/* GStreamer ReplayGain analysis * * Copyright (C) 2006 Rene Stadler <mail@renestadler.de> * Copyright (C) 2001 David Robinson <David@Robinson.org> * Glen Sawyer <glensawyer@hotmail.com> * * rganalysis.c: Analyze raw audio data in accordance with ReplayGain * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA */ /* Based on code with Copyright (C) 2001 David Robinson * <David@Robinson.org> and Glen Sawyer <glensawyer@hotmail.com>, * which is distributed under the LGPL as part of the vorbisgain * program. The original code also mentions Frank Klemm * (http://www.uni-jena.de/~pfk/mpp/) for having contributed lots of * good code. Specifically, this is based on the file * "gain_analysis.c" from vorbisgain version 0.34. */ /* Room for future improvement: Mono data is currently in fact copied * to two channels which get processed normally. This means that mono * input data is processed twice. */ /* Helpful information for understanding this code: The two IIR * filters depend on previous input _and_ previous output samples (up * to the filter's order number of samples). This explains the whole * lot of memcpy'ing done in rg_analysis_analyze and why the context * holds so many buffers. */ #include <math.h> #include <string.h> #include <glib.h> #include "rganalysis.h" #define YULE_ORDER 10 #define BUTTER_ORDER 2 /* Percentile which is louder than the proposed level: */ #define RMS_PERCENTILE 95 /* Duration of RMS window in milliseconds: */ #define RMS_WINDOW_MSECS 50 /* Histogram array elements per dB: */ #define STEPS_PER_DB 100 /* Histogram upper bound in dB (normal max. values in the wild are * assumed to be around 70, 80 dB): */ #define MAX_DB 120 /* Calibration value: */ #define PINK_REF 64.82 /* 298640883795 */ #define MAX_ORDER MAX (BUTTER_ORDER, YULE_ORDER) #define MAX_SAMPLE_RATE 48000 /* The + 999 has the effect of ceil()ing: */ #define MAX_SAMPLE_WINDOW (guint) \ ((MAX_SAMPLE_RATE * RMS_WINDOW_MSECS + 999) / 1000) /* Analysis result accumulator. */ struct _RgAnalysisAcc { guint32 histogram[STEPS_PER_DB * MAX_DB]; gdouble peak; }; typedef struct _RgAnalysisAcc RgAnalysisAcc; /* Analysis context. */ struct _RgAnalysisCtx { /* Filter buffers for left channel. */ gfloat inprebuf_l[MAX_ORDER * 2]; gfloat *inpre_l; gfloat stepbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER]; gfloat *step_l; gfloat outbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER]; gfloat *out_l; /* Filter buffers for right channel. */ gfloat inprebuf_r[MAX_ORDER * 2]; gfloat *inpre_r; gfloat stepbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER]; gfloat *step_r; gfloat outbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER]; gfloat *out_r; /* Number of samples to reach duration of the RMS window: */ guint window_n_samples; /* Progress of the running window: */ guint window_n_samples_done; gdouble window_square_sum; gint sample_rate; gint sample_rate_index; RgAnalysisAcc track; RgAnalysisAcc album; void (*post_message) (gpointer analysis, GstClockTime timestamp, GstClockTime duration, gdouble rglevel); gpointer analysis; /* The timestamp of the current incoming buffer. */ GstClockTime buffer_timestamp; /* Number of samples processed in current buffer, during emit_signal, this will always be on an RMS window boundary. */ guint buffer_n_samples_done; }; /* Filter coefficients for the IIR filters that form the equal * loudness filter. XFilter[ctx->sample_rate_index] gives the array * of the X coefficients (A or B) for the configured sample rate. */ #ifdef _MSC_VER /* Disable double-to-float warning: */ /* A better solution would be to append 'f' to each constant, but that * makes the code ugly. */ #pragma warning ( disable : 4305 ) #endif static const gfloat AYule[9][11] = { {1., -3.84664617118067, 7.81501653005538, -11.34170355132042, 13.05504219327545, -12.28759895145294, 9.48293806319790, -5.87257861775999, 2.75465861874613, -0.86984376593551, 