GstElement Information about audio buffers. Information about audio buffers. audioraw GObject The aggregator is mainly used for testing purposes. It has several methods to request buffers from its pads. Combine buffers. GstAggregator Reads data from a file. You can seek to a specific location by setting the offset. GstAsyncDiskSrc GstAudioSink GstAudioSrc GstColorSpace A connection is a bas class for a generic connection between elements. A connection is typically a bas class for queues. Generic connection between elements. GstConnection The disksink write to a file. The filename can be given as an argument. #GstFdSink Write to a file GstDiskSink Asynchonously read buffers from a file. Asynchronous read from a file (disksrc) GstDiskSrc GstElementFactory is used to create instances of elements. A GstElementfactory can be added to a #GstPlugin as it is also a #GstPluginFeature. Use gst_element_factory_new() to create a new factory which can be added to a plugin with gst_plugin_add_feature(). gst_element_factory_get_list() is used to get a list of all available factories in the plugin repository. gst_element_factory_add_pad_template() is used to add a padtemplate to the factory. This function will enable the application to query for elementfactories that handle a specific media type. Use the gst_element_factory_find() and gst_element_factory_create() functions to create element instances or use gst_element_factory_make() as a convenient shortcut. The following code example shows you how to create a GstDiskSrc element. #include <gst/gst.h> GstElement *src; GstElementFactory *srcfactory; gst_init(&argc,&argv); srcfactory = gst_element_factory_find("filesrc"); g_return_if_fail(srcfactory != NULL); src = gst_element_factory_create(srcfactory,"src"); g_return_if_fail(src != NULL); ... #GstElement, #GstPlugin, #GstPluginFeature, #GstPadTemplate. Create GstElements from a factory GstElementFactory GstEsdSink GstExtraTypes Take a buffer and gst_buffer_unref() it. This element does nothing with the buffer. (fakesink) Sources a buffer without doing anything with it. (fakesink) GstFakeSink The GstFakeSrc generates empty buffers. (fakesrc) Generate empty buffers. (fakesrc) GstFakeSrc Write data to a file descriptor. Write data to a file descriptor. (fdsink) GstFdSink Read buffers from a file descriptor. Read buffers from a file descriptor. (fdsrc) GstFdSrc FileSrc is used to read buffers from a file. It efficiently uses mmap and subbuffers. Read data from a file GstFileSrc Filters take data in and spit data out. They are the main Element in a filter graph. Filters have zero or more inputs and zero or more outputs. Filters are connected together to form filter graphs. A GstFilter is the base class and is not very usefull on its own. Take data in and spit data out GstFilter GstGetbits Reads data from a URL. Reads data from a URL. (httpsrc) GstHttpSrc Pass data without modification. Pass data without modification. (identity) GstIdentity GstMD5Sink The point of the metadata is to provide some context for each buffer. In the case of audio data, for instance, it would provide the samplerate, bit depth, and channel count. The trick is that there may be multiple types of metadata ganged onto a single buffer. This is why they're going to be a GList. This does mean extra overhead in all cases, but I think it's minimal. The GList type uses a chunk allocater so we're not wasting too much memory or time when adding to the list. The trick is dealing with these structs as they pass through a pipeline, since they have potentially different mutability properties. For instance, if you've got a mp3 decoder connected to a tee, which sends the buffers off to both the decoder and a spectrum analyzer (and then a visualization element). The preferred setup would be where every time a audio/raw metadata comes down the pipe (indicating a potential change in audio format), the audiosink and spectrum would just save off pointers. So when exactly does this metadata go away (deallocated)? Well, that means metadata has to be refcounted. But that gets rather hairy. OK, in the simple case you create a metadata struct, it comes with refcount set to 1. You pass it through, it stays one, eventually someone drops the last reference on the buffer it's tied