/* GStreamer * Copyright (C) 2005 Wim Taymans * * gstsystemclock.c: Unit test for GstSystemClock * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include static GMutex af_lock; static GCond af_cond; /* see if the defines make sense */ GST_START_TEST (test_range) { GstClockTime time, time2; time = GST_SECOND; fail_unless (time == G_GUINT64_CONSTANT (1000000000)); time2 = time / 1000; fail_unless (time2 == 1000000); fail_unless (time2 == GST_MSECOND); fail_unless (time2 == GST_TIME_AS_USECONDS (time)); time2 = time / 1000000; fail_unless (time2 == 1000); fail_unless (time2 == GST_USECOND); fail_unless (time2 == GST_TIME_AS_MSECONDS (time)); } GST_END_TEST; GST_START_TEST (test_signedness) { GstClockTime time[] = { 0, 1, G_MAXUINT64 / GST_SECOND }; GstClockTimeDiff diff[] = { 0, 1, -1, G_MAXINT64 / GST_SECOND, G_MININT64 / GST_SECOND }; guint i; for (i = 0; i < G_N_ELEMENTS (time); i++) { fail_if (time[i] != (time[i] * GST_SECOND / GST_SECOND)); } for (i = 0; i < G_N_ELEMENTS (diff); i++) { fail_if (diff[i] != (diff[i] * GST_SECOND / GST_SECOND)); } } GST_END_TEST; #define TIME_UNIT (GST_SECOND / 5) static void gst_clock_debug (GstClock * clock) { GstClockTime time; time = gst_clock_get_time (clock); GST_DEBUG ("Clock info: time %" GST_TIME_FORMAT, GST_TIME_ARGS (time)); } static gboolean ok_callback (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { GST_LOG ("unlocked async id %p", id); return FALSE; } static gboolean error_callback (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { GST_WARNING ("unlocked unscheduled async id %p, this is wrong", id); fail_if (TRUE); return FALSE; } GMutex store_lock; static gboolean store_callback (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { GList **list = user_data; GST_DEBUG ("unlocked async id %p", id); g_mutex_lock (&store_lock); *list = g_list_append (*list, id); g_mutex_unlock (&store_lock); return FALSE; } static gboolean notify_callback (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { gboolean *ret = (gboolean *) user_data; if (ret != NULL) *ret = TRUE; return FALSE; } GST_START_TEST (test_set_default) { GstClock *clock, *static_clock; /* obtain the default system clock, which keeps a static ref and bumps the * refcount before returning */ static_clock = gst_system_clock_obtain (); fail_unless (static_clock != NULL, "Could not create default system clock"); g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2); /* set a new default clock to a different instance which should replace the * static clock with this one, and unref the static clock */ clock = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClock", NULL); gst_object_ref_sink (clock); gst_system_clock_set_default (clock); g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 1); g_object_unref (static_clock); static_clock = gst_system_clock_obtain (); fail_unless (static_clock == clock); g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 3); g_object_unref (static_clock); /* Reset the default clock to the static one */ gst_system_clock_set_default (NULL); static_clock = gst_system_clock_obtain (); fail_unless (static_clock != clock); g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 1); g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2); g_object_unref (clock); g_object_unref (static_clock); } GST_END_TEST; GST_START_TEST (test_single_shot) { GstClock *clock; GstClockID id, id2; GstClockTime base; GstClockReturn result; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); gst_clock_debug (clock); base = gst_clock_get_time (clock); id = gst_clock_new_single_shot_id (clock, base + TIME_UNIT); fail_unless (id != NULL, "Could not create single shot id"); GST_DEBUG ("waiting one time unit"); result = gst_clock_id_wait (id, NULL); gst_clock_debug (clock); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK (result=%d)", result); fail_unless (gst_clock_get_time (clock) > (base + TIME_UNIT), "target time has not been reached"); GST_DEBUG ("waiting in the past"); result = gst_clock_id_wait (id, NULL); gst_clock_debug (clock); fail_unless (result == GST_CLOCK_EARLY, "Waiting