0.13919314567432}, {1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280, -8.81498681370155, 6.85401540936998, -4.39470996079559, 2.19611684890774, -0.75104302451432, 0.13149317958808}, {1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713, -1.67148153367602, 1.00595954808547, -0.45953458054983, 0.16378164858596, -0.05032077717131, 0.02347897407020}, {1., -1.61273165137247, 1.07977492259970, -0.25656257754070, -0.16276719120440, -0.22638893773906, 0.39120800788284, -0.22138138954925, 0.04500235387352, 0.02005851806501, 0.00302439095741}, {1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438, 0.47854794562326, -0.12453458140019, -0.04067510197014, 0.08333755284107, -0.04237348025746, 0.02977207319925}, {1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124, -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683, 0.05784820375801, 0.03222754072173}, {1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858, 0.45054734505008, -0.33032403314006, 0.06739368333110, -0.04784254229033, 0.01639907836189, 0.01807364323573}, {1., -0.51035327095184, -0.31863563325245, -0.20256413484477, 0.14728154134330, 0.38952639978999, -0.23313271880868, -0.05246019024463, -0.02505961724053, 0.02442357316099, 0.01818801111503}, {1., -0.25049871956020, -0.43193942311114, -0.03424681017675, -0.04678328784242, 0.26408300200955, 0.15113130533216, -0.17556493366449, -0.18823009262115, 0.05477720428674, 0.04704409688120} }; static const gfloat BYule[9][11] = { {0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959, -0.01655260341619, 0.02161526843274, -0.02074045215285, 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916}, {0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469, -0.00834990904936, 0.02245293253339, -0.02596338512915, 0.01624864962975, -0.00240879051584, 0.00674613682247, -0.00187763777362}, {0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798, -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049, -0.01390589421898, 0.00651420667831, -0.00881362733839}, {0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913, 0.06276101321749, -0.00000828086748, 0.00205861885564, -0.02950134983287}, {0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440, 0.05724228140351, 0.00832043980773, -0.01635381384540, -0.01760176568150}, {0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551, 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251, -0.01863887810927, -0.03193428438915, 0.00541907748707}, {0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672, -0.18901604199609, 0.30931782841830, -0.27562961986224, 0.00647310677246, 0.08647503780351, -0.03788984554840, -0.00588215443421}, {0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522, 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333, 0.06920467763959, -0.03721611395801, -0.00749618797172}, {0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415, -0.10214864179676, 0.14590772289388, -0.02459864859345, -0.11202315195388, -0.04060034127000, 0.04788665548180, -0.02217936801134} }; static const gfloat AButter[9][3] = { {1., -1.97223372919527, 0.97261396931306}, {1., -1.96977855582618, 0.97022847566350}, {1., -1.95835380975398, 0.95920349965459}, {1., -1.95002759149878, 0.95124613669835}, {1., -1.94561023566527, 0.94705070426118}, {1., -1.92783286977036, 0.93034775234268}, {1., -1.91858953033784, 0.92177618768381}, {1., -1.91542108074780, 0.91885558323625}, {1., -1.88903307939452, 0.89487434461664} }; static const gfloat BButter[9][3] = { {0.98621192462708, -1.97242384925416, 0.98621192462708}, {0.98500175787242, -1.97000351574484, 0.98500175787242}, {0.97938932735214, -1.95877865470428, 0.97938932735214}, {0.97531843204928, -1.95063686409857, 0.97531843204928}, {0.97316523498161, -1.94633046996323, 0.97316523498161}, {0.96454515552826, -1.92909031105652, 0.96454515552826}, {0.96009142950541, -1.92018285901082, 0.96009142950541}, {0.95856916599601, -1.91713833199203, 