/* GStreamer RTP base payloader unit tests * Copyright (C) 2014 Sebastian Rasmussen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General * Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include #include #include #define DEFAULT_CLOCK_RATE (42) #define BUFFER_BEFORE_LIST (10) /* GstRtpDummyPay */ #define GST_TYPE_RTP_DUMMY_PAY \ (gst_rtp_dummy_pay_get_type()) #define GST_RTP_DUMMY_PAY(obj) \ (G_TYPE_CHECK_INSTANCE_CAST((obj),GST_TYPE_RTP_DUMMY_PAY,GstRtpDummyPay)) #define GST_RTP_DUMMY_PAY_CLASS(klass) \ (G_TYPE_CHECK_CLASS_CAST((klass),GST_TYPE_RTP_DUMMY_PAY,GstRtpDummyPayClass)) #define GST_IS_RTP_DUMMY_PAY(obj) \ (G_TYPE_CHECK_INSTANCE_TYPE((obj),GST_TYPE_RTP_DUMMY_PAY)) #define GST_IS_RTP_DUMMY_PAY_CLASS(klass) \ (G_TYPE_CHECK_CLASS_TYPE((klass),GST_TYPE_RTP_DUMMY_PAY)) typedef struct _GstRtpDummyPay GstRtpDummyPay; typedef struct _GstRtpDummyPayClass GstRtpDummyPayClass; struct _GstRtpDummyPay { GstRTPBasePayload payload; }; struct _GstRtpDummyPayClass { GstRTPBasePayloadClass parent_class; }; GType gst_rtp_dummy_pay_get_type (void); G_DEFINE_TYPE (GstRtpDummyPay, gst_rtp_dummy_pay, GST_TYPE_RTP_BASE_PAYLOAD); static GstFlowReturn gst_rtp_dummy_pay_handle_buffer (GstRTPBasePayload * pay, GstBuffer * buffer); static GstStaticPadTemplate gst_rtp_dummy_pay_sink_template = GST_STATIC_PAD_TEMPLATE ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, GST_STATIC_CAPS_ANY); static GstStaticPadTemplate gst_rtp_dummy_pay_src_template = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS ("application/x-rtp")); static void gst_rtp_dummy_pay_class_init (GstRtpDummyPayClass * klass) { GstElementClass *gstelement_class; GstRTPBasePayloadClass *gstrtpbasepayload_class; gstelement_class = GST_ELEMENT_CLASS (klass); gstrtpbasepayload_class = GST_RTP_BASE_PAYLOAD_CLASS (klass); gst_element_class_add_pad_template (gstelement_class, gst_static_pad_template_get (&gst_rtp_dummy_pay_sink_template)); gst_element_class_add_pad_template (gstelement_class, gst_static_pad_template_get (&gst_rtp_dummy_pay_src_template)); gstrtpbasepayload_class->handle_buffer = gst_rtp_dummy_pay_handle_buffer; } static void gst_rtp_dummy_pay_init (GstRtpDummyPay * pay) { gst_rtp_base_payload_set_options (GST_RTP_BASE_PAYLOAD (pay), "application", TRUE, "dummy", DEFAULT_CLOCK_RATE); } static GstRtpDummyPay * rtp_dummy_pay_new (void) { return g_object_new (GST_TYPE_RTP_DUMMY_PAY, NULL); } static GstFlowReturn gst_rtp_dummy_pay_handle_buffer (GstRTPBasePayload * pay, GstBuffer * buffer) { GstBuffer *paybuffer; GST_LOG ("payloading buffer pts=%" GST_TIME_FORMAT " offset=%" G_GUINT64_FORMAT, GST_TIME_ARGS (GST_BUFFER_PTS (buffer)), GST_BUFFER_OFFSET (buffer)); if (!gst_pad_has_current_caps (GST_RTP_BASE_PAYLOAD_SRCPAD (pay))) { if (!gst_rtp_base_payload_set_outcaps (GST_RTP_BASE_PAYLOAD (pay), "custom-caps", G_TYPE_UINT, DEFAULT_CLOCK_RATE, NULL)) { gst_buffer_unref (buffer); return GST_FLOW_NOT_NEGOTIATED; } } paybuffer = gst_rtp_buffer_new_allocate (0, 0, 0); GST_BUFFER_PTS (paybuffer) = GST_BUFFER_PTS (buffer); GST_BUFFER_OFFSET (paybuffer) = GST_BUFFER_OFFSET (buffer); gst_buffer_append (paybuffer, buffer); GST_LOG ("payloaded buffer pts=%" GST_TIME_FORMAT " offset=%" G_GUINT64_FORMAT, GST_TIME_ARGS (GST_BUFFER_PTS (paybuffer)), GST_BUFFER_OFFSET (paybuffer)); if (GST_BUFFER_PTS (paybuffer) < BUFFER_BEFORE_LIST) { return gst_rtp_base_payload_push (pay, paybuffer); } else { GstBufferList *list = gst_buffer_list_new (); gst_buffer_list_add (list, paybuffer); return gst_rtp_base_payload_push_list (pay, list); } } /* Helper functions and global state */ static GstStaticPadTemplate srctmpl = GST_STATIC_PAD_TEMPLATE ("src", GST_PAD_SRC, GST_PAD_ALWAYS, GST_STATIC_CAPS_ANY); static GstStaticPadTemplate sinktmpl = GST_STATIC_PAD_TEMPLATE ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, GST_STATIC_CAPS_ANY); static GstStaticPadTemplate special_sinktmpl = GST_STATIC_PAD_TEMPLATE ("sink", GST_PAD_SINK, GST_PAD_ALWAYS, GST_STATIC_CAPS ("application/x-rtp, payload=(int)98, ssrc=(uint)24, " "timestamp-offset=(uint)212, seqnum-offset=(uint)2424")); typedef struct State State; struct State { GstElement *element; GstPad *sinkpad; GstPad *srcpad; }; static GList *events; static gboolean event_func (GstPad * pad, GstObject * noparent, GstEvent * event) { events = g_list_append (events, gst_event_ref (event)); return gst_pad_event_default (pad, noparent, event); } static void drop_events (void) { while (events != NULL) { gst_event_unref (GST_EVENT (events->data)); events = g_list_delete_link (events, events); } } static void validate_events_received (guint received) { fail_unless_equals_int (g_list_length (events), received); } static void validate_event (guint index, const gchar * name, const gchar * field, ...) { GstEvent *event; va_list var_args; fail_if (index >= g_list_length (events)); event = GST_EVENT (g_list_nth_data (events, index)); fail_if (event == NULL); GST_TRACE ("%" GST_PTR_FORMAT, event); fail_unless_equals_string (GST_EVENT_TYPE_NAME (event), name); va_start (var_args, field); while (field) { if (!g_strcmp0 (field, "timestamp")) { GstClockTime expected = va_arg (var_args, GstClockTime); GstClockTime timestamp, duration; gst_event_parse_gap (event, ×tamp, &duration); fail_unless_equals_uint64 (timestamp, expected); } else if (!g_strcmp0 (field, "duration")) { GstClockTime expected = va_arg (var_args, GstClockTime); GstClockTime timestamp, duration; gst_event_parse_gap (event, ×tamp, &duration); fail_unless_equals_uint64 (duration, expected); } else if (!g_strcmp0 (field, "time")) { GstClockTime expected = va_arg (var_args, GstClockTime); const GstSegment *segment; gst_event_parse_segment (event, &segment); fail_unless_equals_uint64 (segment->time, expected); } else if (!g_strcmp0 (field, "start")) { GstClockTime expected = va_arg (var_args, GstClockTime); const GstSegment *segment; gst_event_parse_segment (event, &segment); fail_unless_equals_uint64 (segment->start, expected); } else if (!g_strcmp0 (field, "stop")) { GstClockTime expected = va_arg (var_args, GstClockTime); const GstSegment *segment; gst_event_parse_segment (event, &segment); fail_unless_equals_uint64 (segment->stop, expected); } else if (!g_strcmp0 (field, "applied-rate")) { gdouble expected = va_arg (var_args, gdouble); const GstSegment *segment; gst_event_parse_segment (event, &segment); fail_unless_equals_uint64 (segment->applied_rate, expected); } else if (!g_strcmp0 (field, "rate")) { gdouble expected = va_arg (var_args, gdouble); const GstSegment *segment; gst_event_parse_segment (event, &segment); fail_unless_equals_uint64 (segment->rate, expected); } else if (!g_strcmp0 (field, "media-type")) { const gchar *expected = va_arg (var_args, const gchar *); GstCaps *caps; const gchar *media_type; gst_event_parse_caps (event, &caps); media_type = gst_structure_get_name (gst_caps_get_structure (caps, 0)); fail_unless_equals_string (media_type, expected); } else if (!g_strcmp0 (field, "npt-start")) { GstClockTime expected = va_arg (var_args, GstClockTime); GstCaps *caps; GstClockTime start; gst_event_parse_caps (event, &caps); fail_unless (gst_structure_get_clock_time (gst_caps_get_structure (caps, 0), "npt-start", &start)); fail_unless_equals_uint64 (start, expected); } else if (!g_strcmp0 (field, "npt-stop")) { GstClockTime expected = va_arg (var_args, GstClockTime); GstCaps *caps; GstClockTime stop; gst_event_parse_caps (event, &caps); fail_unless (gst_structure_get_clock_time (gst_caps_get_structure (caps, 0), "npt-stop", &stop)); fail_unless_equals_uint64 (stop, expected); } else if (!g_strcmp0 (field, "play-speed")) { gdouble expected = va_arg (var_args, gdouble); GstCaps *caps; gdouble speed; gst_event_parse_caps (event, &caps); fail_unless (gst_structure_get_double (gst_caps_get_structure (caps, 0), "play-speed", &speed)); fail_unless (speed == expected); } else if (!g_strcmp0 (field, "play-scale")) { gdouble expected = va_arg (var_args, gdouble); GstCaps *caps; gdouble scale; gst_event_parse_caps (event, &caps); fail_unless (gst_structure_get_double (gst_caps_get_structure (caps, 0), "play-scale", &scale)); fail_unless (scale == expected); } else if (!g_strcmp0 (field, "ssrc")) { guint expected = va_arg (var_args, guint); GstCaps *caps; guint ssrc; gst_event_parse_caps (event, &caps); fail_unless (gst_structure_get_uint (gst_caps_get_structure (caps, 0), "ssrc", &ssrc)); fail_unless_equals_int (ssrc, expected); } else if (!g_strcmp0 (field, "a-framerate")) { const gchar *expected = va_arg (var_args, const gchar *); GstCaps *caps; const gchar *framerate; gst_event_parse_caps (event, &caps); framerate = gst_structure_get_string (gst_caps_get_structure (caps, 0), "a-framerate"); fail_unless_equals_string (framerate, expected); } else { fail ("test cannot validate unknown event field '%s'", field); } field = va_arg (var_args, const gchar *); } va_end (var_args); } static void validate_normal_start_events (uint index) { validate_event (index, "stream-start", NULL); validate_event (index + 1, "caps", "media-type", "application/x-rtp", NULL); validate_event (index + 2, "segment", "time", G_GUINT64_CONSTANT (0), "start", G_GUINT64_CONSTANT (0), "stop", G_MAXUINT64, NULL); } #define push_buffer(state, field, ...) \ push_buffer_full ((state), GST_FLOW_OK, (field), __VA_ARGS__) #define push_buffer_fails(state, field, ...) \ push_buffer_full ((state), GST_FLOW_FLUSHING, (field), __VA_ARGS__) static void push_buffer_full (State * state, GstFlowReturn expected, const gchar * field, ...) { GstBuffer *buf = gst_rtp_buffer_new_allocate (0, 0, 0); GstRTPBuffer rtp = { NULL }; gboolean mapped = FALSE; va_list var_args; va_start (var_args, field); while (field) { if (!g_strcmp0 (field, "pts")) { GstClockTime pts = va_arg (var_args, GstClockTime); GST_BUFFER_PTS (buf) = pts; } else if (!g_strcmp0 (field, "offset")) { guint64 offset = va_arg (var_args, guint64); GST_BUFFER_OFFSET (buf) = offset; } else if (!g_strcmp0 (field, "discont")) { gboolean discont = va_arg (var_args, gboolean); if (discont) { GST_BUFFER_FLAG_SET (buf, GST_BUFFER_FLAG_DISCONT); } else { GST_BUFFER_FLAG_UNSET (buf, GST_BUFFER_FLAG_DISCONT); } } else { if (!mapped) { gst_rtp_buffer_map (buf, GST_MAP_WRITE, &rtp); mapped = TRUE; } if (!g_strcmp0 (field, "rtptime")) { guint32 rtptime = va_arg (var_args, guint); gst_rtp_buffer_set_timestamp (&rtp, rtptime); } else if (!g_strcmp0 (field, "payload-type")) { guint payload_type = va_arg (var_args, guint); gst_rtp_buffer_set_payload_type (&rtp, payload_type); } else if (!g_strcmp0 (field, "seq")) { guint seq = va_arg (var_args, guint); gst_rtp_buffer_set_seq (&rtp, seq); } else if (!g_strcmp0 (field, "ssrc")) { guint32 ssrc = va_arg (var_args, guint); gst_rtp_buffer_set_ssrc (&rtp, ssrc); } else { fail ("test cannot set unknown buffer field '%s'", field); } } field = va_arg (var_args, const gchar *); } va_end (var_args); if (mapped) { gst_rtp_buffer_unmap (&rtp); } fail_unless_equals_int (gst_pad_push (state->srcpad, buf), expected); } static void push_buffer_list (State * state, const gchar * field, ...) { GstBuffer *buf = gst_rtp_buffer_new_allocate (0, 0, 0); GstRTPBuffer rtp = { NULL }; gboolean mapped = FALSE; GstBufferList *list; va_list var_args; va_start (var_args, field); while (field) { if (!g_strcmp0 (field, "pts")) { GstClockTime pts = va_arg (var_args, GstClockTime); GST_BUFFER_PTS (buf) = pts; } else if (!g_strcmp0 (field, "offset")) { guint64 offset = va_arg (var_args, guint64); GST_BUFFER_OFFSET (buf) = offset; } else if (!g_strcmp0 (field, "discont")) { gboolean discont = va_arg (var_args, gboolean); if (discont) { GST_BUFFER_FLAG_SET (buf, GST_BUFFER_FLAG_DISCONT); } else { GST_BUFFER_FLAG_UNSET (buf, GST_BUFFER_FLAG_DISCONT); } } else { if (!mapped) { gst_rtp_buffer_map (buf, GST_MAP_WRITE, &rtp); mapped = TRUE; } if (!g_strcmp0 (field, "rtptime")) { guint32 rtptime = va_arg (var_args, guint); gst_rtp_buffer_set_timestamp (&rtp, rtptime); } else if (!g_strcmp0 (field, "payload-type")) { guint payload_type = va_arg (var_args, guint); gst_rtp_buffer_set_payload_type (&rtp, payload_type); } else if (!g_strcmp0 (field, "seq")) { guint seq = va_arg (var_args, guint); gst_rtp_buffer_set_seq (&rtp, seq); } else if (!g_strcmp0 (field, "ssrc")) { guint32 ssrc = va_arg (var_args, guint); gst_rtp_buffer_set_ssrc (&rtp, ssrc); } else { fail ("test cannot set unknown buffer field '%s'", field); } } field = va_arg (var_args, const gchar *); } va_end (var_args); if (mapped) { gst_rtp_buffer_unmap (&rtp); } list = gst_buffer_list_new (); gst_buffer_list_add (list, buf); fail_unless_equals_int (gst_pad_push_list (state->srcpad, list), GST_FLOW_OK); } static void validate_buffers_received (guint received_buffers) { fail_unless_equals_int (g_list_length (buffers), received_buffers); } static void validate_buffer (guint index, const gchar * field, ...) { GstBuffer *buf; GstRTPBuffer rtp = { NULL }; gboolean mapped = FALSE; va_list var_args; fail_if (index >= g_list_length (buffers)); buf = GST_BUFFER (g_list_nth_data (buffers, index)); fail_if (buf == NULL); GST_TRACE ("%" GST_PTR_FORMAT, buf); va_start (var_args, field); while (field) { if (!g_strcmp0 (field, "pts")) { GstClockTime pts = va_arg (var_args, GstClockTime); fail_unless_equals_uint64 (GST_BUFFER_PTS (buf), pts); } else if (!g_strcmp0 (field, "offset")) { guint64 offset = va_arg (var_args, guint64); fail_unless_equals_uint64 (GST_BUFFER_OFFSET (buf), offset); } else if (!g_strcmp0 (field, "discont")) { gboolean discont = va_arg (var_args, gboolean); if (discont) { fail_unless (GST_BUFFER_FLAG_IS_SET (buf, GST_BUFFER_FLAG_DISCONT)); } else { fail_if (GST_BUFFER_FLAG_IS_SET (buf, GST_BUFFER_FLAG_DISCONT)); } } else { if (!mapped) { gst_rtp_buffer_map (buf, GST_MAP_READ, &rtp); mapped = TRUE; } if (!g_strcmp0 (field, "rtptime")) { guint32 rtptime = va_arg (var_args, guint); fail_unless_equals_int (gst_rtp_buffer_get_timestamp (&rtp), rtptime); } else if (!g_strcmp0 (field, "payload-type")) { guint pt = va_arg (var_args, guint); fail_unless_equals_int (gst_rtp_buffer_get_payload_type (&rtp), pt); } else if (!g_strcmp0 (field, "seq")) { guint seq = va_arg (var_args, guint); fail_unless_equals_int (gst_rtp_buffer_get_seq (&rtp), seq); } else if (!g_strcmp0 (field, "ssrc")) { guint32 ssrc = va_arg (var_args, guint); fail_unless_equals_int (gst_rtp_buffer_get_ssrc (&rtp), ssrc); } else { fail ("test cannot validate unknown buffer field '%s'", field); } } field = va_arg (var_args, const gchar *); } va_end (var_args); if (mapped) { gst_rtp_buffer_unmap (&rtp); } } static void get_buffer_field (guint index, const gchar * field, ...) { GstBuffer *buf; GstRTPBuffer rtp = { NULL }; gboolean mapped = FALSE; va_list var_args; fail_if (index >= g_list_length (buffers)); buf = GST_BUFFER (g_list_nth_data (buffers, (index))); fail_if (buf == NULL); va_start (var_args, field); while (field) { if (!g_strcmp0 (field, "pts")) { GstClockTime *pts = va_arg (var_args, GstClockTime *); *pts = GST_BUFFER_PTS (buf); } else if (!g_strcmp0 (field, "offset")) { guint64 *offset = va_arg (var_args, guint64 *); *offset = GST_BUFFER_OFFSET (buf); } else if (!g_strcmp0 (field, "discont")) { gboolean *discont = va_arg (var_args, gboolean *); *discont = GST_BUFFER_FLAG_IS_SET (buf, GST_BUFFER_FLAG_DISCONT); } else { if (!mapped) { gst_rtp_buffer_map (buf, GST_MAP_READ, &rtp); mapped = TRUE; } if (!g_strcmp0 (field, "rtptime")) { guint32 *rtptime = va_arg (var_args, guint32 *); *rtptime = gst_rtp_buffer_get_timestamp (&rtp); } else if (!g_strcmp0 (field, "payload-type")) { guint *pt = va_arg (var_args, guint *); *pt = gst_rtp_buffer_get_payload_type (&rtp); } else if (!g_strcmp0 (field, "seq")) { guint16 *seq = va_arg (var_args, guint16 *); *seq = gst_rtp_buffer_get_seq (&rtp); } else if (!g_strcmp0 (field, "ssrc")) { guint32 *ssrc = va_arg (var_args, guint32 *); *ssrc = gst_rtp_buffer_get_ssrc (&rtp); } else { fail ("test retrieve validate unknown buffer field '%s'", field); } } field = va_arg (var_args, const gchar *); } va_end (var_args); if (mapped) gst_rtp_buffer_unmap (&rtp); } static State * create_payloader (const gchar * caps_str, GstStaticPadTemplate * sinktmpl, const gchar * property, ...) { va_list var_args; GstCaps *caps; State *state; state = g_new0 (State, 1); state->element = GST_ELEMENT (rtp_dummy_pay_new ()); fail_unless (GST_IS_RTP_DUMMY_PAY (state->element)); va_start (var_args, property); g_object_set_valist (G_OBJECT (state->element), property, var_args); va_end (var_args); state->srcpad = gst_check_setup_src_pad (state->element, &srctmpl); state->sinkpad = gst_check_setup_sink_pad (state->element, sinktmpl); fail_unless (gst_pad_set_active (state->srcpad, TRUE)); fail_unless (gst_pad_set_active (state->sinkpad, TRUE)); caps = gst_caps_from_string (caps_str); gst_check_setup_events (state->srcpad, state->element, caps, GST_FORMAT_TIME); gst_caps_unref (caps); gst_pad_set_chain_function (state->sinkpad, gst_check_chain_func); gst_pad_set_event_function (state->sinkpad, event_func); return state; } static void set_state (State * state, GstState new_state) { fail_unless_equals_int (gst_element_set_state (state->element, new_state), GST_STATE_CHANGE_SUCCESS); } static void validate_would_not_be_filled (State * state, guint size, GstClockTime duration) { GstRTPBasePayload *basepay; basepay = GST_RTP_BASE_PAYLOAD (state->element); fail_if (gst_rtp_base_payload_is_filled (basepay, size, duration)); } static void validate_would_be_filled (State * state, guint size, GstClockTime duration) { GstRTPBasePayload *basepay; basepay = GST_RTP_BASE_PAYLOAD (state->element); fail_unless (gst_rtp_base_payload_is_filled (basepay, size, duration)); } static void ssrc_collision (State * state, guint ssrc, gboolean have_new_ssrc, guint new_ssrc) { GstStructure *s; GstEvent *event; if (have_new_ssrc) { s = gst_structure_new ("GstRTPCollision", "ssrc", G_TYPE_UINT, ssrc, "suggested-ssrc", G_TYPE_UINT, new_ssrc, NULL); } else { s = gst_structure_new ("GstRTPCollision", "ssrc", G_TYPE_UINT, ssrc, NULL); } event = gst_event_new_custom (GST_EVENT_CUSTOM_UPSTREAM, s); fail_unless (gst_pad_push_event (state->sinkpad, event)); } static void reconfigure (State * state) { GstEvent *event; event = gst_event_new_reconfigure (); fail_unless (gst_pad_push_event (state->sinkpad, event)); } static void validate_stats (State * state, guint clock_rate, GstClockTime running_time, guint16 seq, guint32 rtptime) { GstStructure *stats; g_object_get (state->element, "stats", &stats, NULL); fail_unless_equals_int (g_value_get_uint (gst_structure_get_value (stats, "clock-rate")), clock_rate); fail_unless_equals_uint64 (g_value_get_uint64 (gst_structure_get_value (stats, "running-time")), running_time); fail_unless_equals_int (g_value_get_uint (gst_structure_get_value (stats, "seqnum")), seq); fail_unless_equals_int (g_value_get_uint (gst_structure_get_value (stats, "timestamp")), rtptime); gst_structure_free (stats); } static void destroy_payloader (State * state) { gst_check_teardown_sink_pad (state->element); gst_check_teardown_src_pad (state->element); gst_check_drop_buffers (); drop_events (); g_object_unref (state->element); g_free (state); } /* Tests */ /* push two buffers to the payloader which should successfully payload them * into RTP packets. the first packet will have a random rtptime and sequence * number, but the last packet should have an rtptime incremented by * DEFAULT_CLOCK_RATE and a sequence number incremented by one becuase the * packets are sequential. besides the two payloaded RTP packets there should * be the three events initial events: stream-start, caps and segment. */ GST_START_TEST (rtp_base_payload_buffer_test) { State *state; guint32 rtptime; guint16 seq; state = create_payloader ("application/x-rtp", &sinktmpl, "perfect-rtptime", FALSE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); push_buffer (state, "pts", 1 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); get_buffer_field (0, "rtptime", &rtptime, "seq", &seq, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "rtptime", rtptime + 1 * DEFAULT_CLOCK_RATE, "seq", seq + 1, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* push single buffers in buffer lists to the payloader to be payloaded into * RTP packets. the dummy payloader will start pushing buffer lists itself * after BUFFER_BEFORE_LIST payloaded RTP packets. any RTP packets included in * buffer lists should have rtptime and sequence numbers incrementting in the * same way as for separate RTP packets. */ GST_START_TEST (rtp_base_payload_buffer_list_test) { State *state; guint32 rtptime; guint16 seq; guint i; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); for (i = 0; i < BUFFER_BEFORE_LIST + 1; i++) { push_buffer_list (state, "pts", i * GST_SECOND, NULL); } set_state (state, GST_STATE_NULL); validate_buffers_received (11); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); get_buffer_field (0, "rtptime", &rtptime, "seq", &seq, NULL); for (i = 1; i < BUFFER_BEFORE_LIST + 1; i++) { validate_buffer (i, "pts", i * GST_SECOND, "rtptime", rtptime + i * DEFAULT_CLOCK_RATE, "seq", seq + i, NULL); } validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* push two buffers. because the payloader is using non-perfect rtptime the * second buffer will be timestamped with the default clock and ignore any * offset set on the buffers being payloaded. */ GST_START_TEST (rtp_base_payload_normal_rtptime_test) { guint32 rtptime; State *state; state = create_payloader ("application/x-rtp", &sinktmpl, "perfect-rtptime", FALSE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, NULL); push_buffer (state, "pts", 1 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, NULL); get_buffer_field (0, "rtptime", &rtptime, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, "rtptime", rtptime + DEFAULT_CLOCK_RATE, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* push two buffers. because the payloader is using perfect rtptime the * second buffer will be timestamped with a timestamp incremented with the * difference in offset between the first and second buffer. the pts will be * ignored for any buffer after the first buffer. */ GST_START_TEST (rtp_base_payload_perfect_rtptime_test) { guint32 rtptime; State *state; state = create_payloader ("application/x-rtp", &sinktmpl, "perfect-rtptime", TRUE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, "offset", G_GINT64_CONSTANT (0), NULL); push_buffer (state, "pts", GST_CLOCK_TIME_NONE, "offset", G_GINT64_CONSTANT (21), NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, "offset", G_GINT64_CONSTANT (0), NULL); get_buffer_field (0, "rtptime", &rtptime, NULL); validate_buffer (1, "pts", GST_CLOCK_TIME_NONE, "offset", G_GINT64_CONSTANT (21), "rtptime", rtptime + 21, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* validate that a payloader will re-use the last used timestamp when a buffer * is using perfect rtptime and both the pushed buffers timestamp and the offset * is NONE. the payloader is configuered to start with a specific timestamp. * then a buffer is sent with a valid timestamp but without any offset. the * payloded RTP packet is expected to use the specific timestamp. next another * buffer is pushed with a normal timestamp set to illustrate that the payloaded * RTP packet will have an increased timestamp. finally a buffer without any * timestamp or offset is pushed. in this case the payloaded RTP packet is * expected to have the same timestamp as the previously payloaded RTP packet. */ GST_START_TEST (rtp_base_payload_no_pts_no_offset_test) { State *state; state = create_payloader ("application/x-rtp", &sinktmpl, "timestamp-offset", 0x42, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, NULL); push_buffer (state, "pts", 1 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, NULL); push_buffer (state, "pts", GST_CLOCK_TIME_NONE, "offset", GST_BUFFER_OFFSET_NONE, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (3); validate_buffer (0, "pts", 0 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, "rtptime", 0x42, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "offset", GST_BUFFER_OFFSET_NONE, "rtptime", 0x42 + 1 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (2, "pts", GST_CLOCK_TIME_NONE, "offset", GST_BUFFER_OFFSET_NONE, "rtptime", 0x42 + 1 * DEFAULT_CLOCK_RATE, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* validate that a downstream element with caps on its sink pad can effectively * configure the payloader's payload-type, ssrc, timestamp-offset and * seqnum-offset properties and therefore also affect the payloaded RTP packets. * this is done by connecting to a sink pad with template caps setting the * relevant fields and then pushing a buffer and making sure that the payloaded * RTP packet has the expected properties. */ GST_START_TEST (rtp_base_payload_downstream_caps_test) { State *state; state = create_payloader ("application/x-rtp", &special_sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (1); validate_buffer (0, "pts", 0 * GST_SECOND, "seq", 2424, "payload-type", 98, "ssrc", 24, "rtptime", 212, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* when a payloader receives a GstRTPCollision upstream event it should try to * switch to a new ssrc for the next payloaded RTP packets. GstRTPCollision can * supply a suggested new ssrc. if a suggested new ssrc is supplied then the * payloaded is supposed to use this new ssrc, otherwise it should generate a * new random ssrc which is not identical to the one that collided. * * this is tested by first setting the ssrc to a specific value and pushing a * buffer. the payloaded RTP packet is validate to have the set ssrc. then a * GstRTPCollision event is generated to instruct the payloader that the * previously set ssrc collided. this event suggests a new ssrc and it is * verified that a pushed buffer results in a payloaded RTP packet that actually * uses this new ssrc. finally a new GstRTPCollision event is generated to * indicate another ssrc collision. this time the event does not suggest a new * ssrc. the payloaded RTP packet is then expected to have a new random ssrc * different from the collided one. */ GST_START_TEST (rtp_base_payload_ssrc_collision_test) { State *state; guint32 ssrc; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); g_object_set (state->element, "ssrc", 0x4242, NULL); g_object_get (state->element, "ssrc", &ssrc, NULL); fail_unless_equals_int (ssrc, 0x4242); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); ssrc_collision (state, 0x4242, TRUE, 0x4343); push_buffer (state, "pts", 1 * GST_SECOND, NULL); ssrc_collision (state, 0x4343, FALSE, 0); push_buffer (state, "pts", 2 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (3); validate_buffer (0, "pts", 0 * GST_SECOND, "ssrc", 0x4242, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "ssrc", 0x4343, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, NULL); get_buffer_field (2, "ssrc", &ssrc, NULL); fail_if (ssrc == 0x4343); validate_events_received (5); validate_normal_start_events (0); validate_event (3, "caps", "media-type", "application/x-rtp", "ssrc", 0x4343, NULL); validate_event (4, "caps", "media-type", "application/x-rtp", "ssrc", ssrc, NULL); destroy_payloader (state); } GST_END_TEST; /* validate that an upstream event different from GstRTPCollision is succesfully * forwarded to upstream elements. in this test a caps reconfiguration event is * pushed upstream to validate the behaviour. */ GST_START_TEST (rtp_base_payload_reconfigure_test) { State *state; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); reconfigure (state); push_buffer (state, "pts", 1 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, NULL); validate_events_received (4); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* validate that changing the mtu actually affects whether buffers are * considered to be filled. first detect the default mtu and check that having * buffers slightly less or equal to the size will not be considered to be * filled, and that going over this size will be filling the buffers. then * change the mtu slightly and validate that the boundary actually changed. * lastly try the boundary values and make sure that they work as expected. */ GST_START_TEST (rtp_base_payload_property_mtu_test) { State *state; guint mtu, check; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); g_object_get (state->element, "mtu", &mtu, NULL); validate_would_not_be_filled (state, mtu - 1, GST_CLOCK_TIME_NONE); validate_would_not_be_filled (state, mtu, GST_CLOCK_TIME_NONE); validate_would_be_filled (state, mtu + 1, GST_CLOCK_TIME_NONE); g_object_set (state->element, "mtu", mtu - 1, NULL); g_object_get (state->element, "mtu", &check, NULL); fail_unless_equals_int (check, mtu - 1); validate_would_not_be_filled (state, mtu - 1, GST_CLOCK_TIME_NONE); validate_would_be_filled (state, mtu, GST_CLOCK_TIME_NONE); validate_would_be_filled (state, mtu + 1, GST_CLOCK_TIME_NONE); g_object_set (state->element, "mtu", 28, NULL); g_object_get (state->element, "mtu", &check, NULL); fail_unless_equals_int (check, 28); validate_would_not_be_filled (state, 28, GST_CLOCK_TIME_NONE); validate_would_be_filled (state, 29, GST_CLOCK_TIME_NONE); g_object_set (state->element, "mtu", G_MAXUINT, NULL); g_object_get (state->element, "mtu", &check, NULL); fail_unless_equals_int (check, G_MAXUINT); validate_would_not_be_filled (state, G_MAXUINT - 1, GST_CLOCK_TIME_NONE); validate_would_not_be_filled (state, G_MAXUINT, GST_CLOCK_TIME_NONE); destroy_payloader (state); } GST_END_TEST; /* validate that changing the payload-type will actually affect the * payload-type of the payloaded RTP packets. first get the default, then send * a buffer with this payload-type. increment the payload-type and send another * buffer. then test the boundary values for the payload-type and make sure * that these are all carried over to the payloaded RTP packets. */ GST_START_TEST (rtp_base_payload_property_pt_test) { State *state; guint payload_type, check; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); g_object_get (state->element, "pt", &payload_type, NULL); push_buffer (state, "pts", 0 * GST_SECOND, NULL); g_object_set (state->element, "pt", payload_type + 1, NULL); g_object_get (state->element, "pt", &check, NULL); fail_unless_equals_int (check, payload_type + 1); push_buffer (state, "pts", 1 * GST_SECOND, NULL); g_object_set (state->element, "pt", 0, NULL); g_object_get (state->element, "pt", &check, NULL); fail_unless_equals_int (check, 0); push_buffer (state, "pts", 2 * GST_SECOND, NULL); g_object_set (state->element, "pt", 0x7f, NULL); g_object_get (state->element, "pt", &check, NULL); fail_unless_equals_int (check, 0x7f); push_buffer (state, "pts", 3 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (4); validate_buffer (0, "pts", 0 * GST_SECOND, "payload-type", payload_type, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "payload-type", payload_type + 1, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, "payload-type", 0, NULL); validate_buffer (3, "pts", 3 * GST_SECOND, "payload-type", 0x7f, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* validate that changing the ssrc will actually affect the ssrc of the * payloaded RTP packets. first get the current ssrc which should indicate * random ssrcs. send two buffers and expect their ssrcs to be random but * identical. since setting the ssrc will only take effect when the pipeline * goes READY->PAUSED, bring the pipeline to NULL state, set the ssrc to a given * value and make sure that this is carried over to the payloaded RTP packets. * the last step is to test the boundary values. */ GST_START_TEST (rtp_base_payload_property_ssrc_test) { State *state; guint32 ssrc; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); g_object_get (state->element, "ssrc", &ssrc, NULL); fail_unless_equals_int (ssrc, -1); push_buffer (state, "pts", 0 * GST_SECOND, NULL); push_buffer (state, "pts", 1 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "ssrc", 0x4242, NULL); g_object_get (state->element, "ssrc", &ssrc, NULL); fail_unless_equals_int (ssrc, 0x4242); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 2 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "ssrc", 0, NULL); g_object_get (state->element, "ssrc", &ssrc, NULL); fail_unless_equals_int (ssrc, 0); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 3 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "ssrc", G_MAXUINT32, NULL); g_object_get (state->element, "ssrc", &ssrc, NULL); fail_unless_equals_int (ssrc, G_MAXUINT32); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 4 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (5); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); get_buffer_field (0, "ssrc", &ssrc, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "ssrc", ssrc, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, "ssrc", 0x4242, NULL); validate_buffer (3, "pts", 3 * GST_SECOND, "ssrc", 0, NULL); validate_buffer (4, "pts", 4 * GST_SECOND, "ssrc", G_MAXUINT32, NULL); validate_events_received (12); validate_normal_start_events (0); validate_normal_start_events (3); validate_normal_start_events (6); validate_normal_start_events (9); destroy_payloader (state); } GST_END_TEST; /* validate that changing the timestamp-offset will actually effect the rtptime * of the payloaded RTP packets. unfortunately setting the timestamp-offset * property will only take effect when the payloader goes from READY to PAUSED. * so the test starts by making sure that the default timestamp-offset indicates * random timestamps. then a buffer is pushed which is expected to be payloaded * as an RTP packet with a random timestamp. then the timestamp-offset is * modified without changing the state of the pipeline. therefore the next * buffer pushed is expected to result in an RTP packet with a timestamp equal * to the previous RTP packet incremented by DEFAULT_CLOCK_RATE. next the * pipeline is brought to NULL state and the timestamp-offset is set to a * specific value, the pipeline is then brought back to PLAYING state and the * two buffers pushed are expected to result in payloaded RTP packets that have * timestamps based on the set timestamp-offset incremented by multiples of * DEFAULT_CLOCK_RATE. next the boundary values of the timestamp-offset are * tested. again the pipeline state needs to be modified and buffers are pushed * and the resulting payloaded RTP packets' timestamps are validated. note that * the maximum timestamp-offset value will wrap around for the very last * payloaded RTP packet. */ GST_START_TEST (rtp_base_payload_property_timestamp_offset_test) { guint32 rtptime; guint32 offset; State *state; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); g_object_get (state->element, "timestamp-offset", &offset, NULL); fail_unless_equals_int (offset, -1); push_buffer (state, "pts", 0 * GST_SECOND, NULL); g_object_set (state->element, "timestamp-offset", 0x42, NULL); g_object_get (state->element, "timestamp-offset", &offset, NULL); fail_unless_equals_int (offset, 0x42); push_buffer (state, "pts", 