gstreamer/subprojects/gst-plugins-bad/sys/nvcodec/cuda-converter.c

2091 lines
65 KiB
C
Raw Normal View History

/* GStreamer
* Copyright (C) 2010 David Schleef <ds@schleef.org>
* Copyright (C) 2010 Sebastian Dröge <sebastian.droege@collabora.co.uk>
* Copyright (C) 2019 Seungha Yang <seungha.yang@navercorp.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:cudaconverter
* @title: GstCudaConverter
* @short_description: Generic video conversion using CUDA
*
* This object is used to convert video frames from one format to another.
* The object can perform conversion of:
*
* * video format
* * video colorspace
* * video size
*/
/**
* TODO:
* * Add more interpolation method and make it selectable,
* currently default bi-linear interpolation only
* * Add fast-path for conversion like videoconvert
* * Full colorimetry and chroma-siting support
* * cropping, and x, y position support
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cuda-converter.h"
#include <gst/cuda/gstcudautils.h>
#include <gst/cuda/gstcudaloader.h>
#include <gst/cuda/gstcudanvrtc.h>
#include <string.h>
#define CUDA_BLOCK_X 16
#define CUDA_BLOCK_Y 16
#define DIV_UP(size,block) (((size) + ((block) - 1)) / (block))
static gboolean cuda_converter_lookup_path (GstCudaConverter * convert);
#ifndef GST_DISABLE_GST_DEBUG
#define GST_CAT_DEFAULT ensure_debug_category()
static GstDebugCategory *
ensure_debug_category (void)
{
static gsize cat_gonce = 0;
if (g_once_init_enter (&cat_gonce)) {
gsize cat_done;
cat_done = (gsize) _gst_debug_category_new ("cuda-converter", 0,
"cuda-converter object");
g_once_init_leave (&cat_gonce, cat_done);
}
return (GstDebugCategory *) cat_gonce;
}
#else
#define ensure_debug_category()
#endif
#define GST_CUDA_KERNEL_FUNC "gst_cuda_kernel_func"
#define GST_CUDA_KERNEL_FUNC_TO_Y444 "gst_cuda_kernel_func_to_y444"
#define GST_CUDA_KERNEL_FUNC_Y444_TO_YUV "gst_cuda_kernel_func_y444_to_yuv"
#define GST_CUDA_KERNEL_FUNC_TO_ARGB "gst_cuda_kernel_func_to_argb"
#define GST_CUDA_KERNEL_FUNC_SCALE_RGB "gst_cuda_kernel_func_scale_rgb"
/* *INDENT-OFF* */
/**
* read_chroma:
* @tex1: a CUDA texture object representing a semi-planar chroma plane
* @tex2: dummy object
* @x: the x coordinate to read data from @tex1
* @y: the y coordinate to read data from @tex1
*
* Returns: a #ushort2 vector representing both chroma pixel values
*/
static const gchar READ_CHROMA_FROM_SEMI_PLANAR[] =
"__device__ ushort2\n"
"read_chroma (cudaTextureObject_t tex1, cudaTextureObject_t tex2, \n"
" float x, float y)\n"
"{\n"
" return tex2D<ushort2>(tex1, x, y);\n"
"}";
/**
* read_chroma:
* @tex1: a CUDA texture object representing a chroma planar plane
* @tex2: a CUDA texture object representing the other planar plane
* @x: the x coordinate to read data from @tex1 and @tex2
* @y: the y coordinate to read data from @tex1 and @tex2
*
* Returns: a #ushort2 vector representing both chroma pixel values
*/
static const gchar READ_CHROMA_FROM_PLANAR[] =
"__device__ ushort2\n"
"read_chroma (cudaTextureObject_t tex1, cudaTextureObject_t tex2, \n"
" float x, float y)\n"
"{\n"
" unsigned short u, v;\n"
" u = tex2D<unsigned short>(tex1, x, y);\n"
" v = tex2D<unsigned short>(tex2, x, y);\n"
" return make_ushort2(u, v);\n"
"}";
/**
* write_chroma:
* @dst1: a CUDA global memory pointing to a semi-planar chroma plane
* @dst2: dummy
* @u: a pixel value to write @dst1
* @v: a pixel value to write @dst1
* @x: the x coordinate to write data into @tex1
* @x: the y coordinate to write data into @tex1
* @pstride: the pixel stride of @dst1
* @mask: bitmask to be applied to high bitdepth plane
*
* Write @u and @v pixel value to @dst1 semi-planar plane
*/
static const gchar WRITE_CHROMA_TO_SEMI_PLANAR[] =
"__device__ void\n"
"write_chroma (unsigned char *dst1, unsigned char *dst2, unsigned short u,\n"
" unsigned short v, int x, int y, int pstride, int stride, int mask)\n"
"{\n"
" if (OUT_DEPTH > 8) {\n"
" *(unsigned short *)&dst1[x * pstride + y * stride] = (u & mask);\n"
" *(unsigned short *)&dst1[x * pstride + 2 + y * stride] = (v & mask);\n"
" } else {\n"
" dst1[x * pstride + y * stride] = u;\n"
" dst1[x * pstride + 1 + y * stride] = v;\n"
" }\n"
"}";
/**
* write_chroma:
* @dst1: a CUDA global memory pointing to a planar chroma plane
* @dst2: a CUDA global memory pointing to a the other planar chroma plane
* @u: a pixel value to write @dst1
* @v: a pixel value to write @dst1
* @x: the x coordinate to write data into @tex1
* @x: the y coordinate to write data into @tex1
* @pstride: the pixel stride of @dst1
* @mask: bitmask to be applied to high bitdepth plane
*
* Write @u and @v pixel value into @dst1 and @dst2 planar planes
*/
static const gchar WRITE_CHROMA_TO_PLANAR[] =
"__device__ void\n"
"write_chroma (unsigned char *dst1, unsigned char *dst2, unsigned short u,\n"
