; PowerPC optimized zoom for Goom ; © 2001-2003 Guillaume Borios ; This Source Code is released under the terms of the General Public License ; Change log : ; 21 Dec 2003 : Use of altivec is now determined with a parameter ; Section definition : We use a read only section .text ; name of the function to call by C program : ppc_zoom ; We declare this label as a global to extend its scope outside this file .globl _ppc_zoom_generic .globl _ppc_zoom_G4 ; Description : ; This routine dynamically computes and applies a zoom filter ; parameters : ; r3 <=> unsigned int sizeX (in pixels) ; r4 <=> unsigned int sizeY (in pixels) ; r5 <=> unsigned int * frompixmap ; r6 <=> unsigned int * topixmap ; r7 <=> unsigned int * brutS ; r8 <=> unsigned int * brutD ; r9 <=> unsigned int buffratio ; r10 <=> int [16][16] precalccoeffs ; globals after init ; r5 <=> frompixmap - 1 byte needed for preincremental fetch (replaces r5) ; r6 <=> topixmap - 1 byte needed for preincremental fetch (replaces r6) ; r3 <=> ax = x max in 16th of pixels (replaces old r3) ; r4 <=> ay = y max in 16th of pixels (replaces old r4) ; r20 <=> row size in bytes ; r12 <=> 0xFF00FF (mask for parallel 32 bits pixs computing) ; r30 <=> brutS - 1 byte needed for preincremental fetch (replaces r7) ; r31 <=> brutD - 1 byte needed for preincremental fetch (replaces r8) ; ABI notes : ; r1 is the Stack Pointer (SP) => Do not use ; r13..r31 are non-volatiles => Do not use _ppc_zoom_generic: ; Saves the used non volatile registers in the Mach-O stack s Red-Zone stmw r18,-56(r1) ; init li r18,0 ; Default value if out of range : 0 (Black) mr r11,r10 lis r12,0xFF mullw r2,r3,r4 ; Number of pixels to compute subi r30,r8,0 slwi r20,r3,2 srawi r19,r20,2 ori r12,r12,0xFF subi r3,r3,1 subi r4,r4,1 mtspr ctr,r2 ; Init the loop count (one loop per pixel computed) subi r31,r7,0 subi r6,r6,4 slwi r3,r3,4 slwi r4,r4,4 ;pre init for loop lwz r2,0(r31) ; px lwz r29,4(r31) ; py lwz r8,0(r30) ; px2 lwz r10,4(r30) ; py2 b L1 .align 5 L1: ; computes dynamically the position to fetch sub r8,r8,r2 sub r10,r10,r29 mullw r8,r8,r9 addi r31,r31,8 mullw r10,r10,r9 addi r30,r30,8 srawi r8,r8,16 srawi r10,r10,16 add r2,r2,r8 add r29,r29,r10 ; if px>ax or py>ay goto outofrange ; computes the attenuation coeffs and the original point address rlwinm r10,r2,6,28-6,31-6 ; r10 <- (r2 << 2) & 0x000002D0 (r10=(r2%16)*4*16) cmpl cr4,0,r2,r3 rlwimi r10, r29, 2, 28-2, 31-2 ; r10 <- ((r29 << 2) & 0x0000002D) | (r10 & !0x0000002D) (r10=(r10%16)*4 | r10) cmpl cr7,0,r29,r4 srawi r29,r29,4 ; pos computing bge- cr4,L4 srawi r2,r2,4 ; pos computing mullw r29, r29,r19 ; pos computing bge- cr7,L4 ; Channels notation : 00112233 (AARRVVBB) add r2,r2,r29 ; pos computing lwzx r10,r11,r10 ; Loads coefs slwi r2,r2,2 ; pos computing add r2,r2,r5 ; pos computing rlwinm r21,r10,0,24,31 ; Isolates coef1 (??????11 -> 00000011) lwz r25,0(r2) ; Loads col1 -> r25 lwz r26,4(r2) ; Loads col2 -> r26 rlwinm r22,r10,24,24,31 ; Isolates coef2 (????22?? -> 00000022) rlwinm r23,r10,16,24,31 ; Isolates coef3 (??33???? -> 00000033) add r2,r2,r20 ; Adds one