/* GStreamer * * Copyright (C) 2007,2010 Sebastian Dröge * * gstlfocontrolsource.c: Control source that provides some periodic waveforms * as control values. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /** * SECTION:gstlfocontrolsource * @short_description: LFO control source * * #GstLFOControlSource is a #GstControlSource, that provides several periodic waveforms * as control values. It supports all fundamental, numeric GValue types as property. * * To use #GstLFOControlSource get a new instance by calling gst_lfo_control_source_new(), * bind it to a #GParamSpec and set the relevant properties or use * gst_lfo_control_source_set_waveform. * * All functions are MT-safe. * */ #include #include #include "gstcontrolsource.h" #include "gstlfocontrolsource.h" #include "gstlfocontrolsourceprivate.h" #include "gst/glib-compat-private.h" #include #define EMPTY(x) (x) /* FIXME: as % in C is not the modulo operator we need here for * negative numbers implement our own. Are there better ways? */ static inline GstClockTime _calculate_pos (GstClockTime timestamp, GstClockTime timeshift, GstClockTime period) { while (timestamp < timeshift) timestamp += period; timestamp -= timeshift; return timestamp % period; } #define DEFINE_SINE(type,round,convert) \ static inline g##type \ _sine_get_##type (GstLFOControlSource *self, g##type max, g##type min, gdouble amp, gdouble off, GstClockTime timeshift, GstClockTime period, gdouble frequency, GstClockTime timestamp) \ { \ gdouble ret; \ GstClockTime pos = _calculate_pos (timestamp, timeshift, period); \ \ ret = sin (2.0 * M_PI * (frequency / GST_SECOND) * gst_guint64_to_gdouble (pos)); \ ret *= amp; \ ret += off; \ \ if (round) \ ret += 0.5; \ \ return (g##type) CLAMP (ret, convert (min), convert (max)); \ } \ \ static gboolean \ waveform_sine_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \ GValue *value) \ { \ g##type ret, max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ ret = _sine_get_##type (self, max, min, amp, off, timeshift, period, frequency, timestamp); \ g_value_set_##type (value, ret); \ g_mutex_unlock (self->lock); \ return TRUE; \ } \ \ static gboolean \ waveform_sine_get_##type##_value_array (GstLFOControlSource *self, \ GstClockTime timestamp, GstValueArray * value_array) \ { \ gint i; \ GstClockTime ts = timestamp; \ g##type *values = (g##type *) value_array->values; \ g##type max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ for(i = 0; i < value_array->nbsamples; i++) { \ *values = _sine_get_##type (self, max, min, amp, off, timeshift, period, frequency, ts); \ ts += value_array->sample_interval; \ values++; \ } \ g_mutex_unlock (self->lock); \ return TRUE; \ } DEFINE_SINE (int, TRUE, EMPTY); DEFINE_SINE (uint, TRUE, EMPTY); DEFINE_SINE (long, TRUE, EMPTY); DEFINE_SINE (ulong, TRUE, EMPTY); DEFINE_SINE (int64, TRUE, EMPTY); DEFINE_SINE (uint64, TRUE, gst_guint64_to_gdouble); DEFINE_SINE (float, FALSE, EMPTY); DEFINE_SINE (double, FALSE, EMPTY); static GstWaveformImplementation waveform_sine = { (GstControlSourceGetValue) waveform_sine_get_int, (GstControlSourceGetValueArray) waveform_sine_get_int_value_array, (GstControlSourceGetValue) waveform_sine_get_uint, (GstControlSourceGetValueArray) waveform_sine_get_uint_value_array, (GstControlSourceGetValue) waveform_sine_get_long, (GstControlSourceGetValueArray) waveform_sine_get_long_value_array, (GstControlSourceGetValue) waveform_sine_get_ulong, (GstControlSourceGetValueArray) waveform_sine_get_ulong_value_array, (GstControlSourceGetValue) waveform_sine_get_int64, (GstControlSourceGetValueArray) waveform_sine_get_int64_value_array, (GstControlSourceGetValue) waveform_sine_get_uint64, (GstControlSourceGetValueArray) waveform_sine_get_uint64_value_array, (GstControlSourceGetValue) waveform_sine_get_float, (GstControlSourceGetValueArray) waveform_sine_get_float_value_array, (GstControlSourceGetValue) waveform_sine_get_double, (GstControlSourceGetValueArray) waveform_sine_get_double_value_array }; #define DEFINE_SQUARE(type,round, convert) \ \ static inline g##type \ _square_get_##type (GstLFOControlSource *self, g##type max, g##type min, gdouble amp, gdouble off, GstClockTime timeshift, GstClockTime period, gdouble frequency, GstClockTime timestamp) \ { \ GstClockTime pos = _calculate_pos (timestamp, timeshift, period); \ gdouble ret; \ \ if (pos >= period / 2) \ ret = amp; \ else \ ret = - amp; \ \ ret += off; \ \ if (round) \ ret += 0.5; \ \ return (g##type) CLAMP (ret, convert (min), convert (max)); \ } \ \ static gboolean \ waveform_square_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \ GValue *value) \ { \ g##type ret, max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ ret = _square_get_##type (self, max, min, amp, off, timeshift, period, frequency, timestamp); \ g_value_set_##type (value, ret); \ g_mutex_unlock (self->lock); \ return TRUE; \ } \ \ static gboolean \ waveform_square_get_##type##_value_array (GstLFOControlSource *self, \ GstClockTime timestamp, GstValueArray * value_array) \ { \ gint i; \ GstClockTime ts = timestamp; \ g##type *values = (g##type *) value_array->values; \ g##type max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ for(i = 0; i < value_array->nbsamples; i++) { \ *values = _square_get_##type (self, max, min, amp, off, timeshift, period, frequency, ts); \ ts += value_array->sample_interval; \ values++; \ } \ g_mutex_unlock (self->lock); \ return TRUE; \ } DEFINE_SQUARE (int, TRUE, EMPTY); DEFINE_SQUARE (uint, TRUE, EMPTY); DEFINE_SQUARE (long, TRUE, EMPTY); DEFINE_SQUARE (ulong, TRUE, EMPTY); DEFINE_SQUARE (int64, TRUE, EMPTY); DEFINE_SQUARE (uint64, TRUE, gst_guint64_to_gdouble); DEFINE_SQUARE (float, FALSE, EMPTY); DEFINE_SQUARE (double, FALSE, EMPTY); static GstWaveformImplementation waveform_square = { (GstControlSourceGetValue) waveform_square_get_int, (GstControlSourceGetValueArray) waveform_square_get_int_value_array, (GstControlSourceGetValue) waveform_square_get_uint, (GstControlSourceGetValueArray) waveform_square_get_uint_value_array, (GstControlSourceGetValue) waveform_square_get_long, (GstControlSourceGetValueArray) waveform_square_get_long_value_array, (GstControlSourceGetValue) waveform_square_get_ulong, (GstControlSourceGetValueArray) waveform_square_get_ulong_value_array, (GstControlSourceGetValue) waveform_square_get_int64, (GstControlSourceGetValueArray) waveform_square_get_int64_value_array, (GstControlSourceGetValue) waveform_square_get_uint64, (GstControlSourceGetValueArray) waveform_square_get_uint64_value_array, (GstControlSourceGetValue) waveform_square_get_float, (GstControlSourceGetValueArray) waveform_square_get_float_value_array, (GstControlSourceGetValue) waveform_square_get_double, (GstControlSourceGetValueArray) waveform_square_get_double_value_array }; #define DEFINE_SAW(type,round,convert) \ \ static inline g##type \ _saw_get_##type (GstLFOControlSource *self, g##type max, g##type min, gdouble amp, gdouble off, GstClockTime timeshift, GstClockTime period, gdouble frequency, GstClockTime timestamp) \ { \ GstClockTime pos = _calculate_pos (timestamp, timeshift, period); \ gdouble ret; \ \ ret = - ((gst_guint64_to_gdouble (pos) - gst_guint64_to_gdouble (period) / 2.0) * ((2.0 * amp) / gst_guint64_to_gdouble (period)));\ \ ret += off; \ \ if (round) \ ret += 0.5; \ \ return (g##type) CLAMP (ret, convert (min), convert (max)); \ } \ \ static gboolean \ waveform_saw_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \ GValue *value) \ { \ g##type ret, max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ ret = _saw_get_##type (self, max, min, amp, off, timeshift, period, frequency, timestamp); \ g_value_set_##type (value, ret); \ g_mutex_unlock (self->lock); \ return TRUE; \ } \ \ static gboolean \ waveform_saw_get_##type##_value_array (GstLFOControlSource *self, \ GstClockTime timestamp, GstValueArray * value_array) \ { \ gint i; \ GstClockTime ts = timestamp; \ g##type *values = (g##type *) value_array->values; \ g##type max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ for(i = 0; i < value_array->nbsamples; i++) { \ *values = _saw_get_##type (self, max, min, amp, off, timeshift, period, frequency, ts); \ ts += value_array->sample_interval; \ values++; \ } \ g_mutex_unlock (self->lock); \ return TRUE; \ } DEFINE_SAW (int, TRUE, EMPTY); DEFINE_SAW (uint, TRUE, EMPTY); DEFINE_SAW (long, TRUE, EMPTY); DEFINE_SAW (ulong, TRUE, EMPTY); DEFINE_SAW (int64, TRUE, EMPTY); DEFINE_SAW (uint64, TRUE, gst_guint64_to_gdouble); DEFINE_SAW (float, FALSE, EMPTY); DEFINE_SAW (double, FALSE, EMPTY); static GstWaveformImplementation waveform_saw = { (GstControlSourceGetValue) waveform_saw_get_int, (GstControlSourceGetValueArray) waveform_saw_get_int_value_array, (GstControlSourceGetValue) waveform_saw_get_uint, (GstControlSourceGetValueArray) waveform_saw_get_uint_value_array, (GstControlSourceGetValue) waveform_saw_get_long, (GstControlSourceGetValueArray) waveform_saw_get_long_value_array, (GstControlSourceGetValue) waveform_saw_get_ulong, (GstControlSourceGetValueArray) waveform_saw_get_ulong_value_array, (GstControlSourceGetValue) waveform_saw_get_int64, (GstControlSourceGetValueArray) waveform_saw_get_int64_value_array, (GstControlSourceGetValue) waveform_saw_get_uint64, (GstControlSourceGetValueArray) waveform_saw_get_uint64_value_array, (GstControlSourceGetValue) waveform_saw_get_float, (GstControlSourceGetValueArray) waveform_saw_get_float_value_array, (GstControlSourceGetValue) waveform_saw_get_double, (GstControlSourceGetValueArray) waveform_saw_get_double_value_array }; #define DEFINE_RSAW(type,round,convert) \ \ static inline g##type \ _rsaw_get_##type (GstLFOControlSource *self, g##type max, g##type min, gdouble amp, gdouble off, GstClockTime timeshift, GstClockTime period, gdouble frequency, GstClockTime timestamp) \ { \ GstClockTime pos = _calculate_pos (timestamp, timeshift, period); \ gdouble ret; \ \ ret = ((gst_guint64_to_gdouble (pos) - gst_guint64_to_gdouble (period) / 2.0) * ((2.0 * amp) / gst_guint64_to_gdouble (period)));\ \ ret += off; \ \ if (round) \ ret += 0.5; \ \ return (g##type) CLAMP (ret, convert (min), convert (max)); \ } \ \ static gboolean \ waveform_rsaw_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \ GValue *value) \ { \ g##type ret, max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ ret = _rsaw_get_##type (self, max, min, amp, off, timeshift, period, frequency, timestamp); \ g_value_set_##type (value, ret); \ g_mutex_unlock (self->lock); \ return TRUE; \ } \ \ static gboolean \ waveform_rsaw_get_##type##_value_array (GstLFOControlSource *self, \ GstClockTime timestamp, GstValueArray * value_array) \ { \ gint i; \ GstClockTime ts = timestamp; \ g##type *values = (g##type *) value_array->values; \ g##type max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ for(i = 0; i < value_array->nbsamples; i++) { \ *values = _rsaw_get_##type (self, max, min, amp, off, timeshift, period, frequency, ts); \ ts += value_array->sample_interval; \ values++; \ } \ g_mutex_unlock (self->lock); \ return TRUE; \ } DEFINE_RSAW (int, TRUE, EMPTY); DEFINE_RSAW (uint, TRUE, EMPTY); DEFINE_RSAW (long, TRUE, EMPTY); DEFINE_RSAW (ulong, TRUE, EMPTY); DEFINE_RSAW (int64, TRUE, EMPTY); DEFINE_RSAW (uint64, TRUE, gst_guint64_to_gdouble); DEFINE_RSAW (float, FALSE, EMPTY); DEFINE_RSAW (double, FALSE, EMPTY); static GstWaveformImplementation waveform_rsaw = { (GstControlSourceGetValue) waveform_rsaw_get_int, (GstControlSourceGetValueArray) waveform_rsaw_get_int_value_array, (GstControlSourceGetValue) waveform_rsaw_get_uint, (GstControlSourceGetValueArray) waveform_rsaw_get_uint_value_array, (GstControlSourceGetValue) waveform_rsaw_get_long, (GstControlSourceGetValueArray) waveform_rsaw_get_long_value_array, (GstControlSourceGetValue) waveform_rsaw_get_ulong, (GstControlSourceGetValueArray) waveform_rsaw_get_ulong_value_array, (GstControlSourceGetValue) waveform_rsaw_get_int64, (GstControlSourceGetValueArray) waveform_rsaw_get_int64_value_array, (GstControlSourceGetValue) waveform_rsaw_get_uint64, (GstControlSourceGetValueArray) waveform_rsaw_get_uint64_value_array, (GstControlSourceGetValue) waveform_rsaw_get_float, (GstControlSourceGetValueArray) waveform_rsaw_get_float_value_array, (GstControlSourceGetValue) waveform_rsaw_get_double, (GstControlSourceGetValueArray) waveform_rsaw_get_double_value_array }; #define DEFINE_TRIANGLE(type,round,convert) \ \ static inline g##type \ _triangle_get_##type (GstLFOControlSource *self, g##type max, g##type min, gdouble amp, gdouble off, GstClockTime timeshift, GstClockTime period, gdouble frequency, GstClockTime timestamp) \ { \ GstClockTime pos = _calculate_pos (timestamp, timeshift, period); \ gdouble ret; \ \ if (gst_guint64_to_gdouble (pos) <= gst_guint64_to_gdouble (period) / 4.0) \ ret = gst_guint64_to_gdouble (pos) * ((4.0 * amp) / gst_guint64_to_gdouble (period)); \ else if (gst_guint64_to_gdouble (pos) <= (3.0 * gst_guint64_to_gdouble (period)) / 4.0) \ ret = -(gst_guint64_to_gdouble (pos) - gst_guint64_to_gdouble (period) / 2.0) * ((4.0 * amp) / gst_guint64_to_gdouble (period)); \ else \ ret = gst_guint64_to_gdouble (period) - gst_guint64_to_gdouble (pos) * ((4.0 * amp) / gst_guint64_to_gdouble (period)); \ \ ret += off; \ \ if (round) \ ret += 0.5; \ \ return (g##type) CLAMP (ret, convert (min), convert (max)); \ } \ \ static gboolean \ waveform_triangle_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \ GValue *value) \ { \ g##type ret, max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ ret = _triangle_get_##type (self, max, min, amp, off, timeshift, period, frequency, timestamp); \ g_value_set_##type (value, ret); \ g_mutex_unlock (self->lock); \ return TRUE; \ } \ \ static gboolean \ waveform_triangle_get_##type##_value_array (GstLFOControlSource *self, \ GstClockTime timestamp, GstValueArray * value_array) \ { \ gint i; \ GstClockTime ts = timestamp; \ g##type *values = (g##type *) value_array->values; \ g##type max, min; \ gdouble amp, off, frequency; \ GstClockTime timeshift, period; \ \ g_mutex_lock (self->lock); \ max = g_value_get_##type (&self->priv->maximum_value); \ min = g_value_get_##type (&self->priv->minimum_value); \ amp = convert (g_value_get_##type (&self->priv->amplitude)); \ off = convert (g_value_get_##type (&self->priv->offset)); \ timeshift = self->priv->timeshift; \ period = self->priv->period; \ frequency = self->priv->frequency; \ \ for(i = 0; i < value_array->nbsamples; i++) { \ *values = _triangle_get_##type (self, max, min, amp, off, timeshift, period, frequency, ts); \ ts += value_array->sample_interval; \ values++; \ } \ g_mutex_unlock (self->lock); \ return TRUE; \ } DEFINE_TRIANGLE (int, TRUE, EMPTY); DEFINE_TRIANGLE (uint, TRUE, EMPTY); DEFINE_TRIANGLE (long, TRUE, EMPTY); DEFINE_TRIANGLE (ulong, TRUE, EMPTY); DEFINE_TRIANGLE (int64, TRUE, EMPTY); DEFINE_TRIANGLE (uint64, TRUE, gst_guint64_to_gdouble); DEFINE_TRIANGLE (float, FALSE, EMPTY); DEFINE_TRIANGLE (double, FALSE, EMPTY); static GstWaveformImplementation waveform_triangle = { (GstControlSourceGetValue) waveform_triangle_get_int, (GstControlSourceGetValueArray) waveform_triangle_get_int_value_array, (GstControlSourceGetValue) waveform_triangle_get_uint, (GstControlSourceGetValueArray) waveform_triangle_get_uint_value_array, (GstControlSourceGetValue) waveform_triangle_get_long, (GstControlSourceGetValueArray) waveform_triangle_get_long_value_array, (GstControlSourceGetValue) waveform_triangle_get_ulong, (GstControlSourceGetValueArray) waveform_triangle_get_ulong_value_array, (GstControlSourceGetValue) waveform_triangle_get_int64, (GstControlSourceGetValueArray) waveform_triangle_get_int64_value_array, (GstControlSourceGetValue) waveform_triangle_get_uint64, (GstControlSourceGetValueArray) waveform_triangle_get_uint64_value_array, (GstControlSourceGetValue) waveform_triangle_get_float, (GstControlSourceGetValueArray) waveform_triangle_get_float_value_array, (GstControlSourceGetValue) waveform_triangle_get_double, (GstControlSourceGetValueArray) waveform_triangle_get_double_value_array }; static GstWaveformImplementation *waveforms[] = { &waveform_sine, &waveform_square, &waveform_saw, &waveform_rsaw, &waveform_triangle }; static const guint num_waveforms = G_N_ELEMENTS (waveforms); enum { PROP_WAVEFORM = 1, PROP_FREQUENCY, PROP_TIMESHIFT, PROP_AMPLITUDE, PROP_OFFSET }; GType gst_lfo_waveform_get_type (void) { static gsize gtype = 0; static const GEnumValue values[] = { {GST_LFO_WAVEFORM_SINE, "GST_LFO_WAVEFORM_SINE", "sine"}, {GST_LFO_WAVEFORM_SQUARE, "GST_LFO_WAVEFORM_SQUARE", "square"}, {GST_LFO_WAVEFORM_SAW, "GST_LFO_WAVEFORM_SAW", "saw"}, {GST_LFO_WAVEFORM_REVERSE_SAW, "GST_LFO_WAVEFORM_REVERSE_SAW", "reverse-saw"}, {GST_LFO_WAVEFORM_TRIANGLE, "GST_LFO_WAVEFORM_TRIANGLE", "triangle"}, {0, NULL, NULL} }; if (g_once_init_enter (>ype)) { GType tmp = g_enum_register_static ("GstLFOWaveform", values); g_once_init_leave (>ype, tmp); } return (GType) gtype; } G_DEFINE_TYPE (GstLFOControlSource, gst_lfo_control_source, GST_TYPE_CONTROL_SOURCE); static GObjectClass *parent_class = NULL; static void gst_lfo_control_source_reset (GstLFOControlSource * self) { GstControlSource *csource = GST_CONTROL_SOURCE (self); csource->get_value = NULL; csource->get_value_array = NULL; self->priv->type = self->priv->base = G_TYPE_INVALID; if (G_IS_VALUE (&self->priv->minimum_value)) g_value_unset (&self->priv->minimum_value); if (G_IS_VALUE (&self->priv->maximum_value)) g_value_unset (&self->priv->maximum_value); if (G_IS_VALUE (&self->priv->amplitude)) g_value_unset (&self->priv->amplitude); if (G_IS_VALUE (&self->priv->offset)) g_value_unset (&self->priv->offset); } /** * gst_lfo_control_source_new: * * This returns a new, unbound #GstLFOControlSource. * * Returns: a new, unbound #GstLFOControlSource. */ GstLFOControlSource * gst_lfo_control_source_new (void) { return g_object_newv (GST_TYPE_LFO_CONTROL_SOURCE, 0, NULL); } static gboolean gst_lfo_control_source_set_waveform (GstLFOControlSource * self, GstLFOWaveform waveform) { GstControlSource *csource = GST_CONTROL_SOURCE (self); gboolean ret = TRUE; if (waveform >= num_waveforms || (int) waveform < 0) { GST_WARNING ("waveform %d invalid or not implemented yet", waveform); return FALSE; } if (self->priv->base == G_TYPE_INVALID) { GST_WARNING ("not bound to a property yet"); return FALSE; } switch (self->priv->base) { case G_TYPE_INT: csource->get_value = waveforms[waveform]->get_int; csource->get_value_array = waveforms[waveform]->get_int_value_array; break; case G_TYPE_UINT:{ csource->get_value = waveforms[waveform]->get_uint; csource->get_value_array = waveforms[waveform]->get_uint_value_array; break; } case G_TYPE_LONG:{ csource->get_value = waveforms[waveform]->get_long; csource->get_value_array = waveforms[waveform]->get_long_value_array; break; } case G_TYPE_ULONG:{ csource->get_value = waveforms[waveform]->get_ulong; csource->get_value_array = waveforms[waveform]->get_ulong_value_array; break; } case G_TYPE_INT64:{ csource->get_value = waveforms[waveform]->get_int64; csource->get_value_array = waveforms[waveform]->get_int64_value_array; break; } case G_TYPE_UINT64:{ csource->get_value = waveforms[waveform]->get_uint64; csource->get_value_array = waveforms[waveform]->get_uint64_value_array; break; } case G_TYPE_FLOAT:{ csource->get_value = waveforms[waveform]->get_float; csource->get_value_array = waveforms[waveform]->get_float_value_array; break; } case G_TYPE_DOUBLE:{ csource->get_value = waveforms[waveform]->get_double; csource->get_value_array = waveforms[waveform]->get_double_value_array; break; } default: ret = FALSE; break; } if (ret) self->priv->waveform = waveform; else GST_WARNING ("incomplete implementation for type '%s'", GST_STR_NULL (g_type_name (self->priv->type))); return ret; } static gboolean gst_lfo_control_source_bind (GstControlSource * source, GParamSpec * pspec) { GType type, base; GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (source); gboolean ret = TRUE; /* get the fundamental base type */ self->priv->type = base = type = G_PARAM_SPEC_VALUE_TYPE (pspec); while ((type = g_type_parent (type))) base = type; self->priv->base = base; /* restore type */ type = self->priv->type; switch (base) { case G_TYPE_INT:{ GParamSpecInt *tpspec = G_PARAM_SPEC_INT (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_int (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_int (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_int (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_int (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_UINT:{ GParamSpecUInt *tpspec = G_PARAM_SPEC_UINT (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_uint (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_uint (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_uint (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_uint (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_LONG:{ GParamSpecLong *tpspec = G_PARAM_SPEC_LONG (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_long (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_long (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_long (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_long (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_ULONG:{ GParamSpecULong *tpspec = G_PARAM_SPEC_ULONG (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_ulong (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_ulong (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_ulong (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_ulong (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_INT64:{ GParamSpecInt64 *tpspec = G_PARAM_SPEC_INT64 (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_int64 (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_int64 (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_int64 (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_int64 (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_UINT64:{ GParamSpecUInt64 *tpspec = G_PARAM_SPEC_UINT64 (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_uint64 (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_uint64 (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_uint64 (&self->priv->amplitude, 0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_uint64 (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_FLOAT:{ GParamSpecFloat *tpspec = G_PARAM_SPEC_FLOAT (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_float (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_float (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_float (&self->priv->amplitude, 0.0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_float (&self->priv->offset, tpspec->default_value); } break; } case G_TYPE_DOUBLE:{ GParamSpecDouble *tpspec = G_PARAM_SPEC_DOUBLE (pspec); g_value_init (&self->priv->minimum_value, type); g_value_set_double (&self->priv->minimum_value, tpspec->minimum); g_value_init (&self->priv->maximum_value, type); g_value_set_double (&self->priv->maximum_value, tpspec->maximum); if (!G_IS_VALUE (&self->priv->amplitude)) { g_value_init (&self->priv->amplitude, type); g_value_set_double (&self->priv->amplitude, 0.0); } if (!G_IS_VALUE (&self->priv->offset)) { g_value_init (&self->priv->offset, type); g_value_set_double (&self->priv->offset, tpspec->default_value); } break; } default: GST_WARNING ("incomplete implementation for paramspec type '%s'", G_PARAM_SPEC_TYPE_NAME (pspec)); ret = FALSE; break; } if (ret) { GValue amp = { 0, } , off = { 0,}; /* This should never fail unless the user already set amplitude or offset * with an incompatible type before _bind () */ if (!g_value_type_transformable (G_VALUE_TYPE (&self->priv->amplitude), base) || !g_value_type_transformable (G_VALUE_TYPE (&self->priv->offset), base)) { GST_WARNING ("incompatible types for amplitude or offset"); gst_lfo_control_source_reset (self); return FALSE; } /* Generate copies and transform to the correct type */ g_value_init (&, base); g_value_transform (&self->priv->amplitude, &); g_value_init (&off, base); g_value_transform (&self->priv->offset, &off); ret = gst_lfo_control_source_set_waveform (self, self->priv->waveform); g_value_unset (&self->priv->amplitude); g_value_init (&self->priv->amplitude, self->priv->base); g_value_transform (&, &self->priv->amplitude); g_value_unset (&self->priv->offset); g_value_init (&self->priv->offset, self->priv->base); g_value_transform (&off, &self->priv->offset); g_value_unset (&); g_value_unset (&off); } if (!ret) gst_lfo_control_source_reset (self); return ret; } static void gst_lfo_control_source_init (GstLFOControlSource * self) { self->priv = G_TYPE_INSTANCE_GET_PRIVATE (self, GST_TYPE_LFO_CONTROL_SOURCE, GstLFOControlSourcePrivate); self->priv->waveform = GST_LFO_WAVEFORM_SINE; self->priv->frequency = 1.0; self->priv->period = GST_SECOND / self->priv->frequency; self->priv->timeshift = 0; self->lock = g_mutex_new (); } static void gst_lfo_control_source_finalize (GObject * obj) { GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (obj); gst_lfo_control_source_reset (self); if (self->lock) { g_mutex_free (self->lock); self->lock = NULL; } G_OBJECT_CLASS (parent_class)->finalize (obj); } static void gst_lfo_control_source_dispose (GObject * obj) { G_OBJECT_CLASS (parent_class)->dispose (obj); } static void gst_lfo_control_source_set_property (GObject * object, guint prop_id, const GValue * value, GParamSpec * pspec) { GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (object); switch (prop_id) { case PROP_WAVEFORM: g_mutex_lock (self->lock); gst_lfo_control_source_set_waveform (self, (GstLFOWaveform) g_value_get_enum (value)); g_mutex_unlock (self->lock); break; case PROP_FREQUENCY:{ gdouble frequency = g_value_get_double (value); g_return_if_fail (frequency > 0 || ((GstClockTime) (GST_SECOND / frequency)) != 0); g_mutex_lock (self->lock); self->priv->frequency = frequency; self->priv->period = GST_SECOND / frequency; g_mutex_unlock (self->lock); break; } case PROP_TIMESHIFT: g_mutex_lock (self->lock); self->priv->timeshift = g_value_get_uint64 (value); g_mutex_unlock (self->lock); break; case PROP_AMPLITUDE:{ GValue *val = g_value_get_boxed (value); if (self->priv->type != G_TYPE_INVALID) { g_return_if_fail (g_value_type_transformable (self->priv->type, G_VALUE_TYPE (val))); g_mutex_lock (self->lock); if (G_IS_VALUE (&self->priv->amplitude)) g_value_unset (&self->priv->amplitude); g_value_init (&self->priv->amplitude, self->priv->type); g_value_transform (val, &self->priv->amplitude); g_mutex_unlock (self->lock); } else { g_mutex_lock (self->lock); if (G_IS_VALUE (&self->priv->amplitude)) g_value_unset (&self->priv->amplitude); g_value_init (&self->priv->amplitude, G_VALUE_TYPE (val)); g_value_copy (val, &self->priv->amplitude); g_mutex_unlock (self->lock); } break; } case PROP_OFFSET:{ GValue *val = g_value_get_boxed (value); if (self->priv->type != G_TYPE_INVALID) { g_return_if_fail (g_value_type_transformable (self->priv->type, G_VALUE_TYPE (val))); g_mutex_lock (self->lock); if (G_IS_VALUE (&self->priv->offset)) g_value_unset (&self->priv->offset); g_value_init (&self->priv->offset, self->priv->type); g_value_transform (val, &self->priv->offset); g_mutex_unlock (self->lock); } else { g_mutex_lock (self->lock); if (G_IS_VALUE (&self->priv->offset)) g_value_unset (&self->priv->offset); g_value_init (&self->priv->offset, G_VALUE_TYPE (val)); g_value_copy (val, &self->priv->offset); g_mutex_unlock (self->lock); } break; } default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_lfo_control_source_get_property (GObject * object, guint prop_id, GValue * value, GParamSpec * pspec) { GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (object); switch (prop_id) { case PROP_WAVEFORM: g_value_set_enum (value, self->priv->waveform); break; case PROP_FREQUENCY: g_value_set_double (value, self->priv->frequency); break; case PROP_TIMESHIFT: g_value_set_uint64 (value, self->priv->timeshift); break; case PROP_AMPLITUDE: g_value_set_boxed (value, &self->priv->amplitude); break; case PROP_OFFSET: g_value_set_boxed (value, &self->priv->offset); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void gst_lfo_control_source_class_init (GstLFOControlSourceClass * klass) { GObjectClass *gobject_class = G_OBJECT_CLASS (klass); GstControlSourceClass *csource_class = GST_CONTROL_SOURCE_CLASS (klass); parent_class = g_type_class_peek_parent (klass); g_type_class_add_private (klass, sizeof (GstLFOControlSourcePrivate)); gobject_class->finalize = gst_lfo_control_source_finalize; gobject_class->dispose = gst_lfo_control_source_dispose; gobject_class->set_property = gst_lfo_control_source_set_property; gobject_class->get_property = gst_lfo_control_source_get_property; csource_class->bind = gst_lfo_control_source_bind; /** * GstLFOControlSource:waveform * * Specifies the waveform that should be used for this #GstLFOControlSource. * **/ g_object_class_install_property (gobject_class, PROP_WAVEFORM, g_param_spec_enum ("waveform", "Waveform", "Waveform", GST_TYPE_LFO_WAVEFORM, GST_LFO_WAVEFORM_SINE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GstLFOControlSource:frequency * * Specifies the frequency that should be used for the waveform * of this #GstLFOControlSource. It should be large enough * so that the period is longer than one nanosecond. * **/ g_object_class_install_property (gobject_class, PROP_FREQUENCY, g_param_spec_double ("frequency", "Frequency", "Frequency of the waveform", 0.0, G_MAXDOUBLE, 1.0, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GstLFOControlSource:timeshift * * Specifies the timeshift to the right that should be used for the waveform * of this #GstLFOControlSource in nanoseconds. * * To get a n nanosecond shift to the left use * "(GST_SECOND / frequency) - n". * **/ g_object_class_install_property (gobject_class, PROP_TIMESHIFT, g_param_spec_uint64 ("timeshift", "Timeshift", "Timeshift of the waveform to the right", 0, G_MAXUINT64, 0, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GstLFOControlSource:amplitude * * Specifies the amplitude for the waveform of this #GstLFOControlSource. * * It should be given as a #GValue with a type that can be transformed * to the type of the bound property. **/ g_object_class_install_property (gobject_class, PROP_AMPLITUDE, g_param_spec_boxed ("amplitude", "Amplitude", "Amplitude of the waveform", G_TYPE_VALUE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GstLFOControlSource:offset * * Specifies the offset for the waveform of this #GstLFOControlSource. * * It should be given as a #GValue with a type that can be transformed * to the type of the bound property. **/ g_object_class_install_property (gobject_class, PROP_OFFSET, g_param_spec_boxed ("offset", "Offset", "Offset of the waveform", G_TYPE_VALUE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); }