *in_caps = get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[6 - 1]); GstCaps *out_caps = get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[6 - 1]); RUN_CONVERSION ("6 channels, undefined layout, identity conversion, " "int16 => int16", in, in_caps, out, out_caps); } /* 9 channels, NONE positions, int16 => int16 */ { guint16 in[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000 }; guint16 out[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); RUN_CONVERSION ("9 channels, undefined layout, identity conversion, " "int16 => int16", in, in_caps, out, out_caps); } /* 15 channels, NONE positions, int16 => int16 */ { guint16 in[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000 }; guint16 out[] = { 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000, 0xff00, 0x0000, 0xff00, 0x0000, 0x2000, 0x8000, 0x2000, 0x0000 }; GstCaps *in_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); GstCaps *out_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); RUN_CONVERSION ("15 channels, undefined layout, identity conversion, " "int16 => int16", in, in_caps, out, out_caps); } /* (C) int16 => float */ /* 9 channels, NONE positions, int16 => float */ { guint16 in[] = { 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000, 0x8000, 0x0000 }; gfloat out[] = { -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_float_mc_caps (9, G_BYTE_ORDER, 32, INTERLEAVED, undefined_positions[9 - 1]); RUN_CONVERSION ("9 channels, undefined layout, identity conversion, " "int16 => float", in, in_caps, out, out_caps); } /* 15 channels, NONE positions, int16 => float */ { guint16 in[] = { 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000, 0x8000, 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000 }; gfloat out[] = { -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); GstCaps *out_caps = get_float_mc_caps (15, G_BYTE_ORDER, 32, INTERLEAVED, undefined_positions[15 - 1]); RUN_CONVERSION ("15 channels, undefined layout, identity conversion, " "int16 => float", in, in_caps, out, out_caps); } /* 9 channels, NONE positions, int16 => float (same as above, but no * position on output caps to see if audioconvert transforms correctly) */ { guint16 in[] = { 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000, 0x8000, 0x0000 }; gfloat out[] = { -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_float_mc_caps (9, G_BYTE_ORDER, 32, INTERLEAVED, undefined_positions[9 - 1]); gst_structure_remove_field (gst_caps_get_structure (out_caps, 0), "channel-mask"); RUN_CONVERSION ("9 channels, undefined layout, identity conversion, " "int16 => float", in, in_caps, out, out_caps); } /* 15 channels, NONE positions, int16 => float (same as above, but no * position on output caps to see if audioconvert transforms correctly) */ { guint16 in[] = { 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000, 0x8000, 0x0000, 0x8000, 0x0000, 0x8000, 0x8000, 0x8000, 0x0000 }; gfloat out[] = { -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (15, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[15 - 1]); GstCaps *out_caps = get_float_mc_caps (15, G_BYTE_ORDER, 32, INTERLEAVED, undefined_positions[15 - 1]); gst_structure_remove_field (gst_caps_get_structure (out_caps, 0), "channel-mask"); RUN_CONVERSION ("15 channels, undefined layout, identity conversion, " "int16 => float", in, in_caps, out, out_caps); } /* 8 channels, NONE positions => 2 channels: should fail, no mixing allowed */ { guint16 in[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; gfloat out[] = { -1.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (8, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[8 - 1]); GstCaps *out_caps = get_float_mc_caps (2, G_BYTE_ORDER, 32, INTERLEAVED, NULL); RUN_CONVERSION_TO_FAIL ("8 channels with layout => 2 channels", in, in_caps, out, out_caps); } /* 8 channels, with positions => 2 channels (makes sure channel-position * fields are removed properly in some cases in ::transform_caps, so we * don't up with caps with 2 channels and 8 channel positions) */ { GstAudioChannelPosition