This keep-it-simple plugin is useful when you want to pipe arbitrary
data to a different pipeline within the same process. Some advantages
over appsink/appsrc, the inter elements, etc:
* Ease of use. Buffers, events, and caps are transmitted as-is without
copying or serialization.
* Enables zerocopy (especially DMABUF) transparently without any
special-casing.
* Enables usage with sinks or elements that are unreliable and may
throw errors and need re-initialization, such as a network sink, a
USB device sink (v4l2), etc.
* Transmits arbitrary data, not just audio/video/subs
* Can easily implement 1 producer pipeline -> N dynamic consumer
pipelines within a single process when combined with the `tee`
element.
All queries, events, buffers, and buffer lists are proxied. State
changes, clocks, and base times for the two pipelines are independent
since the upstream and downstreams continue to be different pipelines.
https://bugzilla.gnome.org/show_bug.cgi?id=788200
gdpdepay element uses the decide_allocation to fetch the downstream
allocator. Nonetheless it is possible that allocate uses a custom
alloc function, which is not usable by gdpdepay, crashing later the
application when the allocater buffer is NULL.
This patch checks for the allocator flags and reset it if the
allocator has a custom alloc function.
https://bugzilla.gnome.org/show_bug.cgi?id=789476
When querying downstream for allocation, and the source caps hasn't
set its caps, using ANY by default, it raises a critical message in
console:
CRITICAL **: gst_video_info_from_caps: assertion 'gst_caps_is_fixed (caps)' failed
This patch bails out decide_allocation() if the caps aren't fixed.
https://bugzilla.gnome.org/show_bug.cgi?id=789476
This information could be used for example to pick a decoder supporting
a specific chroma and/or bit depth, like 4:2:2 10 bits.
It can also be used to inform earlier decoder about the format it is
about to decode.
https://bugzilla.gnome.org/show_bug.cgi?id=792039
This fixes issues where wavparse would query the file size upstream
and assert because the file size is way smaller then what the WAVE
header says. This patch disable or cane a handful of queries that
make no sense to forward.
https://bugzilla.gnome.org/show_bug.cgi?id=791811
This plugin is useful when you want to pipe arbitrary data to
a different pipeline within the same process. Buffers, events, and caps
are transmitted as-is without copying or manipulation.
"avwait-status" is posted when avwait starts or stops passing through
data (e.g. because target-timecode and end-timecode respectively have
been reached). The attached structure includes a "dropping" boolean (set
to TRUE if we are currently dropping data, FALSE otherwise), and a
"running-time" GST_CLOCK_TIME which contains the running time of the
change.
https://bugzilla.gnome.org/show_bug.cgi?id=790170
Reordering of packets is not very common in networks, and the delay
functions will always introduce reordering if delay > packet-spacing,
so by setting allow-reordering to FALSE you guarantee that the packets
are in order, while at the same time introducing delay/jitter to them.
By using the property "delay-distribution" the user can control how the
delay applied to delayed packets is distributed. This is either the
uniform distribution (as before) or the normal distribution.
"min-delay" and "max-delay" control both distributions. For the normal
distribution it defines the bounds of the 95% confidence interval.
When input is not in byte-stream format there is no need to wait for the first
buffer before setting src caps. We already have all the information from the
input codec_data.
This allow us to already configure downstream elements allowing them,
for example, to already allocate their internal buffers as they know
the format of the input they are about to receive.
Same change as the one I just did in h264parse.
https://bugzilla.gnome.org/show_bug.cgi?id=790709
When input is in AVC format there is no need to wait for the first buffer
before setting src caps. We already have all the information from the
input codec_data.
This allow us to already configure downstream elements allowing them,
for example, to already allocate their internal buffers as they know
the format of the input they are about to receive.
https://bugzilla.gnome.org/show_bug.cgi?id=790709
Try prioritizing downstream's caps over upstream's if possible so the
parser can configured in "passthrough" if possible and save it from
doing useless conversions.
Exact same change as the one I just did in h264parse.
https://bugzilla.gnome.org/show_bug.cgi?id=790628
Try prioritizing downstream's caps over upstream's if possible so the
parser can configured in "passthrough" if possible and save it from
doing useless conversions.
https://bugzilla.gnome.org/show_bug.cgi?id=790628
A deserialised timecode has a framerate of 0/1 by default. That breaks
it when comparing the frames field with another timecode (incoming from
the frame). We were setting the framerate when receiving the caps event,
but not when setting the timecode in set_property, so it was broken for
timecodes set after the caps event.
