#include "All.h" #include "APECompress.h" #include "NewPredictor.h" typedef struct { int nFilter0Length; int nFilter0Shift; int nFilter1Length; int nFilter1Shift; int nFilter2Length; int nFilter2Shift; } OrderType; // pfk: // // Where does these numbers come from? // What are restrictions so the compressor works for every signal possible? // Instead of a magic CompressionLevel these 6 (or 4 numbers) should be stored in the header // some MMX code may also increase speed for fast or normal compression, but reduces readability. // Also note that shifting is extremly slow on Pentium 4 (why? no idea!) // Rotation + Order of the follwoing buffers mirroring: m_rbPredictionA, m_rbPredictionB, m_rbAdaptA, m_rbAdaptB -> allows MMX/Altivec const OrderType OrderTypeArray [] = { { 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, { 16, 11, 0, 0, 0, 0 }, { 64, 11, 0, 0, 0, 0 }, { 256, 13, 32, 10, 0, 0 }, { 1024, 15, 256, 13, 0, 0 }, { 1024, 15, 256, 13, 16, 11 }, }; /***************************************************************************************** CPredictorCompressNormal *****************************************************************************************/ CPredictorCompressNormal::CPredictorCompressNormal(int nCompressionLevel) : IPredictorCompress(nCompressionLevel) { const OrderType* p = OrderTypeArray + nCompressionLevel / 1000; if ( nCompressionLevel < 1000 || nCompressionLevel > 6000 || nCompressionLevel % 1000 != 0 ) throw (1); m_pNNFilter0 = p->nFilter0Length ? new CNNFilter (p->nFilter0Length, p->nFilter0Shift) : NULL; m_pNNFilter1 = p->nFilter1Length ? new CNNFilter (p->nFilter1Length, p->nFilter1Shift) : NULL; m_pNNFilter2 = p->nFilter2Length ? new CNNFilter (p->nFilter2Length, p->nFilter2Shift) : NULL; } CPredictorCompressNormal::~CPredictorCompressNormal() { SAFE_DELETE (m_pNNFilter0) SAFE_DELETE (m_pNNFilter1) SAFE_DELETE (m_pNNFilter2) } int CPredictorCompressNormal::Flush() { if ( m_pNNFilter0 != NULL ) m_pNNFilter0->Flush(); if ( m_pNNFilter1 != NULL ) m_pNNFilter1->Flush(); if ( m_pNNFilter2 != NULL ) m_pNNFilter2->Flush(); m_rbPredictionA.Flush(); m_rbPredictionB.Flush(); m_rbAdaptA .Flush(); m_rbAdaptB .Flush(); m_Stage1FilterA.Flush(); m_Stage1FilterB.Flush(); ZeroMemory(m_aryMA, sizeof(m_aryMA)); ZeroMemory(m_aryMB, sizeof(m_aryMB)); m_aryMA[0] = 360; m_aryMA[1] = 317; m_aryMA[2] = -109; m_aryMA[3] = 98; m_nLastValueA = 0; m_nCurrentIndex = 0; return 0; } int CPredictorCompressNormal::CompressValue(int nA, int nB) { if (m_nCurrentIndex == WINDOW_BLOCKS) { m_rbPredictionA.Roll(); m_rbPredictionB.Roll(); m_rbAdaptA .Roll(); m_rbAdaptB .Roll(); m_nCurrentIndex = 0; } // stage 1: simple, non-adaptive order 1 prediction int nCurrentA = m_Stage1FilterA.Compress(nA); int nCurrentB = m_Stage1FilterB.Compress(nB); // stage 2: adaptive offset