" unsigned short v, int x, int y, int pstride, int stride, int mask)\n"
"{\n"
" if (OUT_DEPTH > 8) {\n"
" *(unsigned short *)&dst1[x * pstride + y * stride] = (u & mask);\n"
" *(unsigned short *)&dst2[x * pstride + y * stride] = (v & mask);\n"
" } else {\n"
" dst1[x * pstride + y * stride] = u;\n"
" dst2[x * pstride + y * stride] = v;\n"
" }\n"
"}";
/* CUDA kernel source for from YUV to YUV conversion and scale */
static const gchar templ_YUV_TO_YUV[] =
"extern \"C\"{\n"
"__constant__ float SCALE_H = %s;\n"
"__constant__ float SCALE_V = %s;\n"
"__constant__ float CHROMA_SCALE_H = %s;\n"
"__constant__ float CHROMA_SCALE_V = %s;\n"
"__constant__ int WIDTH = %d;\n"
"__constant__ int HEIGHT = %d;\n"
"__constant__ int CHROMA_WIDTH = %d;\n"
"__constant__ int CHROMA_HEIGHT = %d;\n"
"__constant__ int IN_DEPTH = %d;\n"
"__constant__ int OUT_DEPTH = %d;\n"
"__constant__ int PSTRIDE = %d;\n"
"__constant__ int CHROMA_PSTRIDE = %d;\n"
"__constant__ int IN_SHIFT = %d;\n"
"__constant__ int OUT_SHIFT = %d;\n"
"__constant__ int MASK = %d;\n"
"__constant__ int SWAP_UV = %d;\n"
"\n"
"__device__ unsigned short\n"
"do_scale_pixel (unsigned short val) \n"
"{\n"
" unsigned int diff;\n"
" if (OUT_DEPTH > IN_DEPTH) {\n"
" diff = OUT_DEPTH - IN_DEPTH;\n"
" return (val << diff) | (val >> (IN_DEPTH - diff));\n"
" } else if (IN_DEPTH > OUT_DEPTH) {\n"
" return val >> (IN_DEPTH - OUT_DEPTH);\n"
" }\n"
" return val;\n"
"}\n"
"\n"
/* __device__ ushort2
* read_chroma (cudaTextureObject_t tex1, cudaTextureObject_t tex2, float x, float y);
*/
"%s\n"
"\n"
/* __device__ void
* write_chroma (unsigned char *dst1, unsigned char *dst2, unsigned short u,
* unsigned short v, int x, int y, int pstride, int stride, int mask);
*/
"%s\n"
"\n"
"__global__ void\n"
GST_CUDA_KERNEL_FUNC
"(cudaTextureObject_t tex0, cudaTextureObject_t tex1, cudaTextureObject_t tex2,\n"
" unsigned char *dst0, unsigned char *dst1, unsigned char *dst2,\n"
" int stride, int uv_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < WIDTH && y_pos < HEIGHT) {\n"
" float src_xpos = SCALE_H * x_pos;\n"
" float src_ypos = SCALE_V * y_pos;\n"
" unsigned short y = tex2D<unsigned short>(tex0, src_xpos, src_ypos);\n"
" y = y >> IN_SHIFT;\n"
" y = do_scale_pixel (y);\n"
" y = y << OUT_SHIFT;\n"
" if (OUT_DEPTH > 8) {\n"
" *(unsigned short *)&dst0[x_pos * PSTRIDE + y_pos * stride] = (y & MASK);\n"
" } else {\n"
" dst0[x_pos * PSTRIDE + y_pos * stride] = y;\n"
" }\n"
" }\n"
" if (x_pos < CHROMA_WIDTH && y_pos < CHROMA_HEIGHT) {\n"
" float src_xpos = CHROMA_SCALE_H * x_pos;\n"
" float src_ypos = CHROMA_SCALE_V * y_pos;\n"
" unsigned short u, v;\n"
" ushort2 uv = read_chroma (tex1, tex2, src_xpos, src_ypos);\n"
" u = uv.x;\n"
" v = uv.y;\n"
" u = u >> IN_SHIFT;\n"
" v = v >> IN_SHIFT;\n"
" u = do_scale_pixel (u);\n"
" v = do_scale_pixel (v);\n"
" u = u << OUT_SHIFT;\n"
" v = v << OUT_SHIFT;\n"
" if (SWAP_UV) {\n"
" unsigned short tmp = u;\n"
" u = v;\n"
" v = tmp;\n"
" }\n"
" write_chroma (dst1,\n"
" dst2, u, v, x_pos, y_pos, CHROMA_PSTRIDE, uv_stride, MASK);\n"
" }\n"
"}\n"
"\n"
"}";
/* CUDA kernel source for from YUV to RGB conversion and scale */
static const gchar templ_YUV_TO_RGB[] =
"extern \"C\"{\n"
"__constant__ float offset[3] = {%s, %s, %s};\n"
"__constant__ float rcoeff[3] = {%s, %s, %s};\n"
"__constant__ float gcoeff[3] = {%s, %s, %s};\n"
"__constant__ float bcoeff[3] = {%s, %s, %s};\n"
"\n"
"__constant__ float SCALE_H = %s;\n"
"__constant__ float SCALE_V = %s;\n"
"__constant__ float CHROMA_SCALE_H = %s;\n"
"__constant__ float CHROMA_SCALE_V = %s;\n"
"__constant__ int WIDTH = %d;\n"
"__constant__ int HEIGHT = %d;\n"
"__constant__ int CHROMA_WIDTH = %d;\n"
"__constant__ int CHROMA_HEIGHT = %d;\n"
"__constant__ int IN_DEPTH = %d;\n"
"__constant__ int OUT_DEPTH = %d;\n"
"__constant__ int PSTRIDE = %d;\n"
"__constant__ int CHROMA_PSTRIDE = %d;\n"
"__constant__ int IN_SHIFT = %d;\n"
"__constant__ int OUT_SHIFT = %d;\n"
"__constant__ int MASK = %d;\n"
"__constant__ int SWAP_UV = %d;\n"
"__constant__ int MAX_IN_VAL = %d;\n"
"__constant__ int R_IDX = %d;\n"
"__constant__ int G_IDX = %d;\n"
"__constant__ int B_IDX = %d;\n"
"__constant__ int A_IDX = %d;\n"
"__constant__ int X_IDX = %d;\n"
"\n"
"__device__ unsigned short\n"
"do_scale_pixel (unsigned short val) \n"
"{\n"
" unsigned int diff;\n"
" if (OUT_DEPTH > IN_DEPTH) {\n"
" diff = OUT_DEPTH - IN_DEPTH;\n"
" return (val << diff) | (val >> (IN_DEPTH - diff));\n"
" } else if (IN_DEPTH > OUT_DEPTH) {\n"
" return val >> (IN_DEPTH - OUT_DEPTH);\n"
" }\n"
" return val;\n"
"}\n"
"\n"
"__device__ float\n"
"dot(float3 val, float *coeff)\n"
"{\n"
" return val.x * coeff[0] + val.y * coeff[1] + val.z * coeff[2];\n"
"}\n"
"\n"
"__device__ uint3\n"
"yuv_to_rgb (unsigned short y, unsigned short u, unsigned short v, unsigned int max_val)\n"
"{\n"