to, you free the metadata too. Easy. What if you tee? You could go through and for every metadata in the buffer, increment the refcount by the same as the buffer. So in the above case (tee'd), the audiosink and spectrum would get the buffer with a refcount of 2, and it'd have a metadata with refcount 2. Do they ref it each themselves, then unref the buffer? Or do they remove the metadata? Removing the metadata would require a buffer CoW, which would suck, so yes, they'd just ref the metadata. But.... what if they're all in different threads? Then we're off into the magical world of mutexes. Everything with a refcount in a threaded world must be mutexed, else you can do atomic increment and atomic dec and test. Can this be done from C easily? Perhaps it needs to be found from kernel includes via autoconf? The goal in designing the way metadata will be defined and used is to keep it as simple as possible. The basis for accomplishing this is the fact that in order to actually use (rather than just pass) the metadata, you have to know what the fields are, which means you have to have compiled in support for that metadata at build time. Therefore, if you're using metadata, you must have build-time access to the necessary include file that defines it. So, given that you've got an include file, it would be nice if the whole thing could be contained there. This would limit the need to be linked against something, or have load-time requirements as to that has to be loaded before you are. Given that really all metadata is is a region of memory of a given size with a certain signature, this isn't all that hard. First you lay out the struct that defines the metadata. Then you set up #defines that expand to the size of the struct in question, as well as the four-cc code that defines the type. The work is done by a few #defines, a la the #defines used in all Gtk objects. The first is a NEW() method that allocates the memory for the metadata and fills in all the normal fields (type, size, utility functions). Because of the way it's defined (as a #define, no less), you'll have to invoke it as META_NEW(meta), since it can't return() anything. Another #define will check to make sure a meta is indeed that type by verifying the type code and size. Theoretically, meta types can overlap with the same fourcc code, as long as they have different sizes. But I probably ought to have a global public registry so people writing things don't conflict. MSFT got that right, at least. So, a hairy problem is what to do when there are utility functions associated with one of these things. One option is to not bother with them. This is very likely a possible solution, since metadata is supposed to be flat memory of a given size. Not much to do to either free or copy it, is there? Provide context for buffers GstMeta GstMultiDiskSrc A GstPipefilter pipes data to an external program and creates buffers from its output. A wrapper around every stdin/stdout capable program GstPipefilter Simple data queue. Data is queued till max_level buffers any subsequent buffers sent to this filter will block until free space becomes available in the buffer. The queue is typically used in conjunction with a thread. You can query how many buffers are queued with the level argument. The default queue length is set to 10. The queue blocks by default. Simple asynchronous data queue. GstQueue Create a sine wave of a given frequency and volume. Create a sine wave of a given frequency and volume. (sinesrc) GstSineSrc The sink is the end of the filter graph. A typical sink would be an audio or a video card. The end point of a filter graph GstSink A GstSrc is the start of a filter graph. It typically is a file or an audio source. It provides data for the next element in the graph. The start point of a filter graph GstSrc The plugin doesn't alter the data but provides statistics about the data stream, such as buffers/bytes/events etc. Provide statistics about data that passes this plugin GstStatistics GstSystemClock This element can be added to the pipeline and will notify the listener of the detected mime type of the stream. It is used in autoplugging. Detect the mime type of a media stream GstTypeFind plugin Frequencies of a spectrum analysis. Frequencies of a spectrum