0.95856916599601}, {0.94597685600279, -1.89195371200558, 0.94597685600279} }; #ifdef _MSC_VER #pragma warning ( default : 4305 ) #endif /* Filter functions. These access elements with negative indices of * the input and output arrays (up to the filter's order). */ /* For much better performance, the function below has been * implemented by unrolling the inner loop for our two use cases. */ /* * static inline void * apply_filter (const gfloat * input, gfloat * output, guint n_samples, * const gfloat * a, const gfloat * b, guint order) * { * gfloat y; * gint i, k; * * for (i = 0; i < n_samples; i++) { * y = input[i] * b[0]; * for (k = 1; k <= order; k++) * y += input[i - k] * b[k] - output[i - k] * a[k]; * output[i] = y; * } * } */ static inline void yule_filter (const gfloat * input, gfloat * output, const gfloat * a, const gfloat * b) { /* 1e-10 is added below to avoid running into denormals when operating on * near silence. */ output[0] = 1e-10 + input[0] * b[0] + input[-1] * b[1] - output[-1] * a[1] + input[-2] * b[2] - output[-2] * a[2] + input[-3] * b[3] - output[-3] * a[3] + input[-4] * b[4] - output[-4] * a[4] + input[-5] * b[5] - output[-5] * a[5] + input[-6] * b[6] - output[-6] * a[6] + input[-7] * b[7] - output[-7] * a[7] + input[-8] * b[8] - output[-8] * a[8] + input[-9] * b[9] - output[-9] * a[9] + input[-10] * b[10] - output[-10] * a[10]; } static inline void butter_filter (const gfloat * input, gfloat * output, const gfloat * a, const gfloat * b) { output[0] = input[0] * b[0] + input[-1] * b[1] - output[-1] * a[1] + input[-2] * b[2] - output[-2] * a[2]; } /* Because butter_filter and yule_filter are inlined, this function is * a bit blown-up (code-size wise), but not inlining gives a ca. 40% * performance penalty. */ static inline void apply_filters (const RgAnalysisCtx * ctx, const gfloat * input_l, const gfloat * input_r, guint n_samples) { const gfloat *ayule = AYule[ctx->sample_rate_index]; const gfloat *byule = BYule[ctx->sample_rate_index]; const gfloat *abutter = AButter[ctx->sample_rate_index]; const gfloat *bbutter = BButter[ctx->sample_rate_index]; gint pos = ctx->window_n_samples_done; gint i; for (i = 0; i < n_samples; i++, pos++) { yule_filter (input_l + i, ctx->step_l + pos, ayule, byule); butter_filter (ctx->step_l + pos, ctx->out_l + pos, abutter, bbutter); yule_filter (input_r + i, ctx->step_r + pos, ayule, byule); butter_filter (ctx->step_r + pos, ctx->out_r + pos, abutter, bbutter); } } /* Clear filter buffer state and current RMS window. */ static void reset_filters (RgAnalysisCtx * ctx) { gint i; for (i = 0; i < MAX_ORDER; i++) { ctx->inprebuf_l[i] = 0.; ctx->stepbuf_l[i] = 0.; ctx->outbuf_l[i] = 0.; ctx->inprebuf_r[i] = 0.; ctx->stepbuf_r[i] = 0.; ctx->outbuf_r[i] = 0.; } ctx->window_square_sum = 0.; ctx->window_n_samples_done = 0; } /* Accumulator functions. */ /* Add two accumulators in-place. The sum is defined as the result of * the vector sum of the histogram array and the maximum value of the * peak field. Thus "adding" the accumulators for all tracks yields * the correct result for obtaining the album gain and peak. */ static void accumulator_add (RgAnalysisAcc * acc, const RgAnalysisAcc * acc_other) { gint i; for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++) acc->histogram[i] += acc_other->histogram[i]; acc->peak = MAX (acc->peak, acc_other->peak); } /* Reset an accumulator to zero. */ static void accumulator_clear (RgAnalysisAcc * acc) { memset (acc->histogram, 0, sizeof (acc->histogram)); acc->peak = 0.; } /* Obtain final analysis result from an accumulator. Returns TRUE on * success, FALSE on error (if accumulator is still zero). */ static gboolean accumulator_result (const RgAnalysisAcc * acc, gdouble * result_gain, gdouble * result_peak) { guint32 sum = 0; guint32 upper; guint i; for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++) sum += acc->histogram[i]; if (sum == 0) /* All entries are 