Elements emitting frames through several srcpads should use a
flow combiner to aggregate the chain returns and therefore only return
GST_FLOW_NOT_LINKED to upstream when all the downstream pads have
received GST_FLOW_NOT_LINKED.
In addition to that, in order to handle pads being relinked downstream,
the flow combiner should be reset in response to RECONFIGURE events.
This ensures that a both srcpads process a chain operation before a
GST_FLOW_NOT_LINKED can be propagated upstream (which would usually stop
the pipeline).
Otherwise, in a configuration with two srcpads, only one linked at a
time, after the relink the element could chain data through the now
unlinked pad and the flow combiner would resolve as GST_FLOW_NOT_LINKED
(stopping the pipeline) just because the now linked pad has not been
chained yet to update the flow combiner.
This patch adds handling of RECONFIGURE events to qtdemux. Also, since
this event handling causes the flow combiner to be used from a thread
other than the qtdemux streaming thread, usages of the flow combiner
has been guarded by the object lock.
The key is to make sure the jitterbuffer is set to NULL *before* the
ptdemux.
The race that existed would basically happen when ptdemux had reached
READY, and the jitterbuffer would then push a buffer, triggering a new
pad with a new payloadtype being added and ghosted to the rtpbin itself.
However, the srcpad of the ptdemux would now be inactive, and all the
sticky-event pushed on it would be swallowed, not allowing any to reach
the ghost-pad. Then the buffer in-flight would come to the ghostpad,
and we would assert that a buffer arrived before the necessary
events.
By simply re-ordering the state-changes, we ensure that there will be
no buffer racing into the ptdemux while its state is being changed,
and the problem disappears completely.
Notice also that there is not point in disconnecting the signals on the
ptdemux before this point, since we need the push-thread to settle
down before we can do this in a non-racy way.
Applications might handle locations and generally configuration of the
sink by themselves instead of having splitmuxsink set the location on
the sink. Nonetheless it makes sense to increment the fragment_id that
is passed to the signal so that applications know which fragment is
requested.
If Mesa is built without X11 headers, building against Mesa EGL headers
requires a dependency on egl.pc, to define MESA_EGL_NO_X11_HEADERS.
This fixes a build error when compiling ext/qt/gstqtglutility.cc:
In file included from /usr/include/EGL/egl.h:39,
from /usr/include/gstreamer-1.0/gst/gl/egl/gstegl.h:44,
from ../gst-plugins-good-1.16.1/ext/qt/gstqtglutility.cc:43:
/usr/include/EGL/eglplatform.h:124:10: fatal error: X11/Xlib.h: No such file or directory
Add parsed=true to output caps, as we always output
whole frames, timestamped and all. Means also that
the output can be decoded by avdec_mjpeg wihout
plugging an extra parser (which has no rank).
This was never installed and it was only used by the uninstalled
autotools dev environment to locate the -good plugins for use
in unit tests in gstreamer modules higher up the stack.
It is no longer needed now that we no longer have an autotools build.
Add a property that makes it possible for an application to set the
DateUTC header field in matroska files. This is useful for live feeds,
where the DateUTC header can be set to a UTC timestamp, matching the
beginning of the file.
Needs gstreamer!323
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-good/issues/481
Before we do streamon, we queue all capture buffers by calling
resurrect. When the driver supports CREATE_BUFS, this would lead
to buffers being allocated till the maximum of 32 is reached.
Instead, we now save the number of allocated buffers and queue this
amount.
libv4l2 reset the colorpace to 0 and does not do any request to the
driver. This yields an invalid colorspace which currently cause a
negotiation failure. This workaround by ignoring bad values during the
TRY_FMT step.
An application might try to access splitmuxsink from sync message handler
by g_object_{get,set} which takes lock also. In general, we don't
take lock around message handler.
By passing `NULL` to `g_signal_new` instead of a marshaller, GLib will
actually internally optimize the signal (if the marshaller is available
in GLib itself) by also setting the valist marshaller. This makes the
signal emission a bit more performant than the regular marshalling,
which still needs to box into `GValue` and call libffi in case of a
generic marshaller.
Note that for custom marshallers, one would use
`g_signal_set_va_marshaller()` with the valist marshaller instead.
The do_expected_timeout() function may release the JBUF_LOCK, so we need
to check if nothing wanted the timer thread to exit after this call.
The side effect was that we may endup going back into waiting for a timer
which will cause arbitrary delay on tear down (or deadlock when test
clock is used).
Fixes#653
JBUF_WAIT_QUEUE drops the JBUF_LOCK, which means the stop condition
for the chain function may have changed (change_state to NULL). Check
this immediately after the wait so that we don't delay shutting down.
When in-place, running an allocation is not useful since videocrop
is not implicated in the allocation. So only force the allocation
query for the case it was in passthrough. This is needed since the
change in the crop region will likely pull us out of this mode. For the
case we where neither in passthrough or in-place, the allocation query
is already ran by the baseclass, so nothing special is needed.
This fixes performance issues when changing the crop region per frame.
This was reproduced using videocrop2-test.
If the the height is not a multiple of the macro block size then the memory
of the last line is reused for all extra lines. This is no problem if the
last line is duplicated properly. However, if the extra lines are not
initialized properly during encoding, then the last visible line is
overwritten with undefined data.
Use a extra buffer to avoid this problem.