analysis. spectrum Information about video buffers. Information about video buffers. videoraw The maximum number of cothreads we are going to support. The default stack size of a cothread. Use this macro to show debugging info. This is only usefull when developing new plugin elements. If you #define DEBUG_ENABLED before including gst/gst.h, this macro will produce g_print messages. @format: the format specification as in g_print @args...: arguments @format: @args...: @format: @args...: @format: @args...: @format: @args...: @element: @format: @args...: @element: @object: @format: @args...: @name: @value_type: @flags: @obj: @klass: @obj: @klass: @obj: @klass: @obj: @klass: @buf: Retrieves the type id of the data in the buffer. @buf: GstBuffer Lock the caps structure @caps: The caps structure to lock Try to lock the caps structure @caps: The caps structure to try to lock Unlock the caps structure @caps: The caps structure to unlock @obj: @klass: A flag indicating that MMX instructions are supported. A flag indicating that SSE instructions are supported. @data: @data: Combine #GST_DEBUG_ENTER and #GST_DEBUG_SET_STRING. @cat: @format: @args...: @cat: @format: @args...: Set the debug string for the current function, typically containing the arguments to the current function, i.e. "('element')" @format: printf-style format string @args...: printf arguments @obj: @klass: @obj: @klass: Queries whether the cothread holding this element needs to be stopped. @obj: The element to query Query whether this object has multiple input pads. @obj: Element to query for multiple input pads. @obj: @klass: <<<<<<< gstreamer-unused.sgml @obj: @klass: @obj: @klass: @obj: @klass: @obj: @klass: @obj: @klass: subclass use this to start their flag enumeration >>>>>>> 1.23.2.3 @obj: @klass: @obj: @klass: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @obj: @meta: Retrieve the flags of the given meta information. @meta: the meta information Check if a given flag is set. @meta: the meta data to test @flag: the flag to test Set a flag in the meta data. @meta: the meta data @flag: the flag to set Clear a flag in the meta data. @meta: the meta data @flag: the flag to clear @obj: @klass: subclasses can use this value to start the enumeration of their flags @obj: @klass: Is this pad connected. @pad: the pad to check Indicate that this pad will always be available. Use this in the factory definition. Starts the declaration of a the capabilities for this padtemplate. @a...: a capability factory Indicates that this pad will be available on request. Use this in the factory definition. Indicates a sinkpad for the padfactory. Indicate that this pad will become available depending on the media type. Use this in the factory definition. Indicates a srcpad for the padfactory. @obj: @klass: @a: @a: @b: @a: Create a fourcc property out of an integer value. @a: the integer value @obj: @klass: Get the EOS function of the real pad. @pad: the real pad to query. Get the negotiate function from the real pad. @pad: the real pad to query. Get the newcaps function from the real pad. @pad: the real pad to query. Get the pullfunction of the real pad. @pad: the real pad to query. Get the pushfunction of the real pad. @pad: the real pad to query. Get the QoS function of the real pad. @pad: the real pad to query. Fast macro to add an element to the scheduler. @sched: The scheduler to add the element to. @element: The element to add to the scheduler. Fast macro to disable the element. @sched: The scheduler. @element: The element to disable. Fast macro to enable the element in the scheduler. @sched: The scheduler. @element: The element to activate. Fast macro to perform one iteration of the scheduler. @sched: The scheduler to iterate. Fast macro to lock a given element. @sched: The scheduler. @element: The element to lock. Fast macro to connect two pads. @sched: The scheduler. @srcpad: The source pad. @sinkpad: The sink pad. Fast macro to disconnect two pads. @sched: The scheduler. @srcpad: The source pad. @sinkpad: The sink pad. Fast macro to remove an element from the scheduler. @sched: The scheduler to remove the element from. @element: The element to remove from the scheduler. Handy macro to check for a non NULL scheduler. The next block of statements will only