1 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "timestamp-offset", 0x4242, NULL); g_object_get (state->element, "timestamp-offset", &offset, NULL); fail_unless_equals_int (offset, 0x4242); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 2 * GST_SECOND, NULL); push_buffer (state, "pts", 3 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "timestamp-offset", 0, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 4 * GST_SECOND, NULL); push_buffer (state, "pts", 5 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "timestamp-offset", G_MAXUINT32, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 6 * GST_SECOND, NULL); push_buffer (state, "pts", 7 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (8); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); get_buffer_field (0, "rtptime", &rtptime, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "rtptime", rtptime + 1 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, "rtptime", 0x4242 + 2 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (3, "pts", 3 * GST_SECOND, "rtptime", 0x4242 + 3 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (4, "pts", 4 * GST_SECOND, "rtptime", 0 + 4 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (5, "pts", 5 * GST_SECOND, "rtptime", 0 + 5 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (6, "pts", 6 * GST_SECOND, "rtptime", G_MAXUINT32 + 6 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (7, "pts", 7 * GST_SECOND, "rtptime", 7 * DEFAULT_CLOCK_RATE - 1, NULL); validate_events_received (12); validate_normal_start_events (0); validate_normal_start_events (3); validate_normal_start_events (6); validate_normal_start_events (9); destroy_payloader (state); } GST_END_TEST; /* as for timestamp-offset above setting the seqnum-offset property of a * payloader will only take effect when the payloader goes from READY to PAUSED * state. this test starts by validating that seqnum-offset indicates random * sequence numbers and that the random sequence numbers increment by one for * each payloaded RTP packet. also it is verified that setting seqnum-offset * without bringing the pipeline to READY will not affect the payloaded RTP * packets' sequence numbers. next the pipeline is brought to NULL state, * seqnum-offset is set to a specific value before bringing the pipeline back to * PLAYING state. the next two buffers pushed are expected to resulting in * payloaded RTP packets that start with sequence numbers relating to the set * seqnum-offset value, and that again increment by one for each packet. finally * the boundary values of seqnum-offset are tested. this means bringing the * pipeline to NULL state, setting the seqnum-offset and bringing the pipeline * back to PLAYING state. note that for the very last payloded RTP packet the * sequence number will have wrapped around because the previous packet is * expected to have the maximum sequence number value. */ GST_START_TEST (rtp_base_payload_property_seqnum_offset_test) { State *state; guint16 seq; gint offset; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); set_state (state, GST_STATE_PLAYING); g_object_get (state->element, "seqnum-offset", &offset, NULL); fail_unless_equals_int (offset, -1); push_buffer (state, "pts", 0 * GST_SECOND, NULL); g_object_set (state->element, "seqnum-offset", 0x42, NULL); g_object_get (state->element, "seqnum-offset", &offset, NULL); fail_unless_equals_int (offset, 0x42); push_buffer (state, "pts", 1 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "seqnum-offset", 0x4242, NULL); g_object_get (state->element, "seqnum-offset", &offset, NULL); fail_unless_equals_int (offset, 0x4242); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 2 * GST_SECOND, NULL); push_buffer (state, "pts", 3 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "seqnum-offset", -1, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 4 * GST_SECOND, NULL); push_buffer (state, "pts", 5 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); g_object_set (state->element, "seqnum-offset", G_MAXUINT16, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 6 * GST_SECOND, NULL); push_buffer (state, "pts", 7 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (8); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); get_buffer_field (0, "seq", &seq, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "seq", seq + 1, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, "seq", 0x4242, NULL); validate_buffer (3, "pts", 3 * GST_SECOND, "seq", 0x4242 + 1, NULL); validate_buffer (4, "pts", 4 * GST_SECOND, NULL); get_buffer_field (4, "seq", &seq, NULL); validate_buffer (5, "pts", 5 * GST_SECOND, "seq", seq + 1, NULL); validate_buffer (6, "pts", 6 * GST_SECOND, "seq", G_MAXUINT16, NULL); validate_buffer (7, "pts", 7 * GST_SECOND, "seq", 0, NULL); validate_events_received (12); validate_normal_start_events (0); validate_normal_start_events (3); validate_normal_start_events (6); validate_normal_start_events (9); destroy_payloader (state); } GST_END_TEST; /* a payloader's max-ptime property is linked to its MTU property. whenever a * packet is larger than MTU or has a duration longer than max-ptime it will be * considered to be full. so this test first validates that the default value of * max-ptime is unspecified. then it retrieves the MTU and validates that a * packet of size MTU will not be considered full even if the duration is at its * maximum value. however incrementing the size to exceed the MTU will result in * the packet being full. next max-ptime is set to a value and it is verified * that only if both the size and duration are below the allowed values then the * packet will be considered not to be full, otherwise it will be reported as * being full. finally the boundary values of the property are tested in a * similar fashion. */ GST_START_TEST (rtp_base_payload_property_max_ptime_test) { gint64 max_ptime; State *state; guint mtu; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); g_object_get (state->element, "max-ptime", &max_ptime, NULL); fail_unless_equals_int64 (max_ptime, -1); g_object_get (state->element, "mtu", &mtu, NULL); validate_would_not_be_filled (state, mtu, G_MAXINT64 - 1); validate_would_be_filled (state, mtu + 1, G_MAXINT64 - 1); g_object_set (state->element, "max-ptime", GST_SECOND, NULL); g_object_get (state->element, "max-ptime", &max_ptime, NULL); fail_unless_equals_int64 (max_ptime, GST_SECOND); validate_would_not_be_filled (state, mtu, GST_SECOND - 1); validate_would_be_filled (state, mtu, GST_SECOND); validate_would_be_filled (state, mtu + 1, GST_SECOND - 1); validate_would_be_filled (state, mtu + 1, GST_SECOND); g_object_set (state->element, "max-ptime", G_GUINT64_CONSTANT (-1), NULL); g_object_get (state->element, "max-ptime", &max_ptime, NULL); fail_unless_equals_int64 (max_ptime, G_GUINT64_CONSTANT (-1)); validate_would_not_be_filled (state, mtu, G_MAXINT64 - 1); validate_would_be_filled (state, mtu + 1, G_MAXINT64 - 1); g_object_set (state->element, "max-ptime", G_MAXINT64, NULL); g_object_get (state->element, "max-ptime", &max_ptime, NULL); fail_unless_equals_int64 (max_ptime, G_MAXINT64); validate_would_be_filled (state, mtu, G_MAXINT64); destroy_payloader (state); } GST_END_TEST; /* a basepayloader has a min-ptime property with an allowed range, the property * itself is never checked by the payloader but is meant to be used by * inheriting classes. therefore this test only validates that setting the * property will mean that retrieveing the property results in the value * previously being set. first the default value is validated, then a new * specific value, before finally testing the boundary values. */ GST_START_TEST (rtp_base_payload_property_min_ptime_test) { State *state; guint64 reference, min_ptime; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); g_object_get (state->element, "min-ptime", &reference, NULL); fail_unless_equals_int (reference, 0); g_object_set (state->element, "min-ptime", reference + 1, NULL); g_object_get (state->element, "min-ptime", &min_ptime, NULL); fail_unless_equals_int (min_ptime, reference + 1); g_object_set (state->element, "min-ptime", G_GUINT64_CONSTANT (0), NULL); g_object_get (state->element, "min-ptime", &min_ptime, NULL); fail_unless_equals_int (min_ptime, 0); g_object_set (state->element, "min-ptime", G_MAXINT64, NULL); g_object_get (state->element, "min-ptime", &min_ptime, NULL); fail_unless_equals_int64 (min_ptime, G_MAXINT64); destroy_payloader (state); } GST_END_TEST; /* paylaoders have a timestamp property that reflects the timestamp of the last * payloaded RTP packet. in this test the timestamp-offset is set to a specific * value so that when the first buffer is pushed its timestamp can be predicted * and thus that the timestamp property also has this value. (if * timestamp-offset was not set the timestamp would be random). another buffer * is then pushed and its timestamp is expected to increment by * DEFAULT_CLOCK_RATE. */ GST_START_TEST (rtp_base_payload_property_timestamp_test) { State *state; guint32 timestamp; state = create_payloader ("application/x-rtp", &sinktmpl, "timestamp-offset", 0, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); g_object_get (state->element, "timestamp", ×tamp, NULL); fail_unless_equals_int (timestamp, 0); push_buffer (state, "pts", 1 * GST_SECOND, NULL); g_object_get (state->element, "timestamp", ×tamp, NULL); fail_unless_equals_int (timestamp, DEFAULT_CLOCK_RATE); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, "rtptime", 0, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "rtptime", DEFAULT_CLOCK_RATE, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* basepayloaders have a seqnum property that is supposed to contain the * sequence number of the last payloaded RTP packet. so therefore this test * initializes the seqnum-offset property to a know value and pushes a buffer. * the payloaded RTP packet is expected to have a sequence number equal to the * set seqnum-offset, as is the seqnum property. next another buffer is pushed * and then both the payloaded RTP packet and the seqnum property value are * expected to increment by one compared to the previous packet. */ GST_START_TEST (rtp_base_payload_property_seqnum_test) { State *state; guint seq; state = create_payloader ("application/x-rtp", &sinktmpl, "seqnum-offset", 0, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); g_object_get (state->element, "seqnum", &seq, NULL); fail_unless_equals_int (seq, 0); push_buffer (state, "pts", 1 * GST_SECOND, NULL); g_object_get (state->element, "seqnum", &seq, NULL); fail_unless_equals_int (seq, 1); set_state (state, GST_STATE_NULL); validate_buffers_received (2); validate_buffer (0, "pts", 0 * GST_SECOND, "seq", 0, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "seq", 1, NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* basepayloader has a perfect-rtptime property when it is set to FALSE * the timestamps of payloaded RTP packets will determined by initial * timestamp-offset (usually random) as well as the clock-rate. when * perfect-rtptime is set to TRUE the timestamps of payloaded RTP packets are * instead determined by the timestamp of the first packet and then the * difference in offset of the input buffers. * * to verify that this test starts by setting the timestamp-offset to a specific * value to prevent random timestamps of the RTP packets. next perfect-rtptime * is set to FALSE. the two buffers pushed will result in two payloaded RTP * packets whose timestamps differ based on the current clock-rate * DEFAULT_CLOCK_RATE. the next step is to set perfect-rtptime to TRUE. the two * buffers that are pushed will result in two payloaded RTP packets. the first * of these RTP packets has a timestamp that relates to the previous packet and * the difference in offset between the middle two input buffers. the latter of * the two RTP packets has a timestamp that instead relates to the offset of the * last two input buffers. */ GST_START_TEST (rtp_base_payload_property_perfect_rtptime_test) { State *state; guint32 timestamp_base = 0; gboolean perfect; state = create_payloader ("application/x-rtp", &sinktmpl, "timestamp-offset", timestamp_base, NULL); set_state (state, GST_STATE_PLAYING); g_object_set (state->element, "perfect-rtptime", FALSE, NULL); g_object_get (state->element, "perfect-rtptime", &perfect, NULL); fail_unless (!perfect); push_buffer (state, "pts", 0 * GST_SECOND, "offset", G_GINT64_CONSTANT (0), NULL); push_buffer (state, "pts", 1 * GST_SECOND, "offset", G_GINT64_CONSTANT (17), NULL); g_object_set (state->element, "perfect-rtptime", TRUE, NULL); g_object_get (state->element, "perfect-rtptime", &perfect, NULL); fail_unless (perfect); push_buffer (state, "pts", 2 * GST_SECOND, "offset", G_GINT64_CONSTANT (31), NULL); push_buffer (state, "pts", 3 * GST_SECOND, "offset", G_GINT64_CONSTANT (67), NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (4); validate_buffer (0, "pts", 0 * GST_SECOND, "offset", G_GINT64_CONSTANT (0), "rtptime", timestamp_base, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, "offset", G_GINT64_CONSTANT (17), "rtptime", timestamp_base + 1 * DEFAULT_CLOCK_RATE, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, "offset", G_GINT64_CONSTANT (31), "rtptime", timestamp_base + 1 * DEFAULT_CLOCK_RATE + (31 - 17), NULL); validate_buffer (3, "pts", 3 * GST_SECOND, "offset", G_GINT64_CONSTANT (67), "rtptime", timestamp_base + 1 * DEFAULT_CLOCK_RATE + (67 - 17), NULL); validate_events_received (3); validate_normal_start_events (0); destroy_payloader (state); } GST_END_TEST; /* basepayloaders have a ptime-multiple property but its value does not affect * any payloaded RTP packets as this is supposed to be done by inherited * classes. therefore this test only validates the default value of the * property, makes sure that a set value actually sticks and that the boundary * values are indeed allowed to be set. */ GST_START_TEST (rtp_base_payload_property_ptime_multiple_test) { State *state; gint64 multiple; state = create_payloader ("application/x-rtp", &sinktmpl, NULL); g_object_get (state->element, "ptime-multiple", &multiple, NULL); fail_unless_equals_int64 (multiple, 0); g_object_set (state->element, "ptime-multiple", G_GINT64_CONSTANT (42), NULL); g_object_get (state->element, "ptime-multiple", &multiple, NULL); fail_unless_equals_int64 (multiple, 42); g_object_set (state->element, "ptime-multiple", G_GINT64_CONSTANT (0), NULL); g_object_get (state->element, "ptime-multiple", &multiple, NULL); fail_unless_equals_int64 (multiple, 0); g_object_set (state->element, "ptime-multiple", G_MAXINT64, NULL); g_object_get (state->element, "ptime-multiple", &multiple, NULL); fail_unless_equals_int64 (multiple, G_MAXINT64); destroy_payloader (state); } GST_END_TEST; /* basepayloaders have a property called stats that is used to atomically * retrieve several values (clock-rate, running-time, seqnum and timestamp) that * relate to the stream and its current progress. this test is meant to test * retrieval of these values. * * first of all perfect-rtptime is set to TRUE, next the the test starts out by * setting seqnum-offset and timestamp-offset to known values to prevent that * sequence numbers and timestamps of payloaded RTP packets are random. next the * stats property is retrieved. the clock-rate must be at the default * DEFAULT_CLOCK_RATE, while running-time must be equal to the first buffers * PTS. the sequence number should be equal to the initialized value of * seqnum-offset and the timestamp should be equal to the initialized value of * timestamp-offset. after pushing a second buffer the stats property is * validate again. this time running-time, seqnum and timestamp should have * advanced as expected. next the pipeline is brought to NULL state to be able * to change the perfect-rtptime property to FALSE before going back to PLAYING * state. this is done to validate that the stats values reflect normal * timestamp updates that are not based on input buffer offsets as expected. * lastly two buffers are pushed and the stats property retrieved after each * time. here it is expected that the sequence numbers values are restarted at * the inital value while the timestamps and running-time reflect the input * buffers. */ GST_START_TEST (rtp_base_payload_property_stats_test) { State *state; state = create_payloader ("application/x-rtp", &sinktmpl, "perfect-rtptime", TRUE, "seqnum-offset", 0, "timestamp-offset", 0, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); validate_stats (state, DEFAULT_CLOCK_RATE, 0 * GST_SECOND, 0, 0 * DEFAULT_CLOCK_RATE); push_buffer (state, "pts", 1 * GST_SECOND, NULL); validate_stats (state, DEFAULT_CLOCK_RATE, 1 * DEFAULT_CLOCK_RATE, 1, 1 * DEFAULT_CLOCK_RATE); set_state (state, GST_STATE_NULL); g_object_set (state->element, "perfect-rtptime", FALSE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 2 * GST_SECOND, NULL); validate_stats (state, DEFAULT_CLOCK_RATE, 2 * GST_SECOND, 0, 2 * DEFAULT_CLOCK_RATE); push_buffer (state, "pts", 3 * GST_SECOND, NULL); validate_stats (state, DEFAULT_CLOCK_RATE, 3 * GST_SECOND, 1, 3 * DEFAULT_CLOCK_RATE); set_state (state, GST_STATE_NULL); validate_buffers_received (4); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); validate_buffer (1, "pts", 1 * GST_SECOND, NULL); validate_buffer (2, "pts", 2 * GST_SECOND, NULL); validate_buffer (3, "pts", 3 * GST_SECOND, NULL); validate_events_received (6); validate_normal_start_events (0); validate_normal_start_events (3); destroy_payloader (state); } GST_END_TEST; /* push a single buffer to the payloader which should successfully payload it * into an RTP packet. besides the payloaded RTP packet there should be the * three events initial events: stream-start, caps and segment. because of that * the input caps has framerate this will be propagated to an a-framerate field * on the output caps. */ GST_START_TEST (rtp_base_payload_framerate_attribute) { State *state; state = create_payloader ("video/x-raw,framerate=(fraction)1/4", &sinktmpl, "perfect-rtptime", FALSE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (1); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); validate_events_received (3); validate_normal_start_events (0); validate_event (1, "caps", "a-framerate", "0.25", NULL); destroy_payloader (state); } GST_END_TEST; /* push a single buffer to the payloader which should successfully payload it * into an RTP packet. besides the payloaded RTP packet there should be the * three events initial events: stream-start, caps and segment. because of that * the input caps has both framerate and max-framerate set the a-framerate field * on the output caps will correspond to the value of the max-framerate field. */ GST_START_TEST (rtp_base_payload_max_framerate_attribute) { State *state; state = create_payloader ("video/x-raw,framerate=(fraction)0/1,max-framerate=(fraction)1/8", &sinktmpl, "perfect-rtptime", FALSE, NULL); set_state (state, GST_STATE_PLAYING); push_buffer (state, "pts", 0 * GST_SECOND, NULL); set_state (state, GST_STATE_NULL); validate_buffers_received (1); validate_buffer (0, "pts", 0 * GST_SECOND, NULL); validate_events_received (3); validate_normal_start_events (0); validate_event (1, "caps", "a-framerate", "0.125", NULL); destroy_payloader (state); } GST_END_TEST; static Suite * rtp_basepayloading_suite (void) { Suite *s = suite_create ("rtp_base_payloading_test"); TCase *tc_chain = tcase_create ("payloading tests"); tcase_set_timeout (tc_chain, 60); suite_add_tcase (s, tc_chain); tcase_add_test (tc_chain, rtp_base_payload_buffer_test); tcase_add_test (tc_chain, rtp_base_payload_buffer_list_test); tcase_add_test (tc_chain, rtp_base_payload_normal_rtptime_test); tcase_add_test (tc_chain, rtp_base_payload_perfect_rtptime_test); tcase_add_test (tc_chain, rtp_base_payload_no_pts_no_offset_test); tcase_add_test (tc_chain, rtp_base_payload_downstream_caps_test); tcase_add_test (tc_chain, rtp_base_payload_ssrc_collision_test); tcase_add_test (tc_chain, rtp_base_payload_reconfigure_test); tcase_add_test (tc_chain, rtp_base_payload_property_mtu_test); tcase_add_test (tc_chain, rtp_base_payload_property_pt_test); tcase_add_test (tc_chain, rtp_base_payload_property_ssrc_test); tcase_add_test (tc_chain, rtp_base_payload_property_timestamp_offset_test); tcase_add_test (tc_chain, rtp_base_payload_property_seqnum_offset_test); tcase_add_test (tc_chain, rtp_base_payload_property_max_ptime_test); tcase_add_test (tc_chain, rtp_base_payload_property_min_ptime_test); tcase_add_test (tc_chain, rtp_base_payload_property_timestamp_test); tcase_add_test (tc_chain, rtp_base_payload_property_seqnum_test); tcase_add_test (tc_chain, rtp_base_payload_property_perfect_rtptime_test); tcase_add_test (tc_chain, rtp_base_payload_property_ptime_multiple_test); tcase_add_test (tc_chain, rtp_base_payload_property_stats_test); tcase_add_test (tc_chain, rtp_base_payload_framerate_attribute); tcase_add_test (tc_chain, rtp_base_payload_max_framerate_attribute); return s; } GST_CHECK_MAIN (rtp_basepayloading)