Fix GstElement::set_context() implementation for all plug-in elements
to avoid leaking an extra reference to the VA display, thus preventing
correct cleanup of VA resources in GStreamer 1.2 builds.
Destroy VPP output surface pool on exit. Also avoid a possible crash
in double-free situation caused by insufficiently reference counted
array of formats returned during initialization.
Fix advanced deinterlacing modes with VPP to track only up to 2 past
reference buffers. This used to be 3 past reference buffers but this
doesn't fit with the existing decode pipeline that only has 4 extra
scratch surfaces.
Also optimize references tracking to be only enabled when needed, i.e.
when advanced deinterlacing mode is used. This means that we don't
need to track past references for basic bob or weave deinterlacing.
In "mixed" interlaced streams, the buffer contains additional flags that
specify whether the frame contained herein is interlaced or not. This means
that we can alternatively get progressive or interlaced frames. Make sure
to disable deinterlacing at the VPP level when the source buffer is no longer
interlaced.
Fix memory leaks with advanced deinterlacing, i.e. when we keep track
of past buffers. Completely reset the deinterlace state, thus destroying
any buffer currently held, on _start(), _stop() and _destroy().
Port vaapipostproc element to GStreamer 1.2. Support is quite minimal
right now so that to cope with auto-plugging issues/regressions. e.g.
this happens when the correct set of expected caps are being exposed.
This means that, currently, the proposed caps are not fully accurate.
Fix basic deinterlacing flags provided to gst_vaapi_set_deinterlacing()
for the first field. Render flags were supplied instead of the actual
deinterlacing flags (deint_flags).
Fix GstBaseTransform::transform_caps() implementation to always return
the complete set of allowed sink pad caps (unfixated) even if the src
pad caps we are getting are fixated. Rationale: there are just so many
possible combinations, and it was wrong to provide a unique set anyway.
As a side effect, this greatly simplifies the ability to derive src pad
caps from fixated sink pad caps.
Fix deinterlacing flags to make more sense. The TFF (top-field-first)
flag is meant to specify the organization of reference frames used in
advanced deinterlacing modes. Introduce the more explicit flag TOPFIELD
to specify that the top-field of the supplied input surface is to be
used for deinterlacing. Conversely, if not set, this means that the
bottom field of the supplied input surface will be used instead.
Fix raw YUV data uploaded as in the following pipeline:
$ gst-launch-1.0 filesrc video.yuv ! videoparse ! vaapipostproc ! vaapisink
The main reason why it failed was that the videoparse element simply
allocates GstBuffer with raw data chunk'ed off the sink pad without
any prior knowledge of the actual frame info. i.e. it basically just
calls gst_adapter_take_buffer().
We could avoid the extra copy performed in vaapipostproc if the videoparse
element was aware of the downstream pool and bothers copying line by
line, for each plane. This means that, for a single frame per buffer,
the optimizatin will be to allocate the video buffer downstream, map
it, and copy each line that is coming through until we need to fills
in the successive planes.
Still, optimized raw YUV uploads already worked with the following:
$ gst-launch-1.0 videotestsrc ! vaapipostproc ! vaapisink
https://bugzilla.gnome.org/show_bug.cgi?id=711250
[clean-ups, fixed error cases to unmap and unref outbuf]
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
If the currently selected deinterlacing method is not supported by the
underlying hardware, then try to downgrade the method to a supported one.
At the minimum, basic bob-deinterlacing shall always be supported.
Allow basic bob-deinterlacing to work when VPP is enabled. Currently,
this only covers bob-deinterlacing when the output pixel format is
explicitly set.
Add initial support for basic scaling with size specified through the
"width" and "height" properties. If either user-provided dimension is
zero and "force-aspect-ratio" is set to true (the default), then the
other dimension is scaled to preserve the aspect ratio.
If VPP is available, we always try to implicitly convert the source
buffer to the "native" surface format for the underlying accelerator.
This means that no optimization is performed yet to propagate raw YUV
buffers to the downstream element as is, if VPP is available. i.e. it
will always cause a color conversion.
Even if we only support deinterlacing for now, use flags to specify
which filters are to be applied to each frame we receive in transform().
This is preparatory work for integrating new filters.
Add support for "mixed" interlace-mode, whereby the video frame buffer
shall be deinterlaced only if its flags mention that's actually an
interlaced frame buffer.
Add gst_caps_set_interlaced() helper function that would reset the
interlace-mode field to "progressive" for GStreamer >= 1.0, or the
interlaced field to "false" for GStreamer 0.10.
Add basic deinterlacing support, i.e. bob-deinterlacing whereby only
the selected field from the input surface is kept for the target surface.
Setting gst_vaapi_filter_set_deinterlacing() method argument to
GST_VAAPI_DEINTERLACE_METHOD_NONE means to disable deinterlacing.
Also move GstVaapiDeinterlaceMethod definition from vaapipostproc plug-in
to libgstvaapi core library.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Fix reference counting bug for passthrough mode, whereby the input buffer
was propagated as is downstream through gst_pad_push() without increasing
its reference count before. The was a problem when gst_pad_push() returns
an error and we further decrease the reference count of the input buffer.
Add support for interlaced streams with GStreamer 1.0 too. Basically,
this enables vaapipostproc, though it is not auto-plugged yet. We also
make sure to reply to CAPS queries, and happily handle CAPS events.
Port vaapidecode and vaapisink plugins to GStreamer API >= 1.0. This
is rather minimalistic so that to test the basic functionality.
Disable vaapiupload, vaapidownload and vaapipostproc plugins. The latter
needs polishing wrt. to GStreamer 1.x functionality and the former are
totally phased out in favor of GstVaapiVideoMemory map/unmap facilities,
which are yet to be implemented.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Move GstVaapiVideoMeta from core libgstvaapi decoding library to the
actual plugin elements. That's only useful there. Also inline reference
counting code from GstVaapiMiniObject.
Use gst_element_class_set_static_metadata() from GStreamer 1.0, which
basically is the same as gst_element_class_set_details_simple() in
GStreamer 0.10 context.
Move GstImplementsInterface and GstVideoContext support functions up
so that to keep a clear separation between the plugin element and its
interface hooks.
Update plugin elements with the new GstVaapiVideoMeta API.
This also fixes support for subpictures/overlay because GstVideoDecoder
generates a sub-buffer from the GstVaapiVideoBuffer. So, that sub-buffer
is marked as read-only. However, when comes in the textoverlay element
for example, it checks whether the input buffer is writable. Since that
buffer read-only, then a new GstBuffer is created. Since gst_buffer_copy()
does not preserve the parent field, the generated buffer in textoverlay
is not exploitable because we lost all VA specific information.
Now, with GstVaapiVideoMeta information attached to a standard GstBuffer,
all information are preserved through gst_buffer_copy() since the latter
does copy metadata (qdata in this case).
Determine whether the buffer represents the top-field only by checking for
the GST_VIDEO_BUFFER_TFF flag instead of relying on the GstVaapiSurfaceProxy
flag. Also trust "interlaced" caps to determine whether the input frame
is interleaved or not.
Intermediate elements may produce a sub-buffer from a valid GstVaapiVideoBuffer
for non raw YUV cases. Make sure vaapipostproc now understands those buffers.
If vaapisink is in the GStreamer pipeline, then we shall allocate a
unique GstVaapiDisplay and propagate it upstream. i.e. subsequent
queries from vaapidecode shall get a valid answer from vaapisink.
This flag is obsolete. It was meant to explicitly enable/disable VA/GLX API
support, or fallback to TFP+FBO if this API is not found. Now, we check for
the VA/GLX API by default if --enable-glx is set. If this API is not found,
we now default to use TFP+FBO.
Note: TFP+FBO, i.e. using vaPutSurface() is now also a deprecated usage and
will be removed in the future. If GLX rendering is requested, then the VA/GLX
API shall be used as it covers most usages. e.g. AMD driver can't render to
an X pixmap yet.