did not return EARLY(result=%d)", result); gst_clock_id_unref (id); id = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT); GST_DEBUG ("waiting one second async id %p", id); result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); gst_clock_id_unschedule (id); gst_clock_id_unref (id); id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT); GST_DEBUG ("waiting one second async, with cancel on id %p", id); result = gst_clock_id_wait_async (id, error_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); GST_DEBUG ("cancel id %p after half a time unit", id); gst_clock_id_unschedule (id); gst_clock_id_unref (id); GST_DEBUG ("canceled id %p", id); GST_DEBUG ("waiting multiple one second async, with cancel"); id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT); id2 = gst_clock_new_single_shot_id (clock, base + 6 * TIME_UNIT); GST_DEBUG ("waiting id %p", id); result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); GST_DEBUG ("waiting id %p", id2); result = gst_clock_id_wait_async (id2, error_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); GST_DEBUG ("cancel id %p after half a time unit", id2); gst_clock_id_unschedule (id2); GST_DEBUG ("canceled id %p", id2); gst_clock_id_unref (id2); /* wait for the entry to time out */ g_usleep (TIME_UNIT / 1000 * 5); fail_unless (((GstClockEntry *) id)->status == GST_CLOCK_OK, "Waiting did not finish"); gst_clock_id_unref (id); gst_object_unref (clock); } GST_END_TEST; GST_START_TEST (test_periodic_shot) { GstClock *clock; GstClockID id, id2; GstClockTime base; GstClockReturn result; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); gst_clock_debug (clock); base = gst_clock_get_time (clock); /* signal every half a time unit */ id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2); fail_unless (id != NULL, "Could not create periodic id"); GST_DEBUG ("waiting one time unit"); result = gst_clock_id_wait (id, NULL); gst_clock_debug (clock); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); GST_DEBUG ("waiting for the next"); result = gst_clock_id_wait (id, NULL); gst_clock_debug (clock); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); GST_DEBUG ("waiting for the next async %p", id); result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); GST_DEBUG ("waiting some more for the next async %p", id); result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); id2 = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2); fail_unless (id2 != NULL, "Could not create second periodic id"); GST_DEBUG ("waiting some more for another async %p", id2); result = gst_clock_id_wait_async (id2, ok_callback, NULL, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); GST_DEBUG ("unschedule %p", id); gst_clock_id_unschedule (id); /* entry cannot be used again */ result = gst_clock_id_wait_async (id, error_callback, NULL, NULL); fail_unless (result == GST_CLOCK_UNSCHEDULED, "Waiting did not return UNSCHEDULED"); result = gst_clock_id_wait (id, NULL); fail_unless (result == GST_CLOCK_UNSCHEDULED, "Waiting did not return UNSCHEDULED"); g_usleep (TIME_UNIT / (2 * 1000)); /* clean up */ gst_clock_id_unref (id); gst_clock_id_unschedule (id2); gst_clock_id_unref (id2); gst_object_unref (clock); } GST_END_TEST; GST_START_TEST (test_async_order) { GstClock *clock; GstClockID id1, id2; GList *cb_list = NULL, *next; GstClockTime base; GstClockReturn result; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); gst_clock_debug (clock); base = gst_clock_get_time (clock); id1 = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT); id2 = gst_clock_new_single_shot_id (clock, base + 1 * TIME_UNIT); result = gst_clock_id_wait_async (id1, store_callback, &cb_list, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / (2 * 1000)); result = gst_clock_id_wait_async (id2, store_callback, &cb_list, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); g_usleep (TIME_UNIT / 1000); /* at this point at least one of the timers should have timed out */ g_mutex_lock (&store_lock); fail_unless (cb_list != NULL, "expected notification"); fail_unless (cb_list->data == id2, "Expected notification for id2 to come first"); g_mutex_unlock (&store_lock); g_usleep (TIME_UNIT / 1000); g_mutex_lock (&store_lock); /* now both should have timed out */ next = g_list_next (cb_list); fail_unless (next != NULL, "expected second notification"); fail_unless (next->data == id1, "Missing notification for id1"); g_mutex_unlock (&store_lock); gst_clock_id_unref (id1); gst_clock_id_unref (id2); g_list_free (cb_list); gst_object_unref (clock); } GST_END_TEST; GST_START_TEST (test_async_order_stress_test) { #define ALARM_COUNT 20 GstClock *clock; GstClockID id[ALARM_COUNT]; GList *cb_list = NULL, *cb_list_it; GstClockTime base; GstClockReturn result; unsigned int i; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); gst_clock_debug (clock); base = gst_clock_get_time (clock); /* keep inserting at the beginning of the list. * We expect the alarm thread to keep detecting the new entries and to * switch to wait on the first entry on the list */ for (i = ALARM_COUNT; i > 0; --i) { id[i - 1] = gst_clock_new_single_shot_id (clock, base + i * TIME_UNIT); result = gst_clock_id_wait_async (id[i - 1], store_callback, &cb_list, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); } g_usleep (TIME_UNIT * (ALARM_COUNT + 1) / 1000); /* at this point all the timers should have timed out */ g_mutex_lock (&store_lock); fail_unless (cb_list != NULL, "expected notification"); cb_list_it = cb_list; /* alarms must trigger in order. * Will fail if alarm thread did not properly switch to wait on first entry * from the list */ for (i = 0; i < ALARM_COUNT; ++i) { fail_unless (cb_list_it != NULL, "No notification received for id[%d]", i); fail_unless (cb_list_it->data == id[i], "Expected notification for id[%d]", i); cb_list_it = g_list_next (cb_list_it); } g_mutex_unlock (&store_lock); for (i = 0; i < ALARM_COUNT; ++i) gst_clock_id_unref (id[i]); g_list_free (cb_list); gst_object_unref (clock); } GST_END_TEST; struct test_async_sync_interaction_data { GMutex lock; GstClockID sync_id; GstClockID sync_id2; GstClockID async_id; GstClockID async_id2; GstClockID async_id3; }; static gboolean test_async_sync_interaction_cb (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { struct test_async_sync_interaction_data *td = (struct test_async_sync_interaction_data *) (user_data); g_mutex_lock (&td->lock); /* The first async callback is ignored */ if (id == td->async_id) goto out; if (id != td->async_id2 && id != td->async_id3) goto out; /* Unschedule the sync callback */ if (id == td->async_id3) { gst_clock_id_unschedule (td->sync_id); gst_clock_id_unschedule (td->async_id2); } out: g_mutex_unlock (&td->lock); return FALSE; } GST_START_TEST (test_async_sync_interaction) { /* This test schedules an async callback, then before it completes, schedules * an earlier async callback, and quickly unschedules the first, and inserts * a THIRD even earlier async callback. It then attempts to wait on a * sync clock ID. While that's sleeping, the 3rd async callback should fire * and unschedule it. This tests for problems with unscheduling async and * sync callbacks on the system clock. */ GstClock *clock; GstClockReturn result; GstClockTime base; GstClockTimeDiff jitter; struct test_async_sync_interaction_data td; int i; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); g_mutex_init (&td.lock); for (i = 0; i < 50; i++) { gst_clock_debug (clock); base = gst_clock_get_time (clock); g_mutex_lock (&td.lock); td.async_id = gst_clock_new_single_shot_id (clock, base + 40 * GST_MSECOND); td.async_id2 = gst_clock_new_single_shot_id (clock, base + 30 * GST_MSECOND); td.async_id3 = gst_clock_new_single_shot_id (clock, base + 20 * GST_MSECOND); td.sync_id2 = gst_clock_new_single_shot_id (clock, base + 10 * GST_MSECOND); td.sync_id = gst_clock_new_single_shot_id (clock, base + 50 * GST_MSECOND); g_mutex_unlock (&td.lock); result = gst_clock_id_wait_async (td.async_id, test_async_sync_interaction_cb, &td, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); /* Wait 10ms, then unschedule async_id and schedule async_id2 */ result = gst_clock_id_wait (td.sync_id2, &jitter); fail_unless (result == GST_CLOCK_OK || result == GST_CLOCK_EARLY, "Waiting did not return OK or EARLY"); /* async_id2 is earlier than async_id - should become head of the queue */ result = gst_clock_id_wait_async (td.async_id2, test_async_sync_interaction_cb, &td, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); gst_clock_id_unschedule (td.async_id); /* async_id3 is earlier than async_id2 - should become head of the queue */ result = gst_clock_id_wait_async (td.async_id3, test_async_sync_interaction_cb, &td, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); /* While this is sleeping, the async3 id should fire and unschedule it */ result = gst_clock_id_wait (td.sync_id, &jitter); fail_unless (result == GST_CLOCK_UNSCHEDULED || result == GST_CLOCK_EARLY, "Waiting did not return UNSCHEDULED (was %d)", result); gst_clock_id_unschedule (td.async_id3); g_mutex_lock (&td.lock); gst_clock_id_unref (td.sync_id); gst_clock_id_unref (td.sync_id2); gst_clock_id_unref (td.async_id); gst_clock_id_unref (td.async_id2); gst_clock_id_unref (td.async_id3); g_mutex_unlock (&td.lock); } g_mutex_clear (&td.lock); gst_object_unref (clock); } GST_END_TEST; GST_START_TEST (test_periodic_multi) { GstClock *clock; GstClockID clock_id; GstClockID clock_id_async; GstClockTime base; GstClockReturn result; gboolean got_callback = FALSE; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create instance of GstSystemClock"); gst_clock_debug (clock); base = gst_clock_get_time (clock); clock_id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT); gst_clock_id_wait (clock_id, NULL); fail_unless (gst_clock_get_time (clock) >= base + TIME_UNIT); fail_unless (gst_clock_get_time (clock) < base + 2 * TIME_UNIT); /* now perform a concurrent wait and wait_async */ clock_id_async = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT); result = gst_clock_id_wait_async (clock_id_async, notify_callback, &got_callback, NULL); fail_unless (result == GST_CLOCK_OK, "Async waiting did not return OK"); result = gst_clock_id_wait (clock_id, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); fail_unless (gst_clock_get_time (clock) >= base + 2 * TIME_UNIT); /* give the async thread some time to call our callback: */ g_usleep (TIME_UNIT / (10 * 1000)); fail_unless (got_callback == TRUE, "got no async callback (1)"); fail_unless (gst_clock_get_time (clock) < base + 3 * TIME_UNIT); got_callback = FALSE; result = gst_clock_id_wait (clock_id, NULL); fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK"); fail_unless (gst_clock_get_time (clock) >= base + 3 * TIME_UNIT); /* give the async thread some time to call our callback: */ g_usleep (TIME_UNIT / (10 * 1000)); fail_unless (got_callback == TRUE, "got no async callback (2)"); fail_unless (gst_clock_get_time (clock) < base + 4 * TIME_UNIT); /* clean up */ gst_clock_id_unref (clock_id); gst_clock_id_unschedule (clock_id_async); gst_clock_id_unref (clock_id_async); gst_object_unref (clock); } GST_END_TEST; GST_START_TEST (test_diff) { GstClockTime time1[] = { 0, (GstClockTime) - 1, 0, 1, 2 * GST_SECOND, (GstClockTime) - GST_SECOND, (GstClockTime) - GST_SECOND }; GstClockTime time2[] = { 0, 1, 1, 0, 1 * GST_SECOND, (GstClockTime) - GST_SECOND, GST_SECOND }; GstClockTimeDiff d[] = { 0, 2, 1, -1, -GST_SECOND, 0, 2 * GST_SECOND }; guint i; for (i = 0; i < G_N_ELEMENTS (d); i++) { fail_if (d[i] != GST_CLOCK_DIFF (time1[i], time2[i])); } } GST_END_TEST; /* test if a blocking wait, unblocked by an async entry continues to be * scheduled */ typedef struct { GstClock *clock; GstClockID id; GstClockTimeDiff jitter; GstClockReturn ret; } MixedInfo; static gpointer mixed_thread (MixedInfo * info) { info->ret = gst_clock_id_wait (info->id, &info->jitter); return NULL; } static gboolean mixed_async_cb (GstClock * clock, GstClockTime time, GstClockID id, gpointer user_data) { return TRUE; } GST_START_TEST (test_mixed) { GThread *thread; GError *error = NULL; MixedInfo info; GstClockTime base; GstClockID id; info.clock = gst_system_clock_obtain (); fail_unless (info.clock != NULL, "Could