line for future load of col3 and col4 and r8, r25,r12 ; Masks col1 channels 1 & 3 : 0x00XX00XX rlwinm r24,r10,8,24,31 ; Isolates coef4 (44?????? -> 00000044) andi. r25,r25,0xFF00 ; Masks col1 channel 2 : 0x0000XX00 mullw r8, r8, r21 ; Applies coef1 on col1 channels 1 & 3 ; computes final pixel color and r10,r26,r12 ; Masks col2 channels 1 & 3 : 0x00XX00XX lwz r27,0(r2) ; Loads col3 -> r27 mullw r10,r10,r22 ; Applies coef2 on col2 channels 1 & 3 mullw r25,r25,r21 ; Applies coef1 on col1 channel 2 andi. r29,r26,0xFF00 ; Masks col2 channel 2 : 0x0000XX00 mullw r29,r29,r22 ; Applies coef2 on col2 channel 2 lwz r28,4(r2) ; Loads col4 -> r28 add r8 ,r8 ,r10 ; Adds col1 & col2 channels 1 & 3 and r10,r27,r12 ; Masks col3 channels 1 & 3 : 0x00XX00XX add r25,r25,r29 ; Adds col1 & col2 channel 2 mullw r10,r10,r23 ; Applies coef3 on col3 channels 1 & 3 andi. r29,r27,0xFF00 ; Masks col3 channel 2 : 0x0000XX00 mullw r29,r29,r23 ; Applies coef3 on col3 channel 2 lwz r2,0(r31) ; px add r7 ,r8 ,r10 ; Adds col3 to (col1 + col2) channels 1 & 3 and r10,r28,r12 ; Masks col4 channels 1 & 3 : 0x00XX00XX mullw r10,r10,r24 ; Applies coef4 on col4 channels 1 & 3 add r25,r25,r29 ; Adds col 3 to (col1 + col2) channel 2 lwz r8,0(r30) ; px2 andi. r28,r28,0xFF00 ; Masks col4 channel 2 : 0x0000XX00 add r7 ,r7 ,r10 ; Adds col4 to (col1 + col2 + col3) channels 1 & 3 lwz r10,4(r30) ; py2 mullw r28,r28,r24 ; Applies coef4 on col4 channel 2 srawi r7, r7, 8 ; (sum of channels 1 & 3) >> 8 lwz r29,4(r31) ; py add r25,r25,r28 ; Adds col 4 to (col1 + col2 + col3) channel 2 rlwimi r7, r25, 24, 16, 23 ; (((sum of channels 2) >> 8 ) & 0x0000FF00) | ((sum of channels 1 and 3) & 0xFFFF00FF) stwu r7,4(r6) ; Stores the computed pixel bdnz L1 ; Iterate again if needed b L3 ;goto end ; If not, returns from the function ; if out of range L4: stwu r18,4(r6) lwz r8,0(r30) ; px2 lwz r10,4(r30) ; py2 lwz r2,0(r31) ; px lwz r29,4(r31) ; py bdnz L1 L3: ; Restore saved registers and return lmw r18,-56(r1) blr _ppc_zoom_G4: ; Saves the used non volatile registers in the Mach-O stack s Red-Zone stmw r17,-60(r1) ; init li r18,0 ; Default value if out of range : 0 (Black) mr r11,r10 lis r12,0xFF mullw r2,r3,r4 ; Number of pixels to compute subi r30,r8,0 slwi r20,r3,2 srawi r19,r20,2 ori r12,r12,0xFF subi r3,r3,1 subi r4,r4,1 mtspr ctr,r2 ; Init the loop count (one loop per pixel computed) subi r31,r7,0 subi r6,r6,4 slwi r3,r3,4 slwi r4,r4,4 ;pre init for loop lwz r2,0(r31) ; px lwz r29,4(r31) ; py lwz r8,0(r30) ; px2 lwz r10,4(r30) ; py2 ;********************* lis r17,0x0F01 b L100 .align 5 L100: addi r6,r6,4 ; Optimization to ensure the destination buffer ; won't be loaded into the data cache rlwinm. r0,r6,0,27,31 bne+ L500 dcbz 0,r6 ;dcba 0,r6 L500: ; computes dynamically the position to fetch ;mullw r8,r8,r29 ;mullw r2,r2,r29 ;add r2,r8,r2 ;srawi r2,r2,17 sub r8,r8,r2 sub r10,r10,r29 mullw r8,r8,r9 addi r31,r31,8 mullw r10,r10,r9 addi r30,r30,8 dst r30,r17,0 srawi r8,r8,16 srawi r10,r10,16 add r2,r2,r8 add r29,r29,r10 dst r31,r17,1 ; if px>ax or py>ay goto outofrange ; computes the