" float3 yuv = make_float3 (y, u, v);\n"
" uint3 rgb;\n"
" rgb.x = max ((unsigned int)(dot (yuv, rcoeff) + offset[0]), 0);\n"
" rgb.y = max ((unsigned int)(dot (yuv, gcoeff) + offset[1]), 0);\n"
" rgb.z = max ((unsigned int)(dot (yuv, bcoeff) + offset[2]), 0);\n"
" rgb.x = min (rgb.x, max_val);\n"
" rgb.y = min (rgb.y, max_val);\n"
" rgb.z = min (rgb.z, max_val);\n"
" return rgb;\n"
"}\n"
"\n"
/* __device__ ushort2
* read_chroma (cudaTextureObject_t tex1, cudaTextureObject_t tex2, float x, float y);
*/
"%s\n"
"\n"
"__global__ void\n"
GST_CUDA_KERNEL_FUNC
"(cudaTextureObject_t tex0, cudaTextureObject_t tex1, cudaTextureObject_t tex2,\n"
" unsigned char *dstRGB, int stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < WIDTH && y_pos < HEIGHT) {\n"
" float src_xpos = SCALE_H * x_pos;\n"
" float src_ypos = SCALE_V * y_pos;\n"
" unsigned short y = tex2D<unsigned short>(tex0, src_xpos, src_ypos);\n"
" ushort2 uv;\n"
" unsigned short u, v;\n"
" uint3 rgb;\n"
" unsigned int clip_max = MAX_IN_VAL;\n"
" src_xpos = CHROMA_SCALE_H * x_pos;\n"
" src_ypos = CHROMA_SCALE_V * y_pos;\n"
" uv = read_chroma (tex1, tex2, src_xpos, src_ypos);\n"
" u = uv.x;\n"
" v = uv.y;\n"
" y = y >> IN_SHIFT;\n"
" u = u >> IN_SHIFT;\n"
" v = v >> IN_SHIFT;\n"
" if (SWAP_UV) {\n"
" unsigned short tmp = u;\n"
" u = v;\n"
" v = tmp;\n"
" }\n"
/* conversion matrix is scaled to higher bitdepth between in/out formats */
" if (OUT_DEPTH > IN_DEPTH) {\n"
" y = do_scale_pixel (y);\n"
" u = do_scale_pixel (u);\n"
" v = do_scale_pixel (v);\n"
" clip_max = MASK;\n"
" }"
" rgb = yuv_to_rgb (y, u, v, clip_max);\n"
" if (OUT_DEPTH < IN_DEPTH) {\n"
" rgb.x = do_scale_pixel (rgb.x);\n"
" rgb.y = do_scale_pixel (rgb.y);\n"
" rgb.z = do_scale_pixel (rgb.z);\n"
" }"
" if (OUT_DEPTH > 8) {\n"
" unsigned int packed_rgb = 0;\n"
/* A is always MSB, we support only little endian system */
" packed_rgb = 0xc000 << 16;\n"
" packed_rgb |= (rgb.x << (30 - (R_IDX * 10)));\n"
" packed_rgb |= (rgb.y << (30 - (G_IDX * 10)));\n"
" packed_rgb |= (rgb.z << (30 - (B_IDX * 10)));\n"
" *(unsigned int *)&dstRGB[x_pos * PSTRIDE + y_pos * stride] = packed_rgb;\n"
" } else {\n"
" dstRGB[x_pos * PSTRIDE + R_IDX + y_pos * stride] = (unsigned char) rgb.x;\n"
" dstRGB[x_pos * PSTRIDE + G_IDX + y_pos * stride] = (unsigned char) rgb.y;\n"
" dstRGB[x_pos * PSTRIDE + B_IDX + y_pos * stride] = (unsigned char) rgb.z;\n"
" if (A_IDX >= 0 || X_IDX >= 0)\n"
" dstRGB[x_pos * PSTRIDE + A_IDX + y_pos * stride] = 0xff;\n"
" }\n"
" }\n"
"}\n"
"\n"
"}";
/**
* GST_CUDA_KERNEL_FUNC_TO_ARGB:
* @srcRGB: a CUDA global memory containing a RGB image
* @dstRGB: a CUDA global memory to store unpacked ARGB image
* @width: the width of @srcRGB and @dstRGB
* @height: the height of @srcRGB and @dstRGB
* @src_stride: the stride of @srcRGB
* @src_pstride: the pixel stride of @srcRGB
* @dst_stride: the stride of @dstRGB
* @r_idx: the index of red component of @srcRGB
* @g_idx: the index of green component of @srcRGB
* @b_idx: the index of blue component of @srcRGB
* @a_idx: the index of alpha component of @srcRGB
*
* Unpack a RGB image from @srcRGB and write the unpacked data into @dstRGB
*/
static const gchar unpack_to_ARGB[] =
"__global__ void\n"
GST_CUDA_KERNEL_FUNC_TO_ARGB
"(unsigned char *srcRGB, unsigned char *dstRGB, int width, int height,\n"
" int src_stride, int src_pstride, int dst_stride,\n"
" int r_idx, int g_idx, int b_idx, int a_idx)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" if (a_idx >= 0) {\n"
" dstRGB[x_pos * 4 + y_pos * dst_stride] =\n"
" srcRGB[x_pos * src_pstride + a_idx + y_pos * src_stride];\n"
" } else {\n"
" dstRGB[x_pos * 4 + y_pos * dst_stride] = 0xff;\n"
" }\n"
" dstRGB[x_pos * 4 + 1 + y_pos * dst_stride] =\n"
" srcRGB[x_pos * src_pstride + r_idx + y_pos * src_stride];\n"
" dstRGB[x_pos * 4 + 2 + y_pos * dst_stride] =\n"
" srcRGB[x_pos * src_pstride + g_idx + y_pos * src_stride];\n"
" dstRGB[x_pos * 4 + 3 + y_pos * dst_stride] =\n"
" srcRGB[x_pos * src_pstride + b_idx + y_pos * src_stride];\n"
" }\n"
"}\n";
/**
* GST_CUDA_KERNEL_FUNC_TO_ARGB:
* @srcRGB: a CUDA global memory containing a RGB image
* @dstRGB: a CUDA global memory to store unpacked ARGB64 image
* @width: the width of @srcRGB and @dstRGB
* @height: the height of @srcRGB and @dstRGB
* @src_stride: the stride of @srcRGB
* @src_pstride: the pixel stride of @srcRGB
* @dst_stride: the stride of @dstRGB
* @r_idx: the index of red component of @srcRGB
* @g_idx: the index of green component of @srcRGB
* @b_idx: the index of blue component of @srcRGB
* @a_idx: the index of alpha component of @srcRGB
*
* Unpack a RGB image from @srcRGB and write the unpacked data into @dstRGB
*/
static const gchar unpack_to_ARGB64[] =
"__global__ void\n"
GST_CUDA_KERNEL_FUNC_TO_ARGB
"(unsigned char *srcRGB, unsigned char *dstRGB, int width, int height,\n"
" int src_stride, int src_pstride, int dst_stride,\n"
" int r_idx, int g_idx, int b_idx, int a_idx)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" unsigned short a, r, g, b;\n"
" unsigned int read_val;\n"
" read_val = *(unsigned int *)&srcRGB[x_pos * src_pstride + y_pos * src_stride];\n"
" a = (read_val >> 30) & 0x03;\n"
" a = (a << 14) | (a << 12) | (a << 10) | (a << 8) | (a << 6) | (a << 4) | (a << 2) | (a << 0);\n"
" r = ((read_val >> (30 - (r_idx * 10))) & 0x3ff);\n"
" r = (r << 6) | (r >> 4);\n"
" g = ((read_val >> (30 - (g_idx * 10))) & 0x3ff);\n"
" g = (g << 6) | (g >> 4);\n"
" b = ((read_val >> (30 - (b_idx * 10))) & 0x3ff);\n"
" b = (b << 6) | (b >> 4);\n"
" *(unsigned short *)&dstRGB[x_pos * 8 + y_pos * dst_stride] = 0xffff;\n"
" *(unsigned short *)&dstRGB[x_pos * 8 + 2 + y_pos * dst_stride] = r;\n"
" *(unsigned short *)&dstRGB[x_pos * 8 + 4 + y_pos * dst_stride] = g;\n"
" *(unsigned short *)&dstRGB[x_pos * 8 + 6 + y_pos * dst_stride] = b;\n"
" }\n"
"}\n";
/* CUDA kernel source for from RGB to YUV conversion and scale */
static const gchar templ_RGB_TO_YUV[] =
"extern \"C\"{\n"
"__constant__ float offset[3] = {%s, %s, %s};\n"
"__constant__ float ycoeff[3] = {%s, %s, %s};\n"
"__constant__ float ucoeff[3] = {%s, %s, %s};\n"
"__constant__ float vcoeff[3] = {%s, %s, %s};\n"
"\n"
"__constant__ float SCALE_H = %s;\n"
"__constant__ float SCALE_V = %s;\n"
"__constant__ float CHROMA_SCALE_H = %s;\n"
"__constant__ float CHROMA_SCALE_V = %s;\n"
"__constant__ int WIDTH = %d;\n"
"__constant__ int HEIGHT = %d;\n"
"__constant__ int CHROMA_WIDTH = %d;\n"
"__constant__ int CHROMA_HEIGHT = %d;\n"
"__constant__ int IN_DEPTH = %d;\n"
"__constant__ int OUT_DEPTH = %d;\n"
"__constant__ int PSTRIDE = %d;\n"
"__constant__ int CHROMA_PSTRIDE = %d;\n"
"__constant__ int IN_SHIFT = %d;\n"
"__constant__ int OUT_SHIFT = %d;\n"
"__constant__ int MASK = %d;\n"
"__constant__ int SWAP_UV = %d;\n"
"\n"
"__device__ unsigned short\n"
"do_scale_pixel (unsigned short val) \n"
"{\n"
" unsigned int diff;\n"
" if (OUT_DEPTH > IN_DEPTH) {\n"
" diff = OUT_DEPTH - IN_DEPTH;\n"
" return (val << diff) | (val >> (IN_DEPTH - diff));\n"
" } else if (IN_DEPTH > OUT_DEPTH) {\n"
" return val >> (IN_DEPTH - OUT_DEPTH);\n"
" }\n"
" return val;\n"
"}\n"
"\n"
"__device__ float\n"
"dot(float3 val, float *coeff)\n"
"{\n"
" return val.x * coeff[0] + val.y * coeff[1] + val.z * coeff[2];\n"
"}\n"
"\n"
"__device__ uint3\n"
"rgb_to_yuv (unsigned short r, unsigned short g, unsigned short b,\n"
" unsigned int max_val)\n"
"{\n"
" float3 rgb = make_float3 (r, g, b);\n"
" uint3 yuv;\n"
" yuv.x = max ((unsigned int)(dot (rgb, ycoeff) + offset[0]), 0);\n"
" yuv.y = max ((unsigned int)(dot (rgb, ucoeff) + offset[1]), 0);\n"
" yuv.z = max ((unsigned int)(dot (rgb, vcoeff) + offset[2]), 0);\n"
" yuv.x = min (yuv.x, max_val);\n"
" yuv.y = min (yuv.y, max_val);\n"
" yuv.z = min (yuv.z, max_val);\n"
" return yuv;\n"
"}\n"
"\n"
/* __global__ void
* GST_CUDA_KERNEL_FUNC_TO_ARGB
*/
"%s\n"
"\n"
/* __device__ ushort2
* read_chroma (cudaTextureObject_t tex1, cudaTextureObject_t tex2, float x, float y);
*/
"%s\n"
"\n"
/* __device__ void
* write_chroma (unsigned char *dst1, unsigned char *dst2, unsigned short u,
* unsigned short v, int x, int y, int pstride, int stride, int mask);
*/
"%s\n"
"\n"
"__global__ void\n"
GST_CUDA_KERNEL_FUNC_TO_Y444
"(cudaTextureObject_t srcRGB, unsigned char *dstY, int y_stride,\n"
" unsigned char *dstU, int u_stride, unsigned char *dstV, int v_stride,\n"
" int width, int height, int dst_pstride, int in_depth)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" ushort4 argb = tex2D<ushort4>(srcRGB, x_pos, y_pos);\n"
" uint3 yuv;\n"
" yuv = rgb_to_yuv (argb.y, argb.z, argb.w, (1 << in_depth) - 1);\n"
" if (in_depth > 8) {\n"
" *(unsigned short *)&dstY[x_pos * dst_pstride + y_pos * y_stride] = yuv.x;\n"
" *(unsigned short *)&dstU[x_pos * dst_pstride + y_pos * u_stride] = yuv.y;\n"
" *(unsigned short *)&dstV[x_pos * dst_pstride + y_pos * v_stride] = yuv.z;\n"
" } else {\n"
" dstY[x_pos * dst_pstride + y_pos * y_stride] = yuv.x;\n"
" dstU[x_pos * dst_pstride + y_pos * u_stride] = yuv.y;\n"
" dstV[x_pos * dst_pstride + y_pos * v_stride] = yuv.z;\n"
" }\n"
" }\n"
"}\n"
"\n"
"__global__ void\n"
GST_CUDA_KERNEL_FUNC_Y444_TO_YUV
"(cudaTextureObject_t tex0, cudaTextureObject_t tex1, cudaTextureObject_t tex2,\n"
" unsigned char *dst0, unsigned char *dst1, unsigned char *dst2,\n"
" int stride, int uv_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < WIDTH && y_pos < HEIGHT) {\n"
" float src_xpos = SCALE_H * x_pos;\n"
" float src_ypos = SCALE_V * y_pos;\n"
" unsigned short y = tex2D<unsigned short>(tex0, src_xpos, src_ypos);\n"
" y = y >> IN_SHIFT;\n"
" y = do_scale_pixel (y);\n"
" y = y << OUT_SHIFT;\n"
" if (OUT_DEPTH > 8) {\n"
" *(unsigned short *)&dst0[x_pos * PSTRIDE + y_pos * stride] = (y & MASK);\n"
" } else {\n"
" dst0[x_pos * PSTRIDE + y_pos * stride] = y;\n"
" }\n"
" }\n"
" if (x_pos < CHROMA_WIDTH && y_pos < CHROMA_HEIGHT) {\n"
" float src_xpos = CHROMA_SCALE_H * x_pos;\n"
" float src_ypos = CHROMA_SCALE_V * y_pos;\n"
" unsigned short u, v;\n"
" ushort2 uv;\n"
" uv = read_chroma (tex1, tex2, src_xpos, src_ypos);\n"
" u = uv.x;\n"
" v = uv.y;\n"
" u = u >> IN_SHIFT;\n"
" v = v >> IN_SHIFT;\n"
" u = do_scale_pixel (u);\n"
" v = do_scale_pixel (v);\n"
" u = u << OUT_SHIFT;\n"
" v = v << OUT_SHIFT;\n"
" if (SWAP_UV) {\n"
" unsigned short tmp = u;\n"
" u = v;\n"
" v = tmp;\n"
" }\n"
" write_chroma (dst1,\n"
" dst2, u, v, x_pos, y_pos, CHROMA_PSTRIDE, uv_stride, MASK);\n"
" }\n"
"}\n"
"\n"
"}";
/* CUDA kernel source for from RGB to RGB conversion and scale */
static const gchar templ_RGB_to_RGB[] =
"extern \"C\"{\n"
"__constant__ float SCALE_H = %s;\n"
"__constant__ float SCALE_V = %s;\n"
"__constant__ int WIDTH = %d;\n"
"__constant__ int HEIGHT = %d;\n"
"__constant__ int IN_DEPTH = %d;\n"
"__constant__ int OUT_DEPTH = %d;\n"
"__constant__ int PSTRIDE = %d;\n"
"__constant__ int R_IDX = %d;\n"
"__constant__ int G_IDX = %d;\n"
"__constant__ int B_IDX = %d;\n"
"__constant__ int A_IDX = %d;\n"
"__constant__ int X_IDX = %d;\n"
"\n"
"__device__ unsigned short\n"
"do_scale_pixel (unsigned short val) \n"
"{\n"
" unsigned int diff;\n"
" if (OUT_DEPTH > IN_DEPTH) {\n"
" diff = OUT_DEPTH - IN_DEPTH;\n"
" return (val << diff) | (val >> (IN_DEPTH - diff));\n"
" } else if (IN_DEPTH > OUT_DEPTH) {\n"
" return val >> (IN_DEPTH - OUT_DEPTH);\n"
" }\n"
" return val;\n"
"}\n"
"\n"
/* __global__ void
* GST_CUDA_KERNEL_FUNC_TO_ARGB
*/
"%s\n"
"\n"
/* convert ARGB or ARGB64 to other RGB formats with scale */
"__global__ void\n"
GST_CUDA_KERNEL_FUNC_SCALE_RGB
"(cudaTextureObject_t srcRGB, unsigned char *dstRGB, int dst_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < WIDTH && y_pos < HEIGHT) {\n"
" float src_xpos = SCALE_H * x_pos;\n"
" float src_ypos = SCALE_V * y_pos;\n"
" ushort4 argb = tex2D<ushort4>(srcRGB, src_xpos, src_ypos);\n"
" argb.x = do_scale_pixel(argb.x);\n"
" argb.y = do_scale_pixel(argb.y);\n"
" argb.z = do_scale_pixel(argb.z);\n"
" argb.w = do_scale_pixel(argb.w);\n"
/* FIXME: RGB10A2_LE or BGR10A2_LE only */
" if (OUT_DEPTH > 8) {\n"
" unsigned int packed_rgb = 0;\n"
" unsigned int a, r, g, b;"
" a = (argb.x >> 8) & 0x3;\n"
" r = argb.y & 0x3ff;\n"
" g = argb.z & 0x3ff;\n"
" b = argb.w & 0x3ff;\n"
/* A is always MSB, we support only little endian system */
" packed_rgb = a << 30;\n"
" packed_rgb |= (r << (30 - (R_IDX * 10)));\n"
" packed_rgb |= (g << (30 - (G_IDX * 10)));\n"
" packed_rgb |= (b << (30 - (B_IDX * 10)));\n"
" *(unsigned int *)&dstRGB[x_pos * 4 + y_pos * dst_stride] = packed_rgb;\n"
" } else {\n"
" if (A_IDX >= 0) {\n"
" argb.x = do_scale_pixel(argb.x);\n"
" dstRGB[x_pos * PSTRIDE + A_IDX + y_pos * dst_stride] = argb.x;\n"
" } else if (X_IDX >= 0) {\n"
" dstRGB[x_pos * PSTRIDE + X_IDX + y_pos * dst_stride] = 0xff;\n"
" }\n"
" dstRGB[x_pos * PSTRIDE + R_IDX + y_pos * dst_stride] = argb.y;\n"
" dstRGB[x_pos * PSTRIDE + G_IDX + y_pos * dst_stride] = argb.z;\n"
" dstRGB[x_pos * PSTRIDE + B_IDX + y_pos * dst_stride] = argb.w;\n"
" }\n"
" }\n"
"}\n"
"\n"
"}";
/* *INDENT-ON* */
typedef struct
{
gint R;
gint G;
gint B;
gint A;
gint X;
} GstCudaRGBOrder;
typedef struct
{
CUdeviceptr device_ptr;
gsize cuda_stride;
} GstCudaStageBuffer;
#define CONVERTER_MAX_NUM_FUNC 4
struct _GstCudaConverter
{
GstVideoInfo in_info;
GstVideoInfo out_info;
gboolean keep_size;
gint texture_alignment;
GstCudaContext *cuda_ctx;
CUmodule cuda_module;
CUfunction kernel_func[CONVERTER_MAX_NUM_FUNC];
const gchar *func_names[CONVERTER_MAX_NUM_FUNC];
gchar *kernel_source;
gchar *ptx;
GstCudaStageBuffer fallback_buffer[GST_VIDEO_MAX_PLANES];
/* *INDENT-OFF* */
gboolean (*convert) (GstCudaConverter * convert, GstVideoFrame * src_frame,
GstVideoFrame * dst_frame, CUstream cuda_stream);
/* *INDENT-ON* */
const CUdeviceptr src;
GstVideoInfo *cur_in_info;
CUdeviceptr dest;
GstVideoInfo *cur_out_info;
/* rgb to {rgb, yuv} only */
GstCudaRGBOrder in_rgb_order;
GstCudaStageBuffer unpack_surface;
GstCudaStageBuffer y444_surface[GST_VIDEO_MAX_PLANES];
};
#define LOAD_CUDA_FUNC(module,func,name) G_STMT_START { \
if (!gst_cuda_result (CuModuleGetFunction (&(func), (module), name))) { \
GST_ERROR ("failed to get %s function", (name)); \
goto error; \
} \
} G_STMT_END
/**
* gst_cuda_converter_new:
* @in_info: a #GstVideoInfo
* @out_info: a #GstVideoInfo
* @cuda_ctx: (transfer none): a #GstCudaContext
*
* Create a new converter object to convert between @in_info and @out_info
* with @config.
*
* Returns: a #GstCudaConverter or %NULL if conversion is not possible.
*/
GstCudaConverter *
gst_cuda_converter_new (GstVideoInfo * in_info, GstVideoInfo * out_info,
GstCudaContext * cuda_ctx)
{
GstCudaConverter *convert;
gint i;
g_return_val_if_fail (in_info != NULL, NULL);
g_return_val_if_fail (out_info != NULL, NULL);
g_return_val_if_fail (cuda_ctx != NULL, NULL);
/* we won't ever do framerate conversion */
g_return_val_if_fail (in_info->fps_n == out_info->fps_n, NULL);
g_return_val_if_fail (in_info->fps_d == out_info->fps_d, NULL);
/* we won't ever do deinterlace */
g_return_val_if_fail (in_info->interlace_mode == out_info->interlace_mode,
NULL);
convert = g_new0 (GstCudaConverter, 1);
convert->in_info = *in_info;
convert->out_info = *out_info;
/* FIXME: should return kernel source */
if (!gst_cuda_context_push (cuda_ctx)) {
GST_ERROR ("cannot push context");
goto error;
}
if (!cuda_converter_lookup_path (convert))
goto error;
convert->ptx = gst_cuda_nvrtc_compile (convert->kernel_source);
if (!convert->ptx) {
GST_ERROR ("no PTX data to load");
goto error;
}
GST_TRACE ("compiled convert ptx \n%s", convert->ptx);
if (!gst_cuda_result (CuModuleLoadData (&convert->cuda_module, convert->ptx))) {
gst_cuda_context_pop (NULL);
GST_ERROR ("failed to load cuda module data");
goto error;
}
for (i = 0; i < CONVERTER_MAX_NUM_FUNC; i++) {
if (!convert->func_names[i])
break;
LOAD_CUDA_FUNC (convert->cuda_module, convert->kernel_func[i],
convert->func_names[i]);
GST_DEBUG ("kernel function \"%s\" loaded", convert->func_names[i]);
}
gst_cuda_context_pop (NULL);
convert->cuda_ctx = gst_object_ref (cuda_ctx);
convert->texture_alignment =
gst_cuda_context_get_texture_alignment (cuda_ctx);
g_free (convert->kernel_source);
g_free (convert->ptx);
convert->kernel_source = NULL;
convert->ptx = NULL;
return convert;
error:
gst_cuda_context_pop (NULL);
gst_cuda_converter_free (convert);
return NULL;
}
/**
* gst_video_converter_free:
* @convert: a #GstCudaConverter
*
* Free @convert
*/
void
gst_cuda_converter_free (GstCudaConverter * convert)
{
g_return_if_fail (convert != NULL);
if (convert->cuda_ctx) {
if (gst_cuda_context_push (convert->cuda_ctx)) {
gint i;
if (convert->cuda_module) {
gst_cuda_result (CuModuleUnload (convert->cuda_module));
}
for (i = 0; i < GST_VIDEO_MAX_PLANES; i++) {
if (convert->fallback_buffer[i].device_ptr)
gst_cuda_result (CuMemFree (convert->fallback_buffer[i].device_ptr));
if (convert->y444_surface[i].device_ptr)
gst_cuda_result (CuMemFree (convert->y444_surface[i].device_ptr));
}
if (convert->unpack_surface.device_ptr)
gst_cuda_result (CuMemFree (convert->unpack_surface.device_ptr));
gst_cuda_context_pop (NULL);
}
gst_object_unref (convert->cuda_ctx);
}
g_free (convert->kernel_source);
g_free (convert->ptx);
g_free (convert);
}
gboolean
gst_cuda_converter_convert_frame (GstCudaConverter * convert,
GstVideoFrame * src_frame, GstVideoFrame * dst_frame, CUstream cuda_stream)
{
gboolean ret;
g_return_val_if_fail (convert, FALSE);
g_return_val_if_fail (src_frame, FALSE);
g_return_val_if_fail (dst_frame, FALSE);
gst_cuda_context_push (convert->cuda_ctx);
ret = convert->convert (convert, src_frame, dst_frame, cuda_stream);
gst_cuda_context_pop (NULL);
return ret;
}
/* allocate fallback memory for texture alignment requirement */
static gboolean
convert_ensure_fallback_memory (GstCudaConverter * convert,
GstVideoInfo * info, guint plane)
{
CUresult ret;
guint element_size = 8;
if (convert->fallback_buffer[plane].device_ptr)
return TRUE;
if (GST_VIDEO_INFO_COMP_DEPTH (info, 0) > 8)
element_size = 16;
ret = CuMemAllocPitch (&convert->fallback_buffer[plane].device_ptr,
&convert->fallback_buffer[plane].cuda_stride,
GST_VIDEO_INFO_COMP_WIDTH (info, plane) *
GST_VIDEO_INFO_COMP_PSTRIDE (info, plane),
GST_VIDEO_INFO_COMP_HEIGHT (info, plane), element_size);
if (!gst_cuda_result (ret)) {
GST_ERROR ("failed to allocated fallback memory");
return FALSE;
}
return TRUE;
}
/* create a 2D CUDA texture without alignment check */
static CUtexObject
convert_create_texture_unchecked (const CUdeviceptr src, gint width,
gint height, gint channels, gint stride, CUarray_format format,
CUfilter_mode mode, CUstream cuda_stream)
{
CUDA_TEXTURE_DESC texture_desc;
CUDA_RESOURCE_DESC resource_desc;
CUtexObject texture = 0;
CUresult cuda_ret;
memset (&texture_desc, 0, sizeof (CUDA_TEXTURE_DESC));
memset (&resource_desc, 0, sizeof (CUDA_RESOURCE_DESC));
resource_desc.resType = CU_RESOURCE_TYPE_PITCH2D;
resource_desc.res.pitch2D.format = format;
resource_desc.res.pitch2D.numChannels = channels;
resource_desc.res.pitch2D.width = width;
resource_desc.res.pitch2D.height = height;
resource_desc.res.pitch2D.pitchInBytes = stride;
resource_desc.res.pitch2D.devPtr = src;
texture_desc.filterMode = mode;
texture_desc.flags = CU_TRSF_READ_AS_INTEGER;
gst_cuda_result (CuStreamSynchronize (cuda_stream));
cuda_ret = CuTexObjectCreate (&texture, &resource_desc, &texture_desc, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("couldn't create texture");
return 0;
}
return texture;
}
static CUtexObject
convert_create_texture (GstCudaConverter * convert, GstVideoFrame * src_frame,
guint plane, CUstream cuda_stream)
{
CUarray_format format = CU_AD_FORMAT_UNSIGNED_INT8;
guint channels = 1;
CUdeviceptr src_ptr;
gsize stride;
CUresult cuda_ret;
CUfilter_mode mode;
if (GST_VIDEO_FRAME_COMP_DEPTH (src_frame, plane) > 8)
format = CU_AD_FORMAT_UNSIGNED_INT16;
/* FIXME: more graceful method ? */
if (plane != 0 &&
GST_VIDEO_FRAME_N_PLANES (src_frame) !=
GST_VIDEO_FRAME_N_COMPONENTS (src_frame)) {
channels = 2;
}
src_ptr = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (src_frame, plane);
stride = GST_VIDEO_FRAME_PLANE_STRIDE (src_frame, plane);
if (convert->texture_alignment && (src_ptr % convert->texture_alignment)) {
CUDA_MEMCPY2D copy_params = { 0, };
if (!convert_ensure_fallback_memory (convert, &src_frame->info, plane))
return 0;
GST_LOG ("device memory was not aligned, copy to fallback memory");
copy_params.srcMemoryType = CU_MEMORYTYPE_DEVICE;
copy_params.srcPitch = stride;
copy_params.srcDevice = (CUdeviceptr) src_ptr;
copy_params.dstMemoryType = CU_MEMORYTYPE_DEVICE;
copy_params.dstPitch = convert->fallback_buffer[plane].cuda_stride;
copy_params.dstDevice = convert->fallback_buffer[plane].device_ptr;
copy_params.WidthInBytes = GST_VIDEO_FRAME_COMP_WIDTH (src_frame, plane)
* GST_VIDEO_FRAME_COMP_PSTRIDE (src_frame, plane);
copy_params.Height = GST_VIDEO_FRAME_COMP_HEIGHT (src_frame, plane);
cuda_ret = CuMemcpy2DAsync (&copy_params, cuda_stream);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("failed to copy to fallback buffer");
return 0;
}
src_ptr = convert->fallback_buffer[plane].device_ptr;
stride = convert->fallback_buffer[plane].cuda_stride;
}
/* Use h/w linear interpolation only when resize is required.
* Otherwise the image might be blurred */
if (convert->keep_size)
mode = CU_TR_FILTER_MODE_POINT;
else
mode = CU_TR_FILTER_MODE_LINEAR;
return convert_create_texture_unchecked (src_ptr,
GST_VIDEO_FRAME_COMP_WIDTH (src_frame, plane),
GST_VIDEO_FRAME_COMP_HEIGHT (src_frame, plane), channels, stride, format,
mode, cuda_stream);
}
/* main conversion function for YUV to YUV conversion */
static gboolean
convert_YUV_TO_YUV (GstCudaConverter * convert, GstVideoFrame * src_frame,
GstVideoFrame * dst_frame, CUstream cuda_stream)
{
CUtexObject texture[GST_VIDEO_MAX_PLANES] = { 0, };
CUresult cuda_ret;
gboolean ret = FALSE;
CUdeviceptr dst_ptr[GST_VIDEO_MAX_PLANES] = { 0, };
gint dst_stride, dst_uv_stride;
gint width, height;
gint i;
gpointer kernel_args[] = { &texture[0], &texture[1], &texture[2],
&dst_ptr[0], &dst_ptr[1], &dst_ptr[2], &dst_stride, &dst_uv_stride
};
/* conversion step
* STEP 1: create CUtexObject per plane
* STEP 2: call YUV to YUV conversion kernel function.
* resize, uv reordering and bitdepth conversion will be performed in
* the CUDA kernel function
*/
/* map CUDA device memory to CUDA texture object */
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (src_frame); i++) {
texture[i] = convert_create_texture (convert, src_frame, i, cuda_stream);
if (!texture[i]) {
GST_ERROR ("couldn't create texture for %d th plane", i);
goto done;
}
}
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (dst_frame); i++) {
dst_ptr[i] = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (dst_frame, i);
}
dst_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 0);
dst_uv_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 1);
width = GST_VIDEO_FRAME_WIDTH (dst_frame);
height = GST_VIDEO_FRAME_HEIGHT (dst_frame);
cuda_ret =
CuLaunchKernel (convert->kernel_func[0], DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not rescale plane");
goto done;
}
ret = TRUE;
gst_cuda_result (CuStreamSynchronize (cuda_stream));
done:
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (src_frame); i++) {
if (texture[i])
gst_cuda_result (CuTexObjectDestroy (texture[i]));
}
return ret;
}
/* main conversion function for YUV to RGB conversion */
static gboolean
convert_YUV_TO_RGB (GstCudaConverter * convert, GstVideoFrame * src_frame,
GstVideoFrame * dst_frame, CUstream cuda_stream)
{
CUtexObject texture[GST_VIDEO_MAX_PLANES] = { 0, };
CUresult cuda_ret;
gboolean ret = FALSE;
CUdeviceptr dstRGB = 0;
gint dst_stride;
gint width, height;
gint i;
gpointer kernel_args[] = { &texture[0], &texture[1], &texture[2],
&dstRGB, &dst_stride
};
/* conversion step
* STEP 1: create CUtexObject per plane
* STEP 2: call YUV to RGB conversion kernel function.
* resizing, argb ordering and bitdepth conversion will be performed in
* the CUDA kernel function
*/
/* map CUDA device memory to CUDA texture object */
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (src_frame); i++) {
texture[i] = convert_create_texture (convert, src_frame, i, cuda_stream);
if (!texture[i]) {
GST_ERROR ("couldn't create texture for %d th plane", i);
goto done;
}
}
dstRGB = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (dst_frame, 0);
dst_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 0);
width = GST_VIDEO_FRAME_WIDTH (dst_frame);
height = GST_VIDEO_FRAME_HEIGHT (dst_frame);
cuda_ret =
CuLaunchKernel (convert->kernel_func[0], DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not rescale plane");
goto done;
}
ret = TRUE;
gst_cuda_result (CuStreamSynchronize (cuda_stream));
done:
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (src_frame); i++) {
if (texture[i])
gst_cuda_result (CuTexObjectDestroy (texture[i]));
}
return ret;
}
static gboolean
convert_UNPACK_RGB (GstCudaConverter * convert, CUfunction kernel_func,
CUstream cuda_stream, GstVideoFrame * src_frame,
CUdeviceptr dst, gint dst_stride, GstCudaRGBOrder * rgb_order)
{
CUdeviceptr srcRGB = 0;
gint width, height;
gint src_stride, src_pstride;
CUresult cuda_ret;
gpointer unpack_kernel_args[] = { &srcRGB, &dst,
&width, &height,
&src_stride, &src_pstride, &dst_stride,
&convert->in_rgb_order.R, &convert->in_rgb_order.G,
&convert->in_rgb_order.B, &convert->in_rgb_order.A,
};
srcRGB = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (src_frame, 0);
src_stride = GST_VIDEO_FRAME_PLANE_STRIDE (src_frame, 0);
width = GST_VIDEO_FRAME_WIDTH (src_frame);
height = GST_VIDEO_FRAME_HEIGHT (src_frame);
src_pstride = GST_VIDEO_FRAME_COMP_PSTRIDE (src_frame, 0);
cuda_ret =
CuLaunchKernel (kernel_func, DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, unpack_kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not unpack rgb");
return FALSE;
}
return TRUE;
}
static gboolean
convert_TO_Y444 (GstCudaConverter * convert, CUfunction kernel_func,
CUstream cuda_stream, CUtexObject srcRGB, CUdeviceptr dstY, gint y_stride,
CUdeviceptr dstU, gint u_stride, CUdeviceptr dstV, gint v_stride,
gint width, gint height, gint pstride, gint bitdepth)
{
CUresult cuda_ret;
gpointer kernel_args[] = { &srcRGB, &dstY, &y_stride, &dstU, &u_stride, &dstV,
&v_stride, &width, &height, &pstride, &bitdepth,
};
cuda_ret =
CuLaunchKernel (kernel_func, DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not unpack rgb");
return FALSE;
}
return TRUE;
}
/* main conversion function for RGB to YUV conversion */
static gboolean
convert_RGB_TO_YUV (GstCudaConverter * convert, GstVideoFrame * src_frame,
GstVideoFrame * dst_frame, CUstream cuda_stream)
{
CUtexObject texture = 0;
CUtexObject yuv_texture[3] = { 0, };
CUdeviceptr dst_ptr[GST_VIDEO_MAX_PLANES] = { 0, };
CUresult cuda_ret;
gboolean ret = FALSE;
gint in_width, in_height;
gint out_width, out_height;
gint dst_stride, dst_uv_stride;
CUarray_format format = CU_AD_FORMAT_UNSIGNED_INT8;
CUfilter_mode mode = CU_TR_FILTER_MODE_POINT;
gint pstride = 1;
gint bitdepth = 8;
gint i;
gpointer kernel_args[] = { &yuv_texture[0], &yuv_texture[1], &yuv_texture[2],
&dst_ptr[0], &dst_ptr[1], &dst_ptr[2], &dst_stride, &dst_uv_stride
};
/* conversion step
* STEP 1: unpack src RGB into ARGB or ARGB64 format
* STEP 2: convert unpacked ARGB (or ARGB64) to Y444 (or Y444_16LE)
* STEP 3: convert Y444 (or Y444_16LE) to final YUV format.