layout8ch[] = { GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT, GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, GST_AUDIO_CHANNEL_POSITION_LFE1, GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT, GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT, GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT }; gint16 in[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; gint16 out[] = { 0, 0 }; GstCaps *in_caps = get_int_mc_caps (8, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, layout8ch); GstCaps *out_caps = get_int_mc_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL); RUN_CONVERSION ("8 channels with layout => 2 channels", in, in_caps, out, out_caps); } /* 9 channels, NONE positions => 2 channels, with empty mix-matrix */ { guint16 in[] = { 0, 0, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000 }; gfloat out[] = { -1.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_float_mc_caps (2, G_BYTE_ORDER, 32, INTERLEAVED, NULL); GValue empty_mix_matrix = G_VALUE_INIT; g_value_init (&empty_mix_matrix, GST_TYPE_ARRAY); RUN_CONVERSION_WITH_MATRIX ("9 channels, undefined layout => 2 channels", in, in_caps, out, out_caps, &empty_mix_matrix); g_value_unset (&empty_mix_matrix); } /* 9 channels, NONE positions => 2 channels, with specified mix-matrix */ { guint16 in[] = { 0, 0, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000 }; gfloat out[] = { -1.0, -1.0 }; GstCaps *in_caps = get_int_mc_caps (9, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED, undefined_positions[9 - 1]); GstCaps *out_caps = get_float_mc_caps (2, G_BYTE_ORDER, 32, INTERLEAVED, NULL); GValue mix_matrix = G_VALUE_INIT; GValue row = G_VALUE_INIT; GValue value = G_VALUE_INIT; g_value_init (&mix_matrix, GST_TYPE_ARRAY); for (int j = 0; j < 2; j++) { g_value_init (&row, GST_TYPE_ARRAY); for (int i = 0; i < 9; i++) { g_value_init (&value, G_TYPE_FLOAT); g_value_set_float (&value, i == j && i < 2 ? 1 : 0); gst_value_array_append_value (&row, &value); g_value_unset (&value); } gst_value_array_append_value (&mix_matrix, &row); g_value_unset (&row); } RUN_CONVERSION_WITH_MATRIX ("9 channels, undefined layout => 2 channels", in, in_caps, out, out_caps, &mix_matrix); g_value_unset (&mix_matrix); } } GST_END_TEST; #define SIMPLE_CAPS_TEMPLATE_STRING \ "audio/x-raw, " \ "format = (string) {S8, S16LE, S24LE, S32LE}, " \ "rate = (int) [ 1, MAX ], " \ "channels = (int) [ 1, MAX ]" GST_START_TEST (test_preserve_width) { static GstStaticPadTemplate sinktemplate = GST_STATIC_PAD_TEMPLATE ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, GST_STATIC_CAPS (SIMPLE_CAPS_TEMPLATE_STRING) ); static GstStaticPadTemplate srctemplate = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS (CONVERT_CAPS_TEMPLATE_STRING) ); static const struct _test_formats { int width; const gchar *outf; } test_formats[] = { { 8, "S8"}, { 16, "S16LE"}, { 24, "S24LE"}, { 32, "S32LE"}, { 0, NULL} }; gint i; GstStructure *structure; GstElement *audioconvert; GstCaps *incaps, *convert_outcaps; audioconvert = gst_check_setup_element ("audioconvert"); mysrcpad = gst_check_setup_src_pad (audioconvert, &srctemplate); mysinkpad = gst_check_setup_sink_pad (audioconvert, &sinktemplate); gst_pad_set_active (mysrcpad, TRUE); gst_pad_set_active (mysinkpad, TRUE); fail_unless (gst_element_set_state (audioconvert, GST_STATE_PLAYING) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); for (i = 0; test_formats[i].width; i++) { gint width = test_formats[i].width; incaps = get_int_caps (1, G_BIG_ENDIAN, width, width, TRUE, INTERLEAVED); gst_pad_set_caps (mysrcpad, incaps); convert_outcaps = gst_pad_get_current_caps (mysinkpad); structure = gst_caps_get_structure (convert_outcaps, 0); fail_unless_equals_string (gst_structure_get_string (structure, "format"), test_formats[i].outf); gst_caps_unref (convert_outcaps); gst_caps_unref (incaps); } cleanup_audioconvert (audioconvert); } GST_END_TEST; GST_START_TEST (test_gap_buffers) { GstBuffer *inbuffer, *outbuffer; GstElement *audioconvert; GstCaps *caps = get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED); gint16 data[] = { 0, 0, 0, 0 }; gsize data_len = sizeof (data); gint i; audioconvert = setup_audioconvert (caps, FALSE, &(GValue) G_VALUE_INIT); fail_unless (gst_element_set_state (audioconvert, GST_STATE_PLAYING) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); gst_check_setup_events (mysrcpad, audioconvert, caps, GST_FORMAT_TIME); inbuffer = gst_buffer_new_and_alloc (data_len); gst_buffer_fill (inbuffer, 0, data, data_len); GST_BUFFER_FLAG_SET (inbuffer, GST_BUFFER_FLAG_GAP); for (i = 0; i < 2; i++) { gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (audioconvert), (i == 0)); gst_pad_push (mysrcpad, inbuffer); fail_unless (g_list_length (buffers) == 1); fail_if ((outbuffer = (GstBuffer *) buffers->data) == NULL); fail_unless (GST_BUFFER_FLAG_IS_SET (outbuffer, GST_BUFFER_FLAG_GAP)); buffers = g_list_remove (buffers, outbuffer); } GST_DEBUG ("cleanup, unref buffers"); gst_buffer_unref (outbuffer); cleanup_audioconvert (audioconvert); GST_DEBUG ("cleanup, unref caps"); gst_caps_unref (caps); } GST_END_TEST; GST_START_TEST (test_layout_conversion) { /* just layout conversion */ { gint16 in[] = { 123, 123, 1024, 1024 }; gint16 out[] = { 123, 1024, 123, 1024 }; RUN_CONVERSION ("int16 interleaved -> planar", in, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); RUN_CONVERSION ("int16 interleaved -> planar", in, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } /* int16 stereo to mono with layout conversion */ { gint16 in_i[] = { 16384, -256, 1024, 1024 }; gint16 in_p[] = { 16384, 1024, -256, 1024 }; gint16 out[] = { 8064, 1024 }; RUN_CONVERSION ("int16 stereo to mono / interleaved -> planar", in_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); RUN_CONVERSION ("int16 stereo to mono / planar -> interleaved", in_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } /* int16 mono to stereo with layout conversion */ { gint16 in[] = { 512, 1024 }; gint16 out_i[] = { 512, 512, 1024, 1024 }; gint16 out_p[] = { 512, 1024, 512, 1024 }; RUN_CONVERSION ("int16 mono to stereo / planar -> interleaved", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("int16 mono to stereo / interleaved -> planar", in, get_int_caps (1, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); } /* change format with layout conversion */ { gint16 in_p[] = { 0, 32767, -32767, -32768 }; gint16 in_i[] = { 0, -32767, 32767, -32768 }; guint16 out_p[] = { 32768, 65535, 1, 0 }; guint16 out_i[] = { 32768, 1, 65535, 0 }; RUN_CONVERSION ("int16 signed -> unsigned / planar -> interleaved", in_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR), out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED)); RUN_CONVERSION ("int16 signed -> unsigned / interleaved -> planar", in_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED), out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, FALSE, PLANAR)); RUN_CONVERSION ("int16 unsigned -> signed / planar -> interleaved", out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, FALSE, PLANAR), in_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); RUN_CONVERSION ("int16 unsigned -> signed / interleaved -> planar", out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, FALSE, INTERLEAVED), in_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); } /* channel mixing with layout conversion */ { gint16 in_i[] = { 4, 5, 4, 2, 2, 1, 8, 10, 8, 4, 4, 2 }; gint16 in_p[] = { 4, 8, 5, 10, 4, 8, 2, 4, 2, 4, 1, 2 }; gint16 out_i[] = { 3, 3, 6, 6 }; gint16 out_p[] = { 3, 6, 3, 6 }; RUN_CONVERSION ("5.1 to 2 channels / interleaved -> planar", in_i, get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED, NULL), out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); RUN_CONVERSION ("5.1 to 2 channels / planar -> interleaved", in_p, get_int_mc_caps (6, G_BYTE_ORDER, 16, 16, TRUE, PLANAR, NULL), out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } /* change format + channels + layout */ { guint8 in_i[] = { 0x00, 0x04, 0x00, 0x00, 0x05, 0x00, 0x00, 0x04, 0x00, 0x00, 0x02, 0x00, 0x00, 0x02, 0x00, 0x00, 0x01, 0x00, 0x00, 0x08, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x08, 0x00, 0x00, 0x04, 0x00, 0x00, 0x04, 0x00, 0x00, 0x02, 0x00 }; guint8 in_p[] = { 0x00, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00, 0x05, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00, 0x02, 0x00, 0x00, 0x04, 0x00, 0x00, 0x02, 0x00, 0x00, 0x04, 0x00, 0x00, 0x01, 0x00, 