filter(s) m_rbPredictionA[0] = m_nLastValueA; m_rbPredictionA[-1] = m_rbPredictionA[0] - m_rbPredictionA[-1]; m_rbPredictionB[0] = nCurrentB; m_rbPredictionB[-1] = m_rbPredictionB[0] - m_rbPredictionB[-1]; int nPredictionA = (m_rbPredictionA[0] * m_aryMA[0]) + (m_rbPredictionA[-1] * m_aryMA[1]) + (m_rbPredictionA[-2] * m_aryMA[2]) + (m_rbPredictionA[-3] * m_aryMA[3]); int nPredictionB = (m_rbPredictionB[0] * m_aryMB[0]) + (m_rbPredictionB[-1] * m_aryMB[1]) + (m_rbPredictionB[-2] * m_aryMB[2]) + (m_rbPredictionB[-3] * m_aryMB[3]) + (m_rbPredictionB[-4] * m_aryMB[4]); int nOutput = nCurrentA - ((nPredictionA + (nPredictionB >> 1)) >> 10); m_nLastValueA = nCurrentA; m_rbAdaptA[0] = (m_rbPredictionA[0]) ? ((m_rbPredictionA[0] >> 30) & 2) - 1 : 0; m_rbAdaptA[-1] = (m_rbPredictionA[-1]) ? ((m_rbPredictionA[-1] >> 30) & 2) - 1 : 0; m_rbAdaptB[0] = (m_rbPredictionB[0]) ? ((m_rbPredictionB[0] >> 30) & 2) - 1 : 0; m_rbAdaptB[-1] = (m_rbPredictionB[-1]) ? ((m_rbPredictionB[-1] >> 30) & 2) - 1 : 0; if (nOutput > 0) { m_aryMA[0] -= m_rbAdaptA[0]; m_aryMA[1] -= m_rbAdaptA[-1]; m_aryMA[2] -= m_rbAdaptA[-2]; m_aryMA[3] -= m_rbAdaptA[-3]; m_aryMB[0] -= m_rbAdaptB[0]; m_aryMB[1] -= m_rbAdaptB[-1]; m_aryMB[2] -= m_rbAdaptB[-2]; m_aryMB[3] -= m_rbAdaptB[-3]; m_aryMB[4] -= m_rbAdaptB[-4]; } else if (nOutput < 0) { m_aryMA[0] += m_rbAdaptA[0]; m_aryMA[1] += m_rbAdaptA[-1]; m_aryMA[2] += m_rbAdaptA[-2]; m_aryMA[3] += m_rbAdaptA[-3]; m_aryMB[0] += m_rbAdaptB[0]; m_aryMB[1] += m_rbAdaptB[-1]; m_aryMB[2] += m_rbAdaptB[-2]; m_aryMB[3] += m_rbAdaptB[-3]; m_aryMB[4] += m_rbAdaptB[-4]; } // stage 3: NNFilters if ( m_pNNFilter0 != NULL ) nOutput = m_pNNFilter0->Compress(nOutput); if ( m_pNNFilter1 != NULL ) nOutput = m_pNNFilter1->Compress(nOutput); if ( m_pNNFilter2 != NULL ) nOutput = m_pNNFilter2->Compress(nOutput); m_rbPredictionA.IncrementFast(); m_rbPredictionB.IncrementFast(); m_rbAdaptA.IncrementFast(); m_rbAdaptB.IncrementFast(); m_nCurrentIndex++; return nOutput; } /***************************************************************************************** CPredictorDecompressNormal3930to3950 *****************************************************************************************/ CPredictorDecompressNormal3930to3950::CPredictorDecompressNormal3930to3950(int nCompressionLevel) : IPredictorDecompress(nCompressionLevel) { const OrderType* p = OrderTypeArray + nCompressionLevel / 1000; m_pBuffer[0] = new int [HISTORY_ELEMENTS + WINDOW_BLOCKS]; if ( nCompressionLevel < 1000 || nCompressionLevel > 6000 || nCompressionLevel % 1000 != 0 ) throw (1); m_pNNFilter0 = p->nFilter0Length ? new CNNFilter (p->nFilter0Length, p->nFilter0Shift) : NULL; m_pNNFilter1 = p->nFilter1Length ? new CNNFilter (p->nFilter1Length, p->nFilter1Shift) : NULL; m_pNNFilter2 = p->nFilter2Length ? new CNNFilter (p->nFilter2Length, p->nFilter2Shift) : NULL; } CPredictorDecompressNormal3930to3950::~CPredictorDecompressNormal3930to3950() { SAFE_DELETE (m_pNNFilter0) SAFE_DELETE (m_pNNFilter1) SAFE_DELETE (m_pNNFilter2) SAFE_ARRAY_DELETE(m_pBuffer[0]) } int CPredictorDecompressNormal3930to3950::Flush() { if (m_pNNFilter0) m_pNNFilter0->Flush(); if (m_pNNFilter1) m_pNNFilter1->Flush(); if (m_pNNFilter2) m_pNNFilter2->Flush(); ZeroMemory(m_pBuffer[0], (HISTORY_ELEMENTS + 1) * sizeof(int)); ZeroMemory(&m_aryM[0], M_COUNT * sizeof(int)); m_aryM[0] = 360; m_aryM[1] = 317; m_aryM[2] = -109; m_aryM[3] = 98; m_pInputBuffer = &m_pBuffer[0][HISTORY_ELEMENTS]; m_nLastValue = 0; m_nCurrentIndex = 0; return 0; } int CPredictorDecompressNormal3930to3950::DecompressValue(int nInput, int) { if (m_nCurrentIndex == WINDOW_BLOCKS) { // copy forward and adjust pointers memcpy(&m_pBuffer[0][0], &m_pBuffer[0][WINDOW_BLOCKS], HISTORY_ELEMENTS * sizeof(int)); m_pInputBuffer = &m_pBuffer[0][HISTORY_ELEMENTS]; m_nCurrentIndex = 0; } // stage 2: NNFilter if (m_pNNFilter2 != NULL) nInput = m_pNNFilter2->Decompress(nInput); if (m_pNNFilter1 != NULL) nInput = m_pNNFilter1->Decompress(nInput); if (m_pNNFilter0 != NULL) nInput = m_pNNFilter0->Decompress(nInput); // stage 1: multiple predictors (order 2 and offset 1) int p1 = m_pInputBuffer[-1]; int p2 = m_pInputBuffer[-1] - m_pInputBuffer[-2]; int p3 = m_pInputBuffer[-2] - m_pInputBuffer[-3]; int p4 = m_pInputBuffer[-3] - m_pInputBuffer[-4]; m_pInputBuffer[0] = nInput + ((p1 * m_aryM[0] + p2 * m_aryM[1] + p3 * m_aryM[2] + p4 * m_aryM[3]) >> 9); if (nInput > 0) { m_aryM[0] -= ((p1 >> 30) & 2) - 1; m_aryM[1] -= ((p2 >> 30) & 2) - 1; m_aryM[2] -= ((p3 >> 30) & 2) - 1; m_aryM[3] -= ((p4 >> 30) & 2) - 1; } else if (nInput < 0) { m_aryM[0] += ((p1 >> 30) & 2) - 1; m_aryM[1] += ((p2 >> 30) & 2) - 1; m_aryM[2] += ((p3 >> 30) & 2) - 1; m_aryM[3] += ((p4 >> 30) & 2) - 1; } int nRetVal = m_pInputBuffer[0] + ((m_nLastValue * 31) >> 5); m_nLastValue = nRetVal; m_nCurrentIndex++; m_pInputBuffer++; return nRetVal; } /***************************************************************************************** CPredictorDecompress3950toCurrent *****************************************************************************************/ CPredictorDecompress3950toCurrent::CPredictorDecompress3950toCurrent(int nCompressionLevel) : IPredictorDecompress(nCompressionLevel) { const OrderType* p = OrderTypeArray + nCompressionLevel / 1000; if ( nCompressionLevel < 1000 || nCompressionLevel > 6000 || nCompressionLevel % 1000 != 0 ) throw (1); m_pNNFilter0 = p->nFilter0Length ? new CNNFilter (p->nFilter0Length, p->nFilter0Shift) : NULL; m_pNNFilter1 = p->nFilter1Length ? new CNNFilter (p->nFilter1Length, p->nFilter1Shift) : NULL; m_pNNFilter2 = p->nFilter2Length ? new CNNFilter (p->nFilter2Length, p->nFilter2Shift) : NULL; } CPredictorDecompress3950toCurrent::~CPredictorDecompress3950toCurrent() { SAFE_DELETE(m_pNNFilter0) SAFE_DELETE(m_pNNFilter1) SAFE_DELETE(m_pNNFilter2) } int