be axecuted if the scheduler is not NULL. @sched: the scheduler to query. Fast macro to unlock a given element. @sched: The scheduler. @element: The element to unlock. Get the parent #GstElement of this scheduler. @sched: the scheduler to query. @obj: @klass: @obj: @klass: @obj: This macro checks to see if the GST_SRC_ASYNC flag is set. @obj: GstSrc to check for flag in. @klass: This macro returns the entire set of flags for the object. @obj: GstSrc to return flags for. Query a GstSrc for the ASYNC flag @obj: The GstSrc to query This macro sets the given flags. @src: @flag: Flag to set, can by any number of bits in guint32. @obj: GstSrc to set flag in. This macro usets the given flags. @src: @flag: Flag to set, must be a single bit in guint32. @obj: GstSrc to unset flag in. This macro checks to see if the given state is set. @obj: Element to check for state. @flag: State to check for, must be a single bit in guint32. The Element is going from the PLAYING state to the READY state. The Element is going from the READY state to the PLAYING state. This macro sets the given state on the element. @obj: Element to set state of. @flag: State to set, can be any number of bits in guint32. This macro unsets the given state on the element. @obj: Element to unset state of. @flag: State to unset, can be any number of bits in guint32. @obj: @klass: @obj: @klass: >>>>>>> 1.23.2.3 A type that can be used to indicate a filename. @class_size: @base_init: @base_finalize: @class_init: @class_finalize: @class_data: @instance_size: @n_preallocs: @instance_init: @value_table: @f: @pspec: @obj: @gclass: @a: @b: @c: @klass: @o: @t: @c: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @v: @AGGREGATOR_LOOP: @AGGREGATOR_LOOP_PEEK: @AGGREGATOR_LOOP_SELECT: @AGGREGATOR_CHAIN: Specify how many bytes to read at a time. Get the size of the current file. Specify the location of the file to read. Specify the current offset in the file. GST_ASYNCDISKSRC_OPEN the asyncdisksrc is open for reading @GST_ASYNCDISKSRC_OPEN: @GST_ASYNCDISKSRC_FLAG_LAST: The buffer is sent to the sound card. @gstaudiosink: the object which received the signal. @arg1: the audiosink. The number of bytes per read. The number of channels (mono, stereo, ...) Get the current number of bytes read. The audio format as defined in soundcard.h The frequency. The function called when a buffer has to be created for this pool. @pool: the pool from which to create the buffer @user_data: any user data @Returns: a new buffer from the pool This function will be called when the given buffer has to be returned to the pool. @pool: the pool to return the buffer to @buffer: the buffer to return @user_data: any user data @GST_CAPS_ALWAYS: @GST_CAPS_MAYBE: Is emited after the buffer has been written to the disk. @gstdisksink: the object which received the signal. The filename to write to. @GST_DISKSINK_OPEN: @GST_DISKSINK_FLAG_LAST: Specify how many bytes to read at a time. Specify the location of the file to read. Get/set the current offset in the file. Get the size of the file. GST_DISKSRC_OPEN the disksrc is open for reading @GST_DISKSRC_OPEN: @GST_DISKSRC_FLAG_LAST: @gstelement: the object which received the signal. @arg1: @gstelement: the object which received the signal. @arg1: The ghost pad that was removed. Is trigered whenever a new ghost pad is added to an element @gstelement: the object which received the signal. @arg1: the new ghost pad that was added This factory is used when registering the element, and contains the name of the element, the GtkType value for it, as well as a pointer to the GstElementDetails struct for the element. This signal is emmitted when a buffer is handled. @gstfakesink: the object which received the signal. @arg1: The buffer that is received. Dump the contents of the buffer The last message this plugin emmited. The number of sink pads. Indicates the plugin should not emit messages. Sync on the clock @gstfakesrc: the object which received the signal. @arg1: The filedescriptor to write to. The number of bytes per read. The filedescriptor to read from. Pass the argument as a char* (???) Get the current offset in the file. The size of the buffers to pass to the peer element. The file descriptor. The filesize. The filename The size of the mmapped area. The