0x00, 0x02, 0x00 }; gint16 out_i[] = { 3, 3, 6, 6 }; gint16 out_p[] = { 3, 6, 3, 6 }; RUN_CONVERSION ("5.1 to 2 channels / S24LE interleaved -> S16 planar", in_i, get_int_mc_caps (6, G_LITTLE_ENDIAN, 24, 24, TRUE, INTERLEAVED, NULL), out_p, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, PLANAR)); RUN_CONVERSION ("5.1 to 2 channels / S24LE planar -> S16 interleaved", in_p, get_int_mc_caps (6, G_LITTLE_ENDIAN, 24, 24, TRUE, PLANAR, NULL), out_i, get_int_caps (2, G_BYTE_ORDER, 16, 16, TRUE, INTERLEAVED)); } } GST_END_TEST; GST_START_TEST (test_layout_conv_fixate_caps) { GstCaps *incaps, *outcaps; GstElement *audioconvert; GstCaps *caps; GstStructure *s; incaps = gst_caps_from_string ("audio/x-raw, " "format = (string) F32LE, " "layout = (string) interleaved, " "rate = (int) 44100, " "channels = (int) 1"); outcaps = gst_caps_from_string ("audio/x-raw, " "format = (string) S16LE, " "layout = (string) interleaved, " "rate = (int) [ 1, MAX ], " "channels = (int) 2;" "audio/x-raw, " "format = (string) { F32LE, F32BE, F64LE, F64BE }, " "layout = (string) non-interleaved, " "rate = (int) [ 1, MAX ], " "channels = (int) [1, 8]"); audioconvert = setup_audioconvert (outcaps, FALSE, &(GValue) G_VALUE_INIT); fail_unless (gst_element_set_state (audioconvert, GST_STATE_PLAYING) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); gst_check_setup_events (mysrcpad, audioconvert, incaps, GST_FORMAT_TIME); caps = gst_pad_get_current_caps (mysinkpad); s = gst_caps_get_structure (caps, 0); assert_equals_string (gst_structure_get_string (s, "format"), "F32LE"); assert_equals_string (gst_structure_get_string (s, "layout"), "non-interleaved"); gst_clear_caps (&caps); fail_unless (gst_element_set_state (audioconvert, GST_STATE_NULL) == GST_STATE_CHANGE_SUCCESS, "could not set to null"); /* cleanup */ GST_DEBUG ("cleanup audioconvert"); cleanup_audioconvert (audioconvert); GST_DEBUG ("cleanup, unref incaps"); gst_caps_unref (incaps); gst_caps_unref (outcaps); } GST_END_TEST; GST_START_TEST (test_96_channels_conversion) { GstCaps *incaps, *outcaps; GstElement *audioconvert; GstCaps *caps; GstStructure *s; incaps = gst_caps_from_string ("audio/x-raw, " "format = (string) F32LE, " "layout = (string) interleaved, " "rate = (int) 44100, " "channels = (int) 96, " "channel-mask = (bitmask) 0"); outcaps = gst_caps_from_string ("audio/x-raw, " "format = (string) F64LE, " "layout = (string) non-interleaved"); audioconvert = setup_audioconvert (outcaps, FALSE, &(GValue) G_VALUE_INIT); fail_unless (gst_element_set_state (audioconvert, GST_STATE_PLAYING) == GST_STATE_CHANGE_SUCCESS, "could not set to playing"); gst_check_setup_events (mysrcpad, audioconvert, incaps, GST_FORMAT_TIME); caps = gst_pad_get_current_caps (mysinkpad); s = gst_caps_get_structure (caps, 0); assert_equals_string (gst_structure_get_string (s, "format"), "F64LE"); assert_equals_string (gst_structure_get_string (s, "layout"), "non-interleaved"); gst_clear_caps (&caps); fail_unless (gst_element_set_state (audioconvert, GST_STATE_NULL) == GST_STATE_CHANGE_SUCCESS, "could not set to null"); /* cleanup */ GST_DEBUG ("cleanup audioconvert"); cleanup_audioconvert (audioconvert); GST_DEBUG ("cleanup, unref incaps"); gst_caps_unref (incaps); gst_caps_unref (outcaps); } GST_END_TEST; static Suite * audioconvert_suite (void) { Suite *s = suite_create ("audioconvert"); TCase *tc_chain = tcase_create ("general"); suite_add_tcase (s, tc_chain); tcase_add_test (tc_chain, test_int16); tcase_add_test (tc_chain, test_float32); tcase_add_test (tc_chain, test_int_conversion); tcase_add_test (tc_chain, test_float_conversion); tcase_add_test (tc_chain, test_int_float_conversion); tcase_add_test (tc_chain, test_multichannel_conversion); tcase_add_test (tc_chain, test_passthrough); tcase_add_test (tc_chain, test_caps_negotiation); tcase_add_test (tc_chain, test_convert_undefined_multichannel); tcase_add_test (tc_chain, test_preserve_width); tcase_add_test (tc_chain, test_gap_buffers); tcase_add_test (tc_chain, test_layout_conversion); tcase_add_test (tc_chain, test_layout_conv_fixate_caps); tcase_add_test (tc_chain, test_96_channels_conversion); return s; } GST_CHECK_MAIN (audioconvert);