Also checking if the fps_n we got from the caps event is != 0 before
setting it - also at the caps event.
https://bugzilla.gnome.org/show_bug.cgi?id=790334
Now that timecodes support proper serialisation / deserialisation, a
timecode might have an invalid fps_n / fps_d even without using the
target-time-code-string property. Detect those cases and set fps_n/fps_d
properly.
If end_tc is NULL, it means that we don't want avwait to stop at any
timecode. When explicitly setting end_tc to NULL, there is no point in
comparing end_tc with start_tc (to see if we'll reject end_tc for being
before start_tc), so the check in question is completely disabled
instead of letting it crash.
Add support for parsing linear time code from
an audio source using libltc
https://github.com/x42/libltc
The user can now choose between 3 different and independently
running timecode sources. The old override-existing property
has been replaced by timecode-source.
https://bugzilla.gnome.org/show_bug.cgi?id=784295
This element can be configured to add jitter and/or drift to incoming
buffers' PTS, DTS, or both. Amplitude and average of jitter and drift
are configurable.
https://bugzilla.gnome.org/show_bug.cgi?id=787358
avwait can now be configured to stop when a given timecode has been
reached. It will start at the timecode indicated with start-timecode and
end at the timecode indicated with end-timecode. If end-timecode is
NULL (default), the previous functionality is preserved: keep going and
not end.
https://bugzilla.gnome.org/show_bug.cgi?id=789403
* Avoid copying the pending data and instead create a buffer directly from
that data with the appropriate offset.
* Locate the jp2k magic to determine the exact location of the (first) frame
data instead of assuming that the header is of an expected size
https://bugzilla.gnome.org/show_bug.cgi?id=786111
The jp2k specification (ITU-T T.800) specifies that the 'brat' box
has two fields and the second one (AUF2) can be set to 0 for progressive
streams.
The problem is that the mpeg-ts specification (ITU-T H.222.0 06/2012)
says that the AUF2 field is only present if the stream is interlaced
In order to cope with both situation, accept those next 32bit if the
stream is marked as progressive and those bits contain 0
https://bugzilla.gnome.org/show_bug.cgi?id=786111
Crossfading is a bit more complex than just having two pads with the
right keyframes as the blending is not exactly the same.
The difference is in the way we compute the alpha channel, in the case
of crossfading, we have to compute an additive operation between
the destination and the source (factored by the alpha property of both
the input pad alpha property and the crossfading ratio) basically so
that the crossfade result of 2 opaque frames is also fully opaque at any
time in the crossfading process, avoid bleeding through the layer
blending.
Some rationnal can be found in https://phabricator.freedesktop.org/T7773.
https://bugzilla.gnome.org/show_bug.cgi?id=784827
These elements allow splitting a pipeline across several processes,
with communication done by the ipcpipelinesink and ipcpipelinesrc
elements. The main use case is to split a playback pipeline into
a process that runs networking, parser & demuxer and another process
that runs the decoder & sink, for security reasons.
https://bugzilla.gnome.org/show_bug.cgi?id=752214
This allows us to know exactly where in the material track we are, and
how to convert from a PTS for a source track to the actual PTS of the
material track (i.e. by adding the component start position).
https://bugzilla.gnome.org/show_bug.cgi?id=785119
While the size in the packet is only 16 bits, we need to handle bigger
sizes without overflowing. For video streams this can happen, 0 is
written to the stream instead.
This fixes muxing of buffers >= 2**16.
In this case, we assume that the format is jpc, and we infer the color
space from the number of components. This allows the parser to process a
jpc disk file coming from a filesrc element.
https://bugzilla.gnome.org/show_bug.cgi?id=783291
It is only relevant in deciding whether or not send SEGMENT_DONE.
In this case, not detecting EOS leads to a busy loop when encountering
the originally recorded end-of-file of a file that is still growing.
While only filler packets should be allowed, for good measure also skip
any other KLV packets in the range where there could be index table
segments.
This fixes parsing of partitions with multiple index table segments,
which are separated by a filler packet, or other packets.
This is needed to know the PTS, without that we only know the DTS and
using that also for the PTS is wrong unless we have an intra-only codec.
If we can't get the temporal reordering from the index table, don't set
any PTS for non-intra-only codecs and let decoders figure out something.
https://bugzilla.gnome.org/show_bug.cgi?id=784027