offset in the file that is currently being read. Indicates the mmapped area should be touched to bring it into memory. Specify how many bytes to read at a time. Specify the location of the file. The location must be a fully qualified URL. @gstidentity: the object which received the signal. @arg1: @lock: for locking purposes @flags: the flags of the meta data @data: the meta data @size: the size of the meta data Flags indicating properties about the meta data. @GST_META_FREEABLE: the meta data can be freed @GST_MULTIDISKSRC_OPEN: @GST_MULTIDISKSRC_FLAG_LAST: Indicates this pad is active <<<<<<< gstreamer-unused.sgml The function that will be called in an EOS case. @pad: the pad that needs to be set to EOS state @Returns: TRUE if EOS was successful, FALSE otherwise Defines an entry for a padfactory. The padfactory. The function that will be called when negotiating. @pad: The pad that is being negotiated @caps: The current caps that are being negotiated @data: A generic gpointer that can be used to store user_data @Returns: The result of the negotiation process The possible results from padnegotiation. @GST_PAD_NEGOTIATE_FAIL: The pads could not agree about the media type. @GST_PAD_NEGOTIATE_AGREE: The pads agreed about the media type. @GST_PAD_NEGOTIATE_TRY: The pad did not agree and suggests another media type. The function that will be called when the caps of the pad has changed. @pad: The pad that has its caps changed @caps: the new caps of the pad The function that will be called when pulling buffers. @pad: the pad to pull @Returns: a GstBuffer The function that will be called when pushing a buffers. @pad: the pad to push @buf: a GstBuffer to push The function that will be called when a QoS message is sent. @pad: the pad that sent the QoS message @qos_message: the message @GST_PARSE_ERROR_SYNTAX: @GST_PARSE_ERROR_CREATING_ELEMENT: @GST_PARSE_ERROR_NOSUCH_ELEMENT: @GST_PARSE_ERROR_INTERNAL: @GST_PARSE_ERROR_CONNECT: Sets the command to be executed. @GST_PROPS_END_ID_NUM: @GST_PROPS_LIST_ID_NUM: @GST_PROPS_INT_ID_NUM: @GST_PROPS_INT_RANGE_ID_NUM: @GST_PROPS_FOURCC_ID_NUM: @GST_PROPS_BOOL_ID_NUM: Specify wether the queue blocks or not. Get the number of buffers in the queue. Specify the maximum number of buffers in the queue before the queue blocks. @sched: @disabled: @elements: @num_elements: @entry: @cothreaded_elements: @schedule: The number of channels. The format ad defined in soundcard.h The frequency. The fequency. The volume as a double 0.0 is silent, 1.0 is loudest. An eos signal is triggered whenever the GstSrc has reached the end of the stream. @gstsrc: the object which received the signal. @arg1: the object which received the signal Flags for the GstSrc element @GST_SRC_ASYNC: Indicates that this src is asynchronous @GST_SRC_FLAG_LAST: subclasses can use this to number their flags @gststatistics: the object which received the signal. @clock: TRUE if the thread should be created. @filename: @fd: @buf: @bufsize: @bufoffset: @timestamp: @sequence: @data: @message: The signal to indicate the mime type was detected. @gsttypefind: the object which received the signal. @arg1: The mime type that was detected Query the element for the current mime type @gstxml: the object which received the signal. @arg1: @arg2: @cat: @format: @args...: @cat: @element: @format: @args...: @meta: @format: @channels: @frequency: @bps: @meta: @bands: @channels: @interleaved: @lowfreq: @highfreq: @steps: @base: @swidth: @sheight: @bytes_per_line: @wx: @wy: @overlay_element: @clip_count: @overlay_clip: @width: @height: @did_overlay: @fully_obscured: @meta: @format: @visual: @width: @height: @overlay_info: @dga_info: @x1: @x2: @y1: @y2: must be defined to activate the tracing functionality. @thread: @key: @Returns: @Returns: @Returns: @thread: @key: @data: @oclass: @name: @Returns: @oclass: @property_id: @pspec: @oclass: @n_properties: @Returns: @type: @blah_varargs_stuff: @Returns: @object: @name: @nick: @blurb: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @name: @nick: @blurb: @e: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @name: @nick: @blurb: @flags: @Returns: @name: @nick: @blurb: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @name: @nick: @blurb: @min: @max: @def: @flags: @Returns: @signal_name: @object_type: @signal_flags: @function_offset: @accumulator: @Returns: @parent_type: @type_name: @info: @flags: @Returns: @list: @llink: @Returns: @obj: @argname: @pspec: @Returns: @obj: @o: @args...: @obj: @o: @id: @o: @id: @x: @type: @n_ids: @Returns: @list: @llink: @Returns: @c: @c: @t: @t: @t: @src_val: @dest_val: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @value: @t: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @value: @data: @val: @Returns: @pad: @buf: @Returns: @name: @Returns: @audiosink: @channels: @audiosink: @format: @audiosink: @frequency: @audiosink: @Returns: @name: @Returns: @src: @autoplug: @srcpad: @sinkpad: @Varargs: @Returns: @srccaps: @sinkcaps: @parent: @Returns: @factory: @parent: @Returns: @bin: @element: @bin: @child: @bin: @Returns: @bin: @element: @bin: @bin: @element: @manager: @buffer: @meta: @buffer: @Returns: @buffer: @Returns: @pool: @buffer: @pool: @Returns: @pool: @create: @user_data: @pool: @destroy: @user_data: @buffer: @meta: @caps: @Returns: @fromcaps: @tocaps: @Returns: @name: @mime: @props: @Returns: @factory: @Returns: @factory: @counter: @Returns: @count: @clock: @time: @Returns: @Returns: @name: @Returns: @clock: @obj: @clock: @time: @Returns: @name: @Returns: @connection: @Returns: @element: @state: @Returns: @src: @dest: @Returns: @src: @dest: @filtercaps: @Returns: @element_1: @element_2: @Varargs: @Returns: @src: @dest: @elementfactory: @id: @elementfactory: @id: @factory: @caps: @Returns: @factory: @caps: @Returns: @elementfactory: @parent: @Returns: @elementfactory: @factory: @parent: @Returns: @element: @name: @Returns: @Returns: @element: @info: @Varargs: @klass: @first_name: @Varargs: @self: @parent: @Returns: @elements: @argc: @argv: @Returns: @Returns: @element: @templ: @Returns: @element: @templ: @Returns: @temp: @element: @name: @Returns: @self: @parent: @Returns: @element: @parent: @Returns: @element: @event: @element: @pad: @buf: @Returns: @name: @Returns: @esdsink: @channels: @esdsink: @format: @esdsink: @frequency: @esdsink: @Returns: @pad: @buf: @Returns: @name: @Returns: @Returns: @name: @Returns: @src: @pad: @buf: @Returns: @name: @Returns: @name: @fd: @Returns: @Returns: @Returns: @name: @Returns: @Returns: @pad: @buf: @Returns: @name: @Returns: @format: @args...: Create new meta data. @type: the type of the meta data to create @size: @Returns: @meta: @meta: @Returns: @Returns: @pad: @parent: Call the EOS function of the pad @pad: the pad to call the eos function of. @pad: @Returns: @pad: @event: @timestamp: @data: @Returns: @pad: @name: @Returns: @pad: @Returns: @pad: @Returns: @pad: @Returns: @Returns: @pad: @Returns: @pad: @qos_message: @srcpad: @destpad: @caps: @Returns: @counter: @count: @pad: @offset: @size: @Returns: @pad: @parent: @pad: @Returns: @pad: @parent: @Returns: @pad: @caps: @Returns: @pad: @caps: @pad: @Returns: @pad: @eos: @pad: @nego: @pad: @newcaps: @pad: @pull: @pad: @qos: @pad: @id: @name_template: @direction: @presence: @caps: @Returns: @srcpad: @sinkpad: @Returns: @Returns: @pipeline: @plugin: @factory: @plugin: @factory: @plugin: @factory: @Returns: @plugin: @Returns: @plugin: @Returns: @plugin: @Returns: @name: @Returns: @name: @Returns: @mime: @name: @major: @minor: @Returns: @props: @name: @Returns: @props: @name: @Returns: @props: @name: @Returns: @props: @name: @Returns: @props: @name: @Returns: @factory: @Returns: @factory: @counter: @Returns: @pad: @buf: @Returns: @name: @Returns: @connection: @sched: @element: @sched: @element: @sched: @element: @sched: @Returns: @parent: @Returns: @sched: @srcpad: @sinkpad: @sched: @srcpad: @sinkpad: @sched: @padlist: @Returns: @sched: @element: @sched: @sched: @element: @sched: @element: @Returns: @Returns: @name: @Returns: @src: @Returns: @name: @Returns: @Returns: @src: @src: @offset: @size: @src: @Returns: @pad: @buf: @Returns: @name: @Returns: @tee: @Returns: @Returns: @thread: @arg: @trace: @seq: @data: @msg: @trace: @trace: @trace: @trace: @trace: @filename: @size: @Returns: @dst: @trace: @trace: @id: @sink: @id: @src: @parent: @Returns: @factory: @parent: @Returns: @sinkid: @srcid: @Returns: @id: @Returns: @id: @Returns: @parent: @Returns: @type: @parent: @Returns: @object: @argname: @Returns: @buffer: @size: @root: @Returns: @name: @Returns: @name: @Returns: