/* GStreamer * Copyright (C) 2005 Wim Taymans * * audioconvert.c: Convert audio to different audio formats automatically * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "gstchannelmix.h" #include "audioconvert.h" #include "gst/floatcast/floatcast.h" /* int to float/double conversion: int2xxx(i) = 1 / (2^31-1) * i */ #define INT2FLOAT(i) (4.6566128752457969e-10 * ((gfloat)i)) #define INT2DOUBLE(i) (4.6566128752457969e-10 * ((gdouble)i)) /* sign bit in the intermediate format */ #define SIGNED (1U<<31) /*** * unpack code */ #define MAKE_UNPACK_FUNC_NAME(name) \ audio_convert_unpack_##name /* unpack from integer to signed integer 32 */ #define MAKE_UNPACK_FUNC_II(name, stride, sign, READ_FUNC) \ static void \ MAKE_UNPACK_FUNC_NAME (name) (guint8 *src, gint32 *dst, \ gint scale, gint count) \ { \ for (;count; count--) { \ *dst++ = (((gint32) READ_FUNC (src)) << scale) ^ (sign); \ src+=stride; \ } \ } /* unpack from float to signed integer 32 */ #define MAKE_UNPACK_FUNC_FI(name, type, READ_FUNC) \ static void \ MAKE_UNPACK_FUNC_NAME (name) (type * src, gint32 * dst, gint s, gint count) \ { \ gdouble temp; \ \ for (; count; count--) { \ /* blow up to 32 bit */ \ temp = (READ_FUNC (*src++) * 2147483647.0) + 0.5; \ *dst++ = (gint32) CLAMP (temp, G_MININT32, G_MAXINT32); \ } \ } /* unpack from float to float 64 (double) */ #define MAKE_UNPACK_FUNC_FF(name, type, FUNC) \ static void \ MAKE_UNPACK_FUNC_NAME (name) (type * src, gdouble * dst, gint s, \ gint count) \ { \ for (; count; count--) \ *dst++ = (gdouble) FUNC (*src++); \ } #define READ8(p) GST_READ_UINT8(p) #define READ16_FROM_LE(p) GST_READ_UINT16_LE (p) #define READ16_FROM_BE(p) GST_READ_UINT16_BE (p) #define READ24_FROM_LE(p) (p[0] | (p[1] << 8) | (p[2] << 16)) #define READ24_FROM_BE(p) (p[2] | (p[1] << 8) | (p[0] << 16)) #define READ32_FROM_LE(p) GST_READ_UINT32_LE (p) #define READ32_FROM_BE(p) GST_READ_UINT32_BE (p) MAKE_UNPACK_FUNC_II (u8, 1, SIGNED, READ8); MAKE_UNPACK_FUNC_II (s8, 1, 0, READ8); MAKE_UNPACK_FUNC_II (u16_le, 2, SIGNED, READ16_FROM_LE); MAKE_UNPACK_FUNC_II (s16_le, 2, 0, READ16_FROM_LE); MAKE_UNPACK_FUNC_II (u16_be, 2, SIGNED, READ16_FROM_BE); MAKE_UNPACK_FUNC_II (s16_be, 2, 0, READ16_FROM_BE); MAKE_UNPACK_FUNC_II (u24_le, 3, SIGNED, READ24_FROM_LE); MAKE_UNPACK_FUNC_II (s24_le, 3, 0, READ24_FROM_LE); MAKE_UNPACK_FUNC_II (u24_be, 3, SIGNED, READ24_FROM_BE); MAKE_UNPACK_FUNC_II (s24_be, 3, 0, READ24_FROM_BE); MAKE_UNPACK_FUNC_II (u32_le, 4, SIGNED, READ32_FROM_LE); MAKE_UNPACK_FUNC_II (s32_le, 4, 0, READ32_FROM_LE); MAKE_UNPACK_FUNC_II (u32_be, 4, SIGNED, READ32_FROM_BE); MAKE_UNPACK_FUNC_II (s32_be, 4, 0, READ32_FROM_BE); MAKE_UNPACK_FUNC_FI (float_le, gfloat, GFLOAT_FROM_LE); MAKE_UNPACK_FUNC_FI (float_be, gfloat, GFLOAT_FROM_BE); MAKE_UNPACK_FUNC_FI (double_le, gdouble, GDOUBLE_FROM_LE); MAKE_UNPACK_FUNC_FI (double_be, gdouble, GDOUBLE_FROM_BE); MAKE_UNPACK_FUNC_FF (float_hq_le, gfloat, GFLOAT_FROM_LE); MAKE_UNPACK_FUNC_FF (float_hq_be, gfloat, GFLOAT_FROM_BE); MAKE_UNPACK_FUNC_FF (double_hq_le, gdouble, GDOUBLE_FROM_LE); MAKE_UNPACK_FUNC_FF (double_hq_be, gdouble, GDOUBLE_FROM_BE); /* One of the double_hq_* functions generated above is ineffecient, but it's * never used anyway. The same is true for one of the s32_* functions. */ /*** * packing code */ #define MAKE_PACK_FUNC_NAME(name) \ audio_convert_pack_##name /* * These functions convert the signed 32 bit integers to the * target format. For this to work the following steps are done: * * 1) If the output format is smaller than 32 bit we add 0.5LSB of * the target format (i.e. 1<<(scale-1)) to get proper rounding. * Shifting will result in rounding towards negative infinity (for * signed values) or zero (for unsigned values). As we might overflow * an overflow check is performed. * Additionally, if our target format is signed and the value is smaller * than zero we decrease it by one to round -X.5 downwards. * This leads to the following rounding: * -1.2 => -1 1.2 => 1 * -1.5 => -2 1.5 => 2 * -1.7 => -2 1.7 => 2 * 2) If the output format is unsigned we will XOR the sign bit. This * will do the same as if we add 1<<31. * 3) Afterwards we shift to the target depth. It's necessary to left-shift * on signed values here to get arithmetical shifting. * 4) This is then written into our target array by the corresponding write * function for the target width. */ /* pack from signed integer 32 to integer */ #define MAKE_PACK_FUNC_II(name, stride, sign, WRITE_FUNC) \ static void \ MAKE_PACK_FUNC_NAME (name) (gint32 *src, gpointer dst, \ gint scale, gint count) \ { \ guint8 *p = (guint8 *)dst; \ gint32 tmp; \ if (scale > 0) { \ guint32 bias = 1 << (scale - 1); \ for (;count; count--) { \ tmp = *src++; \ if (tmp > 0 && G_MAXINT32 - tmp < bias) \ tmp = G_MAXINT32; \ else \ tmp += bias; \ if (sign == 0 && tmp < 0) \ tmp--; \ tmp = ((tmp) ^ (sign)) >> scale; \ WRITE_FUNC (p, tmp); \ p+=stride; \ } \ } else { \ for (;count; count--) { \ tmp = (*src++ ^ (sign)); \ WRITE_FUNC (p, tmp); \ p+=stride; \ } \ } \ } /* pack from signed integer 32 to float */ #define MAKE_PACK_FUNC_IF(name, type, FUNC, FUNC2) \ static void \ MAKE_PACK_FUNC_NAME (name) (gint32 * src, type * dst, gint scale, \ gint count) \ { \ for (; count; count--) \ *dst++ = FUNC (FUNC2 (*src++)); \ } /* pack from float 64 (double) to float */ #define MAKE_PACK_FUNC_FF(name, type, FUNC) \ static void \ MAKE_PACK_FUNC_NAME (name) (gdouble * src, type * dst, gint s, \ gint count) \ { \ for (; count; count--) \ *dst++ = FUNC ((type) (*src++)); \ } #define WRITE8(p, v) GST_WRITE_UINT8 (p, v) #define WRITE16_TO_LE(p,v) GST_WRITE_UINT16_LE (p, (guint16)(v)) #define WRITE16_TO_BE(p,v) GST_WRITE_UINT16_BE (p, (guint16)(v)) #define WRITE24_TO_LE(p,v) p[0] = v & 0xff; p[1] = (v >> 8) & 0xff; p[2] = (v >> 16) & 0xff #define WRITE24_TO_BE(p,v) p[2] = v & 0xff; p[1] = (v >> 8) & 0xff; p[0] = (v >> 16) & 0xff #define WRITE32_TO_LE(p,v) GST_WRITE_UINT32_LE (p, (guint32)(v)) #define WRITE32_TO_BE(p,v) GST_WRITE_UINT32_BE (p, (guint32)(v)) MAKE_PACK_FUNC_II (u8, 1, SIGNED, WRITE8); MAKE_PACK_FUNC_II (s8, 1, 0, WRITE8); MAKE_PACK_FUNC_II (u16_le, 2, SIGNED, WRITE16_TO_LE); MAKE_PACK_FUNC_II (s16_le, 2, 0, WRITE16_TO_LE); MAKE_PACK_FUNC_II (u16_be, 2, SIGNED, WRITE16_TO_BE); MAKE_PACK_FUNC_II (s16_be, 2, 0, WRITE16_TO_BE); MAKE_PACK_FUNC_II (u24_le, 3, SIGNED, WRITE24_TO_LE); MAKE_PACK_FUNC_II (s24_le, 3, 0, WRITE24_TO_LE); MAKE_PACK_FUNC_II (u24_be, 3, SIGNED, WRITE24_TO_BE); MAKE_PACK_FUNC_II (s24_be, 3, 0, WRITE24_TO_BE); MAKE_PACK_FUNC_II (u32_le, 4, SIGNED, WRITE32_TO_LE); MAKE_PACK_FUNC_II (s32_le, 4, 0, WRITE32_TO_LE); MAKE_PACK_FUNC_II (u32_be, 4, SIGNED, WRITE32_TO_BE); MAKE_PACK_FUNC_II (s32_be, 4, 0, WRITE32_TO_BE); MAKE_PACK_FUNC_IF (float_le, gfloat, GFLOAT_TO_LE, INT2FLOAT); MAKE_PACK_FUNC_IF (float_be, gfloat, GFLOAT_TO_BE, INT2FLOAT); MAKE_PACK_FUNC_IF (double_le, gdouble, GDOUBLE_TO_LE, INT2DOUBLE); MAKE_PACK_FUNC_IF (double_be, gdouble, GDOUBLE_TO_BE, INT2DOUBLE); MAKE_PACK_FUNC_FF (float_hq_le, gfloat, GFLOAT_TO_LE); MAKE_PACK_FUNC_FF (float_hq_be, gfloat, GFLOAT_TO_BE); /* For double_hq, packing and unpacking is the same, so we reuse the unpacking * functions here. */ #define audio_convert_pack_double_hq_le MAKE_UNPACK_FUNC_NAME (double_hq_le) #define audio_convert_pack_double_hq_be MAKE_UNPACK_FUNC_NAME (double_hq_be) static AudioConvertUnpack unpack_funcs[] = { (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u8), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s8), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u8), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s8), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u16_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s16_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u16_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s16_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u24_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s24_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u24_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s24_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u32_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s32_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (u32_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (s32_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (float_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (float_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (double_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (double_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (float_hq_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (float_hq_be), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (double_hq_le), (AudioConvertUnpack) MAKE_UNPACK_FUNC_NAME (double_hq_be), }; static AudioConvertPack pack_funcs[] = { (AudioConvertPack) MAKE_PACK_FUNC_NAME (u8), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s8), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u8), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s8), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u16_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s16_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u16_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s16_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u24_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s24_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u24_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s24_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u32_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s32_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (u32_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (s32_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (float_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (float_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (double_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (double_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (float_hq_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (float_hq_be), (AudioConvertPack) MAKE_PACK_FUNC_NAME (double_hq_le), (AudioConvertPack) MAKE_PACK_FUNC_NAME (double_hq_be), }; static gint audio_convert_get_func_index (AudioConvertFmt * fmt) { gint index = 0; if (fmt->is_int) { index += (fmt->width / 8 - 1) * 4; index += fmt->endianness == G_LITTLE_ENDIAN ? 0 : 2; index += fmt->sign ? 1 : 0; } else { /* this is float/double */ index = 16; index += (fmt->width == 32) ? 0 : 2; index += (fmt->endianness == G_LITTLE_ENDIAN) ? 0 : 1; } return index; } static gboolean check_default (AudioConvertCtx * ctx, AudioConvertFmt * fmt) { if (ctx->in.is_int || ctx->out.is_int) { return (fmt->width == 32 && fmt->depth == 32 && fmt->endianness == G_BYTE_ORDER && fmt->sign == TRUE); } else { return (fmt->width == 64 && fmt->endianness == G_BYTE_ORDER); } } gboolean audio_convert_clean_fmt (AudioConvertFmt * fmt) { g_return_val_if_fail (fmt != NULL, FALSE); g_free (fmt->pos); fmt->pos = NULL; return TRUE; } gboolean audio_convert_prepare_context (AudioConvertCtx * ctx, AudioConvertFmt * in, AudioConvertFmt * out) { gint idx_in, idx_out; g_return_val_if_fail (ctx != NULL, FALSE); g_return_val_if_fail (in != NULL, FALSE); g_return_val_if_fail (out != NULL, FALSE); /* first clean the existing context */ audio_convert_clean_context (ctx); ctx->in = *in; ctx->out = *out; gst_channel_mix_setup_matrix (ctx); idx_in = audio_convert_get_func_index (in); ctx->unpack = unpack_funcs[idx_in]; idx_out = audio_convert_get_func_index (out); ctx->pack = pack_funcs[idx_out]; /* if both formats are float/double use double as intermediate format and * and switch mixing */ if (in->is_int || out->is_int) { GST_INFO ("use int mixing"); ctx->channel_mix = (AudioConvertMix) gst_channel_mix_mix_int; } else { GST_INFO ("use float mixing"); ctx->channel_mix = (AudioConvertMix) gst_channel_mix_mix_float; /* Bump the pack/unpack function indices by 4 to use double as intermediary * format (float_hq_*, double_hq_* functions).*/ ctx->unpack = unpack_funcs[idx_in + 4]; ctx->pack = pack_funcs[idx_out + 4]; } GST_INFO ("unitsizes: %d -> %d", in->unit_size, out->unit_size); /* check if input is in default format */ ctx->in_default = check_default (ctx, in); /* check if channel mixer is passthrough */ ctx->mix_passthrough = gst_channel_mix_passthrough (ctx); /* check if output is in default format */ ctx->out_default = check_default (ctx, out); GST_INFO ("in default %d, mix passthrough %d, out default %d", ctx->in_default, ctx->mix_passthrough, ctx->out_default); ctx->in_scale = (in->is_int) ? (32 - in->depth) : 0; ctx->out_scale = (out->is_int) ? (32 - out->depth) : 0; return TRUE; } gboolean audio_convert_clean_context (AudioConvertCtx * ctx) { g_return_val_if_fail (ctx != NULL, FALSE); audio_convert_clean_fmt (&ctx->in); audio_convert_clean_fmt (&ctx->out); gst_channel_mix_unset_matrix (ctx); g_free (ctx->tmpbuf); ctx->tmpbuf = NULL; ctx->tmpbufsize = 0; return TRUE; } gboolean audio_convert_get_sizes (AudioConvertCtx * ctx, gint samples, gint * srcsize, gint * dstsize) { g_return_val_if_fail (ctx != NULL, FALSE); if (srcsize) *srcsize = samples * ctx->in.unit_size; if (dstsize) *dstsize = samples * ctx->out.unit_size; return TRUE; } gboolean audio_convert_convert (AudioConvertCtx * ctx, gpointer src, gpointer dst, gint samples, gboolean src_writable) { gint insize, outsize, size; gpointer outbuf, tmpbuf; gint intemp = 0, outtemp = 0, biggest; g_return_val_if_fail (ctx != NULL, FALSE); g_return_val_if_fail (src != NULL, FALSE); g_return_val_if_fail (dst != NULL, FALSE); g_return_val_if_fail (samples >= 0, FALSE); if (samples == 0) return TRUE; insize = ctx->in.unit_size * samples; outsize = ctx->out.unit_size * samples; /* find biggest temp buffer size */ size = (ctx->in.is_int || ctx->out.is_int) ? sizeof (gint32) : sizeof (gdouble); if (!ctx->in_default) intemp = insize * size * 8 / ctx->in.width; if (!ctx->mix_passthrough) outtemp = outsize * size * 8 / ctx->out.width; biggest = MAX (intemp, outtemp); /* see if one of the buffers can be used as temp */ if ((outsize >= biggest) && (ctx->out.unit_size <= size)) tmpbuf = dst; else if ((insize >= biggest) && src_writable && (ctx->in.unit_size >= size)) tmpbuf = src; else { if (biggest > ctx->tmpbufsize) { ctx->tmpbuf = g_realloc (ctx->tmpbuf, biggest); ctx->tmpbufsize = biggest; } tmpbuf = ctx->tmpbuf; } /* start conversion */ if (!ctx->in_default) { /* check if final conversion */ if (!(ctx->out_default && ctx->mix_passthrough)) outbuf = tmpbuf; else outbuf = dst; /* unpack to default format */ ctx->unpack (src, outbuf, ctx->in_scale, samples * ctx->in.channels); src = outbuf; } if (!ctx->mix_passthrough) { /* check if final conversion */ if (!ctx->out_default) outbuf = tmpbuf; else outbuf = dst; /* convert channels */ ctx->channel_mix (ctx, src, outbuf, samples); src = outbuf; } if (!ctx->out_default) { /* pack default format into dst */ ctx->pack (src, dst, ctx->out_scale, samples * ctx->out.channels); } return TRUE; }