CPredictorDecompress3950toCurrent::Flush() { if (m_pNNFilter0 != NULL) m_pNNFilter0->Flush(); if (m_pNNFilter1 != NULL) m_pNNFilter1->Flush(); if (m_pNNFilter2 != NULL) m_pNNFilter2->Flush(); ZeroMemory(m_aryMA, sizeof(m_aryMA)); ZeroMemory(m_aryMB, sizeof(m_aryMB)); m_rbPredictionA.Flush(); m_rbPredictionB.Flush(); m_rbAdaptA.Flush(); m_rbAdaptB.Flush(); m_aryMA[0] = 360; m_aryMA[1] = 317; m_aryMA[2] = -109; m_aryMA[3] = 98; m_Stage1FilterA.Flush(); m_Stage1FilterB.Flush(); m_nLastValueA = 0; m_nCurrentIndex = 0; return 0; } int CPredictorDecompress3950toCurrent::DecompressValue(int nA, int nB) { if (m_nCurrentIndex == WINDOW_BLOCKS) { // copy forward and adjust pointers m_rbPredictionA.Roll(); m_rbPredictionB.Roll(); m_rbAdaptA.Roll(); m_rbAdaptB.Roll(); m_nCurrentIndex = 0; } // stage 2: NNFilter if (m_pNNFilter2 != NULL) nA = m_pNNFilter2->Decompress(nA); if (m_pNNFilter1 != NULL) nA = m_pNNFilter1->Decompress(nA); if (m_pNNFilter0 != NULL) nA = m_pNNFilter0->Decompress(nA); // stage 1: multiple predictors (order 2 and offset 1) m_rbPredictionA[0] = m_nLastValueA; m_rbPredictionA[-1] = m_rbPredictionA[0] - m_rbPredictionA[-1]; m_rbPredictionB[0] = m_Stage1FilterB.Compress(nB); m_rbPredictionB[-1] = m_rbPredictionB[0] - m_rbPredictionB[-1]; int nPredictionA = (m_rbPredictionA[0] * m_aryMA[0]) + (m_rbPredictionA[-1] * m_aryMA[1]) + (m_rbPredictionA[-2] * m_aryMA[2]) + (m_rbPredictionA[-3] * m_aryMA[3]); int nPredictionB = (m_rbPredictionB[0] * m_aryMB[0]) + (m_rbPredictionB[-1] * m_aryMB[1]) + (m_rbPredictionB[-2] * m_aryMB[2]) + (m_rbPredictionB[-3] * m_aryMB[3]) + (m_rbPredictionB[-4] * m_aryMB[4]); int nCurrentA = nA + ((nPredictionA + (nPredictionB >> 1)) >> 10); m_rbAdaptA[0] = (m_rbPredictionA[0]) ? ((m_rbPredictionA[0] >> 30) & 2) - 1 : 0; m_rbAdaptA[-1] = (m_rbPredictionA[-1]) ? ((m_rbPredictionA[-1] >> 30) & 2) - 1 : 0; m_rbAdaptB[0] = (m_rbPredictionB[0]) ? ((m_rbPredictionB[0] >> 30) & 2) - 1 : 0; m_rbAdaptB[-1] = (m_rbPredictionB[-1]) ? ((m_rbPredictionB[-1] >> 30) & 2) - 1 : 0; if (nA > 0) { m_aryMA[0] -= m_rbAdaptA[0]; m_aryMA[1] -= m_rbAdaptA[-1]; m_aryMA[2] -= m_rbAdaptA[-2]; m_aryMA[3] -= m_rbAdaptA[-3]; m_aryMB[0] -= m_rbAdaptB[0]; m_aryMB[1] -= m_rbAdaptB[-1]; m_aryMB[2] -= m_rbAdaptB[-2]; m_aryMB[3] -= m_rbAdaptB[-3]; m_aryMB[4] -= m_rbAdaptB[-4]; } else if (nA < 0) { m_aryMA[0] += m_rbAdaptA[0]; m_aryMA[1] += m_rbAdaptA[-1]; m_aryMA[2] += m_rbAdaptA[-2]; m_aryMA[3] += m_rbAdaptA[-3]; m_aryMB[0] += m_rbAdaptB[0]; m_aryMB[1] += m_rbAdaptB[-1]; m_aryMB[2] += m_rbAdaptB[-2]; m_aryMB[3] += m_rbAdaptB[-3]; m_aryMB[4] += m_rbAdaptB[-4]; } int nRetVal = m_Stage1FilterA.Decompress(nCurrentA); m_nLastValueA = nCurrentA; m_rbPredictionA.IncrementFast(); m_rbPredictionB.IncrementFast(); m_rbAdaptA.IncrementFast(); m_rbAdaptB.IncrementFast(); m_nCurrentIndex++; return nRetVal; }