0: We got less than 50ms of data. */ return FALSE; upper = (guint32) ceil (sum * (1. - (gdouble) (RMS_PERCENTILE / 100.))); for (i = G_N_ELEMENTS (acc->histogram); i--;) { if (upper <= acc->histogram[i]) break; upper -= acc->histogram[i]; } if (result_peak != NULL) *result_peak = acc->peak; if (result_gain != NULL) *result_gain = PINK_REF - (gdouble) i / STEPS_PER_DB; return TRUE; } /* Functions that operate on contexts, for external usage. */ /* Create a new context. Before it can be used, a sample rate must be * configured using rg_analysis_set_sample_rate. */ RgAnalysisCtx * rg_analysis_new (void) { RgAnalysisCtx *ctx; ctx = g_new (RgAnalysisCtx, 1); ctx->inpre_l = ctx->inprebuf_l + MAX_ORDER; ctx->step_l = ctx->stepbuf_l + MAX_ORDER; ctx->out_l = ctx->outbuf_l + MAX_ORDER; ctx->inpre_r = ctx->inprebuf_r + MAX_ORDER; ctx->step_r = ctx->stepbuf_r + MAX_ORDER; ctx->out_r = ctx->outbuf_r + MAX_ORDER; ctx->sample_rate = 0; accumulator_clear (&ctx->track); accumulator_clear (&ctx->album); return ctx; } static void reset_silence_detection (RgAnalysisCtx * ctx) { ctx->buffer_timestamp = GST_CLOCK_TIME_NONE; ctx->buffer_n_samples_done = 0; } /* Adapt to given sample rate. Does nothing if already the current * rate (returns TRUE then). Returns FALSE only if given sample rate * is not supported. If the configured rate changes, the last * unprocessed incomplete 50ms chunk of data is dropped because the * filters are reset. */ gboolean rg_analysis_set_sample_rate (RgAnalysisCtx * ctx, gint sample_rate) { g_return_val_if_fail (ctx != NULL, FALSE); if (ctx->sample_rate == sample_rate) return TRUE; switch (sample_rate) { case 48000: ctx->sample_rate_index = 0; break; case 44100: ctx->sample_rate_index = 1; break; case 32000: ctx->sample_rate_index = 2; break; case 24000: ctx->sample_rate_index = 3; break; case 22050: ctx->sample_rate_index = 4; break; case 16000: ctx->sample_rate_index = 5; break; case 12000: ctx->sample_rate_index = 6; break; case 11025: ctx->sample_rate_index = 7; break; case 8000: ctx->sample_rate_index = 8; break; default: return FALSE; } ctx->sample_rate = sample_rate; /* The + 999 has the effect of ceil()ing: */ ctx->window_n_samples = (guint) ((sample_rate * RMS_WINDOW_MSECS + 999) / 1000); reset_filters (ctx); reset_silence_detection (ctx); return TRUE; } void rg_analysis_init_silence_detection (RgAnalysisCtx * ctx, void (*post_message) (gpointer analysis, GstClockTime timestamp, GstClockTime duration, gdouble rglevel), gpointer analysis) { ctx->post_message = post_message; ctx->analysis = analysis; reset_silence_detection (ctx); } void rg_analysis_start_buffer (RgAnalysisCtx * ctx, GstClockTime buffer_timestamp) { ctx->buffer_timestamp = buffer_timestamp; ctx->buffer_n_samples_done = 0; } void rg_analysis_destroy (RgAnalysisCtx * ctx) { g_free (ctx); } /* Entry points for analyzing sample data in common raw data formats. * The stereo format functions expect interleaved frames. It is * possible to pass data in different formats for the same context, * there are no restrictions. All functions have the same signature; * the depth argument for the float functions is not variable and must * be given the value 32. */ void rg_analysis_analyze_mono_float (RgAnalysisCtx * ctx, gconstpointer data, gsize size, guint depth) { gfloat conv_samples[512]; const gfloat *samples = (gfloat *) data; guint n_samples = size / sizeof (gfloat); gint i; g_return_if_fail (depth == 32); g_return_if_fail (size % sizeof (gfloat) == 0); while (n_samples) { gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples)); n_samples -= n; memcpy (conv_samples, samples, n * sizeof (gfloat)); for (i = 0; i < n; i++) { ctx->track.peak = MAX (ctx->track.peak, fabs (conv_samples[i])); conv_samples[i] *= 32768.; } samples += n; rg_analysis_analyze (ctx, conv_samples, NULL, n); } } void rg_analysis_analyze_stereo_float (RgAnalysisCtx * ctx, gconstpointer data, gsize size, guint depth) { gfloat conv_samples_l[256]; gfloat conv_samples_r[256]; const gfloat *samples = (gfloat *) data; guint n_frames = size / (sizeof (gfloat) * 2); gint i; g_return_if_fail (depth == 32); g_return_if_fail (size % (sizeof (gfloat) * 2) == 0); while (n_frames) { gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l)); n_frames -= n; for (i = 0; i < n; i++) { gfloat old_sample; old_sample = samples[2 * i]; ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample)); conv_samples_l[i] = old_sample * 32768.; old_sample = samples[2 * i + 1]; ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample)); conv_samples_r[i] = old_sample * 32768.; } samples += 2 * n; rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n); } } void rg_analysis_analyze_mono_int16 (RgAnalysisCtx * ctx, gconstpointer data, gsize size, guint depth) { gfloat conv_samples[512]; gint32 peak_sample = 0; const gint16 *samples = (gint16 *) data; guint n_samples = size / sizeof (gint16); gint shift = 1 << (sizeof (gint16) * 8 - depth); gint i; g_return_if_fail (depth <= (sizeof (gint16) * 8)); g_return_if_fail (size % sizeof (gint16) == 0); while (n_samples) { gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples)); n_samples -= n; for (i = 0; i < n; i++) { gint16 old_sample = samples[i] * shift; peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); conv_samples[i] = (gfloat) old_sample; } samples += n; rg_analysis_analyze (ctx, conv_samples, NULL, n); } ctx->track.peak = MAX (ctx->track.peak, (gdouble) peak_sample / ((gdouble) (1u << 15))); } void rg_analysis_analyze_stereo_int16 (RgAnalysisCtx * ctx, gconstpointer data, gsize size, guint depth) { gfloat conv_samples_l[256]; gfloat conv_samples_r[256]; gint32 peak_sample = 0; const gint16 *samples = (gint16 *) data; guint n_frames = size / (sizeof (gint16) * 2); gint shift = 1 << (sizeof (gint16) * 8 - depth); gint i; g_return_if_fail (depth <= (sizeof (gint16) * 8)); g_return_if_fail (size % (sizeof (gint16) * 2) == 0); while (n_frames) { gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l)); n_frames -= n; for (i = 0; i < n; i++) { gint16 old_sample; old_sample = samples[2 * i] * shift; peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); conv_samples_l[i] = (gfloat) old_sample; old_sample = samples[2 * i + 1] * shift; peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); conv_samples_r[i] = (gfloat) old_sample; } samples += 2 * n; rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n); } ctx->track.peak = MAX (ctx->track.peak, (gdouble) peak_sample / ((gdouble) (1u << 15))); } /* Analyze the given chunk of samples. The sample data is given in * floating point format but should be scaled such that the values * +/-32768.0 correspond to the -0dBFS reference amplitude. * * samples_l: Buffer with sample data for the left channel or of the * mono channel. * * samples_r: Buffer with sample data for the right channel or NULL * for mono. * * n_samples: Number of samples passed in each buffer. */ void rg_analysis_analyze (RgAnalysisCtx * ctx, const gfloat * samples_l, const gfloat * samples_r, guint n_samples) { const gfloat *input_l, *input_r; guint n_samples_done; gint i; g_return_if_fail (ctx != NULL); g_return_if_fail (samples_l != NULL); g_return_if_fail (ctx->sample_rate != 0); if (n_samples == 0) return; if (samples_r == NULL) /* Mono. */ samples_r = samples_l; memcpy (ctx->inpre_l, samples_l, MIN (n_samples, MAX_ORDER) * sizeof (gfloat)); memcpy (ctx->inpre_r, samples_r, MIN (n_samples, MAX_ORDER) * sizeof (gfloat)); n_samples_done = 0; while (n_samples_done < n_samples) { /* Limit number of samples to be processed in this iteration to * the number needed to complete the next window: */ guint n_samples_current = MIN (n_samples - n_samples_done, ctx->window_n_samples - ctx->window_n_samples_done); if (n_samples_done < MAX_ORDER) { input_l = ctx->inpre_l + n_samples_done; input_r = ctx->inpre_r + n_samples_done; n_samples_current = MIN (n_samples_current, MAX_ORDER - n_samples_done); } else { input_l = samples_l + n_samples_done; input_r = samples_r + n_samples_done; } apply_filters (ctx, input_l, input_r, n_samples_current); /* Update the square sum. */ for (i = 0; i < n_samples_current; i++) ctx->window_square_sum += ctx->out_l[ctx->window_n_samples_done + i] * ctx->out_l[ctx->window_n_samples_done + i] + ctx->out_r[ctx->window_n_samples_done + i] * ctx->out_r[ctx->window_n_samples_done + i]; ctx->window_n_samples_done += n_samples_current; ctx->buffer_n_samples_done += n_samples_current; g_return_if_fail (ctx->window_n_samples_done <= ctx->window_n_samples); if (ctx->window_n_samples_done == ctx->window_n_samples) { /* Get the Root Mean Square (RMS) for this set of samples. */ gdouble val = STEPS_PER_DB * 10. * log10 (ctx->window_square_sum / ctx->window_n_samples * 0.5 + 1.e-37); gint ival = CLAMP ((gint) val, 0, (gint) G_N_ELEMENTS (ctx->track.histogram) - 1); /* Compute the per-window gain */ const gdouble gain = PINK_REF - (gdouble) ival / STEPS_PER_DB; const GstClockTime timestamp = ctx->buffer_timestamp + gst_util_uint64_scale_int_ceil (GST_SECOND, ctx->buffer_n_samples_done, ctx->sample_rate) - RMS_WINDOW_MSECS * GST_MSECOND; ctx->post_message (ctx->analysis, timestamp, RMS_WINDOW_MSECS * GST_MSECOND, -gain); ctx->track.histogram[ival]++; ctx->window_square_sum = 0.; ctx->window_n_samples_done = 0; /* No need for memmove here, the areas never overlap: Even for * the smallest sample rate, the number of samples needed for * the window is greater than MAX_ORDER. */ memcpy (ctx->stepbuf_l, ctx->stepbuf_l + ctx->window_n_samples, MAX_ORDER * sizeof (gfloat)); memcpy (ctx->outbuf_l, ctx->outbuf_l + ctx->window_n_samples, MAX_ORDER * sizeof (gfloat)); memcpy (ctx->stepbuf_r, ctx->stepbuf_r + ctx->window_n_samples, MAX_ORDER * sizeof (gfloat)); memcpy (ctx->outbuf_r, ctx->outbuf_r + ctx->window_n_samples, MAX_ORDER * sizeof (gfloat)); } n_samples_done += n_samples_current; } if (n_samples >= MAX_ORDER) { memcpy (ctx->inprebuf_l, samples_l + n_samples - MAX_ORDER, MAX_ORDER * sizeof (gfloat)); memcpy (ctx->inprebuf_r, samples_r + n_samples - MAX_ORDER, MAX_ORDER * sizeof (gfloat)); } else { memmove (ctx->inprebuf_l, ctx->inprebuf_l + n_samples, (MAX_ORDER - n_samples) * sizeof (gfloat)); memcpy (ctx->inprebuf_l + MAX_ORDER - n_samples, samples_l, n_samples * sizeof (gfloat)); memmove (ctx->inprebuf_r, ctx->inprebuf_r + n_samples, (MAX_ORDER - n_samples) * sizeof (gfloat)); memcpy (ctx->inprebuf_r + MAX_ORDER - n_samples, samples_r, n_samples * sizeof (gfloat)); } } /* Obtain track gain and peak. Returns TRUE on success. Can fail if * not enough samples have been processed. Updates album accumulator. * Resets track accumulator. */ gboolean rg_analysis_track_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak) { gboolean result; g_return_val_if_fail (ctx != NULL, FALSE); accumulator_add (&ctx->album, &ctx->track); result = accumulator_result (&ctx->track, gain, peak); accumulator_clear (&ctx->track); reset_filters (ctx); reset_silence_detection (ctx); return result; } /* Obtain album gain and peak. Returns TRUE on success. Can fail if * not enough samples have been processed. Resets album * accumulator. */ gboolean rg_analysis_album_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak) { gboolean result; g_return_val_if_fail (ctx != NULL, FALSE); result = accumulator_result (&ctx->album, gain, peak); accumulator_clear (&ctx->album); return result; } void rg_analysis_reset_album (RgAnalysisCtx * ctx) { accumulator_clear (&ctx->album); } /* Reset internal buffers as well as track and album accumulators. * Configured sample rate is kept intact. */ void rg_analysis_reset (RgAnalysisCtx * ctx) { g_return_if_fail (ctx != NULL); reset_filters (ctx); accumulator_clear (&ctx->track); accumulator_clear (&ctx->album); reset_silence_detection (ctx); }