attenuation coeffs and the original point address rlwinm r10,r2,6,28-6,31-6 ; r10 <- (r2 << 2) & 0x000002D0 (r10=(r2%16)*4*16) cmpl cr4,0,r2,r3 rlwimi r10, r29, 2, 28-2, 31-2 ; r10 <- ((r29 << 2) & 0x0000002D) | (r10 & !0x0000002D) (r10=(r29%16)*4 | r10) cmpl cr7,0,r29,r4 srawi r29,r29,4 ; pos computing bge- cr4,L400 srawi r2,r2,4 ; pos computing mullw r29, r29,r19 ; pos computing bge- cr7,L400 ; Channels notation : 00112233 (AARRVVBB) add r2,r2,r29 ; pos computing lwzx r10,r11,r10 ; Loads coefs slwi r2,r2,2 ; pos computing add r2,r2,r5 ; pos computing rlwinm r21,r10,0,24,31 ; Isolates coef1 (??????11 -> 00000011) lwz r25,0(r2) ; Loads col1 -> r25 lwz r26,4(r2) ; Loads col2 -> r26 rlwinm r22,r10,24,24,31 ; Isolates coef2 (????22?? -> 00000022) rlwinm r23,r10,16,24,31 ; Isolates coef3 (??33???? -> 00000033) add r2,r2,r20 ; Adds one line for future load of col3 and col4 and r8, r25,r12 ; Masks col1 channels 1 & 3 : 0x00XX00XX rlwinm r24,r10,8,24,31 ; Isolates coef4 (44?????? -> 00000044) dst r2,r17,2 rlwinm r25,r25,0,16,23 ; Masks col1 channel 2 : 0x0000XX00 ;andi. r25,r25,0xFF00 ; Masks col1 channel 2 : 0x0000XX00 mullw r8, r8, r21 ; Applies coef1 on col1 channels 1 & 3 ; computes final pixel color and r10,r26,r12 ; Masks col2 channels 1 & 3 : 0x00XX00XX lwz r27,0(r2) ; Loads col3 -> r27 mullw r10,r10,r22 ; Applies coef2 on col2 channels 1 & 3 mullw r25,r25,r21 ; Applies coef1 on col1 channel 2 rlwinm r29,r26,0,16,23 ; Masks col2 channel 2 : 0x0000XX00 ;andi. r29,r26,0xFF00 ; Masks col2 channel 2 : 0x0000XX00 mullw r29,r29,r22 ; Applies coef2 on col2 channel 2 lwz r28,4(r2) ; Loads col4 -> r28 add r8 ,r8 ,r10 ; Adds col1 & col2 channels 1 & 3 and r10,r27,r12 ; Masks col3 channels 1 & 3 : 0x00XX00XX add r25,r25,r29 ; Adds col1 & col2 channel 2 mullw r10,r10,r23 ; Applies coef3 on col3 channels 1 & 3 rlwinm r29,r27,0,16,23 ; Masks col3 channel 2 : 0x0000XX00 ;andi. r29,r27,0xFF00 ; Masks col3 channel 2 : 0x0000XX00 mullw r29,r29,r23 ; Applies coef3 on col3 channel 2 lwz r2,0(r31) ; px add r7 ,r8 ,r10 ; Adds col3 to (col1 + col2) channels 1 & 3 and r10,r28,r12 ; Masks col4 channels 1 & 3 : 0x00XX00XX mullw r10,r10,r24 ; Applies coef4 on col4 channels 1 & 3 add r25,r25,r29 ; Adds col 3 to (col1 + col2) channel 2 lwz r8,0(r30) ; px2 rlwinm r28,r28,0,16,23 ; Masks col4 channel 2 : 0x0000XX00 ;andi. r28,r28,0xFF00 ; Masks col4 channel 2 : 0x0000XX00 add r7 ,r7 ,r10 ; Adds col4 to (col1 + col2 + col3) channels 1 & 3 lwz r10,4(r30) ; py2 mullw r28,r28,r24 ; Applies coef4 on col4 channel 2 srawi r7, r7, 8 ; (sum of channels 1 & 3) >> 8 lwz r29,4(r31) ; py add r25,r25,r28 ; Adds col 4 to (col1 + col2 + col3) channel 2 rlwimi r7, r25, 24, 16, 23 ; (((sum of channels 2) >> 8 ) & 0x0000FF00) | ((sum of channels 1 and 3) & 0xFFFF00FF) stw r7,0(r6) ; Stores the computed pixel bdnz L100 ; Iterate again if needed b L300 ;goto end ; If not, returns from the function ; if out of range L400: stw r18,0(r6) lwz r8,0(r30) ; px2 lwz r10,4(r30) ; py2 lwz r2,0(r31) ; px lwz r29,4(r31) ; py bdnz L100 L300: ; Restore saved registers and return lmw r17,-60(r1) blr