not create instance of GstSystemClock"); /* get current time of the clock as base time */ base = gst_clock_get_time (info.clock); /* create entry to wait for 1 second */ info.id = gst_clock_new_single_shot_id (info.clock, base + GST_SECOND); /* make and start an entry that is scheduled every 10ms */ id = gst_clock_new_periodic_id (info.clock, base, 10 * GST_MSECOND); /* start waiting for the entry */ thread = g_thread_try_new ("gst-check", (GThreadFunc) mixed_thread, &info, &error); fail_unless (error == NULL, "error creating thread"); fail_unless (thread != NULL, "Could not create thread"); /* wait half a second so we are sure to be in the thread */ g_usleep (G_USEC_PER_SEC / 2); /* start scheduling the entry */ gst_clock_id_wait_async (id, mixed_async_cb, NULL, NULL); /* wait for thread to finish */ g_thread_join (thread); /* entry must have timed out correctly */ fail_unless (info.ret == GST_CLOCK_OK, "clock return was %d", info.ret); gst_clock_id_unschedule (id); gst_clock_id_unref (id); gst_clock_id_unref (info.id); gst_object_unref (info.clock); } GST_END_TEST; static gboolean test_async_full_slave_callback (GstClock * master, GstClockTime time, GstClockID id, GstClock * clock) { GstClockTime stime, mtime; gdouble r_squared; /* notify the test case that we started */ GST_INFO ("callback started"); g_mutex_lock (&af_lock); g_cond_signal (&af_cond); /* wait for the test case to unref "clock" and signal */ GST_INFO ("waiting for test case to signal"); g_cond_wait (&af_cond, &af_lock); stime = gst_clock_get_internal_time (clock); mtime = gst_clock_get_time (master); gst_clock_add_observation (clock, stime, mtime, &r_squared); g_cond_signal (&af_cond); g_mutex_unlock (&af_lock); GST_INFO ("callback finished"); return TRUE; } GST_START_TEST (test_async_full) { GstClock *master, *slave; GstClockID *clockid; /* create master and slave */ master = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL); gst_object_ref_sink (master); slave = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL); gst_object_ref_sink (slave); GST_OBJECT_FLAG_SET (slave, GST_CLOCK_FLAG_CAN_SET_MASTER); g_object_set (slave, "timeout", 50 * GST_MSECOND, NULL); fail_unless (GST_OBJECT_REFCOUNT (master) == 1); fail_unless (GST_OBJECT_REFCOUNT (slave) == 1); /* register a periodic shot on the master to calibrate the slave */ g_mutex_lock (&af_lock); clockid = gst_clock_new_periodic_id (master, gst_clock_get_time (master), gst_clock_get_timeout (slave)); gst_clock_id_wait_async (clockid, (GstClockCallback) test_async_full_slave_callback, gst_object_ref (slave), (GDestroyNotify) gst_object_unref); /* wait for the shot to be fired and test_async_full_slave_callback to be * called */ GST_INFO ("waiting for the slave callback to start"); g_cond_wait (&af_cond, &af_lock); GST_INFO ("slave callback running, unreffing slave"); /* unref the slave clock while the slave_callback is running. This should be * safe since the master clock now stores a ref to the slave */ gst_object_unref (slave); /* unref the clock entry. This should be safe as well since the clock thread * refs the entry before executing it */ gst_clock_id_unschedule (clockid); gst_clock_id_unref (clockid); /* signal and wait for the callback to complete */ g_cond_signal (&af_cond); GST_INFO ("waiting for callback to finish"); g_cond_wait (&af_cond, &af_lock); GST_INFO ("callback finished"); g_mutex_unlock (&af_lock); gst_object_unref (master); } GST_END_TEST; GST_START_TEST (test_resolution) { GstClock *clock; GstClockTime now_t, prev_t, resolution; int i; now_t = prev_t = GST_CLOCK_TIME_NONE; clock = gst_system_clock_obtain (); fail_unless (clock != NULL, "Could not create default system clock"); resolution = gst_clock_get_resolution (clock); fail_unless (resolution != GST_CLOCK_TIME_NONE); for (i = 0; i < 100000; ++i) { now_t = gst_clock_get_internal_time (clock); fail_unless (now_t != GST_CLOCK_TIME_NONE); if (prev_t != GST_CLOCK_TIME_NONE) { GstClockTime diff; fail_unless (now_t >= prev_t); diff = now_t - prev_t; fail_unless (diff == 0 || diff >= resolution); } prev_t = now_t; g_thread_yield (); } g_object_unref (clock); clock = NULL; } GST_END_TEST; typedef struct { GThread *thread_wait; GThread *thread_unschedule; GMutex lock; gboolean running; GstClockID id; gboolean unschedule; gint32 time_offset_min; gint32 time_offset_max; gboolean dont_unschedule_positive_offset; } WaitUnscheduleData; static gpointer single_shot_wait_thread_func (gpointer data) { WaitUnscheduleData *d = data; GstClock *clock = gst_system_clock_obtain (); while (d->running) { GstClockTime now; gint offset; GstClockID id; now = gst_clock_get_time (clock); offset = g_random_int_range (d->time_offset_min, d->time_offset_max); g_mutex_lock (&d->lock); d->unschedule = d->dont_unschedule_positive_offset ? offset < 0 : TRUE; id = d->id = gst_clock_new_single_shot_id (clock, now + (GstClockTime) offset); g_mutex_unlock (&d->lock); fail_unless (id != NULL, "Could not create single shot id"); gst_clock_id_wait (id, NULL); g_mutex_lock (&d->lock); gst_clock_id_unref (id); d->id = NULL; g_mutex_unlock (&d->lock); } g_object_unref (clock); return NULL; } static gpointer unschedule_thread_func (gpointer data) { WaitUnscheduleData *d = data; while (d->running) { g_mutex_lock (&d->lock); if (d->id && d->unschedule) { g_thread_yield (); gst_clock_id_unschedule (d->id); } g_mutex_unlock (&d->lock); g_thread_yield (); } return NULL; } GST_START_TEST (test_stress_cleanup_unschedule) { WaitUnscheduleData data[50]; gint i; for (i = 0; i < G_N_ELEMENTS (data); i++) { WaitUnscheduleData *d = &data[i]; /* Don't unschedule waits with positive offsets in order to trigger * gst_system_clock_wait_wakeup() */ d->dont_unschedule_positive_offset = TRUE; /* Overweight of negative offsets in order to trigger GST_CLOCK_EARLY more * frequently */ d->time_offset_min = -GST_MSECOND; d->time_offset_max = GST_MSECOND / 10; /* Initialize test */ d->id = NULL; d->running = TRUE; g_mutex_init (&d->lock); d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d); d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func, d); } /* Test duration */ g_usleep (G_USEC_PER_SEC); /* Stop and free test data */ for (i = 0; i < G_N_ELEMENTS (data); i++) { WaitUnscheduleData *d = &data[i]; d->running = FALSE; g_thread_join (d->thread_wait); g_thread_join (d->thread_unschedule); g_mutex_clear (&d->lock); } } GST_END_TEST; GST_START_TEST (test_stress_reschedule) { WaitUnscheduleData data[50]; gint i; for (i = 0; i < G_N_ELEMENTS (data); i++) { WaitUnscheduleData *d = &data[i]; /* Try to unschedule all waits */ d->dont_unschedule_positive_offset = FALSE; /* Small positive offsets in order to have both negative and positive * diffs when a reschedule is needed. */ d->time_offset_min = 0; d->time_offset_max = GST_MSECOND; d->id = NULL; d->running = TRUE; g_mutex_init (&d->lock); d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d); d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func, d); } /* Test duration */ g_usleep (G_USEC_PER_SEC); /* Stop and free test data */ for (i = 0; i < G_N_ELEMENTS (data); i++) { WaitUnscheduleData *d = &data[i]; d->running = FALSE; g_thread_join (d->thread_wait); g_thread_join (d->thread_unschedule); g_mutex_clear (&d->lock); } } GST_END_TEST; static Suite * gst_systemclock_suite (void) { Suite *s = suite_create ("GstSystemClock"); TCase *tc_chain = tcase_create ("waiting"); suite_add_tcase (s, tc_chain); tcase_add_test (tc_chain, test_range); tcase_add_test (tc_chain, test_signedness); tcase_add_test (tc_chain, test_single_shot); tcase_add_test (tc_chain, test_periodic_shot); tcase_add_test (tc_chain, test_periodic_multi); tcase_add_test (tc_chain, test_async_order); tcase_add_test (tc_chain, test_async_order_stress_test); tcase_add_test (tc_chain, test_async_sync_interaction); tcase_add_test (tc_chain, test_diff); tcase_add_test (tc_chain, test_mixed); tcase_add_test (tc_chain, test_async_full); tcase_add_test (tc_chain, test_set_default); tcase_add_test (tc_chain, test_resolution); tcase_add_test (tc_chain, test_stress_cleanup_unschedule); tcase_add_test (tc_chain, test_stress_reschedule); return s; } GST_CHECK_MAIN (gst_systemclock);