* resizing, bitdepth conversion, uv reordering will be performed in
* the CUDA kernel function
*/
if (!convert_UNPACK_RGB (convert, convert->kernel_func[0], cuda_stream,
src_frame, convert->unpack_surface.device_ptr,
convert->unpack_surface.cuda_stride, &convert->in_rgb_order)) {
GST_ERROR ("could not unpack input rgb");
goto done;
}
in_width = GST_VIDEO_FRAME_WIDTH (src_frame);
in_height = GST_VIDEO_FRAME_HEIGHT (src_frame);
out_width = GST_VIDEO_FRAME_WIDTH (dst_frame);
out_height = GST_VIDEO_FRAME_HEIGHT (dst_frame);
dst_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 0);
dst_uv_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 1);
if (GST_VIDEO_FRAME_COMP_DEPTH (src_frame, 0) > 8) {
pstride = 2;
bitdepth = 16;
format = CU_AD_FORMAT_UNSIGNED_INT16;
}
texture =
convert_create_texture_unchecked (convert->unpack_surface.device_ptr,
in_width, in_height, 4, convert->unpack_surface.cuda_stride, format,
mode, cuda_stream);
if (!texture) {
GST_ERROR ("could not create texture");
goto done;
}
if (!convert_TO_Y444 (convert, convert->kernel_func[1], cuda_stream, texture,
convert->y444_surface[0].device_ptr,
convert->y444_surface[0].cuda_stride,
convert->y444_surface[1].device_ptr,
convert->y444_surface[1].cuda_stride,
convert->y444_surface[2].device_ptr,
convert->y444_surface[2].cuda_stride, in_width, in_height, pstride,
bitdepth)) {
GST_ERROR ("could not convert to Y444 or Y444_16LE");
goto done;
}
/* Use h/w linear interpolation only when resize is required.
* Otherwise the image might be blurred */
if (convert->keep_size)
mode = CU_TR_FILTER_MODE_POINT;
else
mode = CU_TR_FILTER_MODE_LINEAR;
for (i = 0; i < 3; i++) {
yuv_texture[i] =
convert_create_texture_unchecked (convert->y444_surface[i].device_ptr,
in_width, in_height, 1, convert->y444_surface[i].cuda_stride, format,
mode, cuda_stream);
if (!yuv_texture[i]) {
GST_ERROR ("could not create %dth yuv texture", i);
goto done;
}
}
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (dst_frame); i++)
dst_ptr[i] = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (dst_frame, i);
cuda_ret =
CuLaunchKernel (convert->kernel_func[2], DIV_UP (out_width, CUDA_BLOCK_X),
DIV_UP (out_height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not rescale plane");
goto done;
}
ret = TRUE;
gst_cuda_result (CuStreamSynchronize (cuda_stream));
done:
if (texture)
gst_cuda_result (CuTexObjectDestroy (texture));
for (i = 0; i < 3; i++) {
if (yuv_texture[i])
gst_cuda_result (CuTexObjectDestroy (yuv_texture[i]));
}
return ret;
}
/* main conversion function for RGB to RGB conversion */
static gboolean
convert_RGB_TO_RGB (GstCudaConverter * convert, GstVideoFrame * src_frame,
GstVideoFrame * dst_frame, CUstream cuda_stream)
{
CUtexObject texture = 0;
CUresult cuda_ret;
gboolean ret = FALSE;
CUdeviceptr dstRGB = 0;
gint in_width, in_height;
gint out_width, out_height;
gint dst_stride;
CUfilter_mode mode;
CUarray_format format = CU_AD_FORMAT_UNSIGNED_INT8;
gpointer rescale_kernel_args[] = { &texture, &dstRGB, &dst_stride };
/* conversion step
* STEP 1: unpack src RGB into ARGB or ARGB64 format
* STEP 2: convert ARGB (or ARGB64) to final RGB format.
* resizing, bitdepth conversion, argb reordering will be performed in
* the CUDA kernel function
*/
if (!convert_UNPACK_RGB (convert, convert->kernel_func[0], cuda_stream,
src_frame, convert->unpack_surface.device_ptr,
convert->unpack_surface.cuda_stride, &convert->in_rgb_order)) {
GST_ERROR ("could not unpack input rgb");
goto done;
}
in_width = GST_VIDEO_FRAME_WIDTH (src_frame);
in_height = GST_VIDEO_FRAME_HEIGHT (src_frame);
out_width = GST_VIDEO_FRAME_WIDTH (dst_frame);
out_height = GST_VIDEO_FRAME_HEIGHT (dst_frame);
dstRGB = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (dst_frame, 0);
dst_stride = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 0);
if (GST_VIDEO_FRAME_COMP_DEPTH (src_frame, 0) > 8)
format = CU_AD_FORMAT_UNSIGNED_INT16;
/* Use h/w linear interpolation only when resize is required.
* Otherwise the image might be blurred */
if (convert->keep_size)
mode = CU_TR_FILTER_MODE_POINT;
else
mode = CU_TR_FILTER_MODE_LINEAR;
texture =
convert_create_texture_unchecked (convert->unpack_surface.device_ptr,
in_width, in_height, 4, convert->unpack_surface.cuda_stride, format,
mode, cuda_stream);
if (!texture) {
GST_ERROR ("could not create texture");
goto done;
}
cuda_ret =
CuLaunchKernel (convert->kernel_func[1], DIV_UP (out_width, CUDA_BLOCK_X),
DIV_UP (out_height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
cuda_stream, rescale_kernel_args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("could not rescale plane");
goto done;
}
ret = TRUE;
gst_cuda_result (CuStreamSynchronize (cuda_stream));
done:
if (texture)
gst_cuda_result (CuTexObjectDestroy (texture));
return ret;
}
/* from video-converter.c */
typedef struct
{
gdouble dm[4][4];
} MatrixData;
static void
color_matrix_set_identity (MatrixData * m)
{
gint i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
m->dm[i][j] = (i == j);
}
}
}
static void
color_matrix_copy (MatrixData * d, const MatrixData * s)
{
gint i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
d->dm[i][j] = s->dm[i][j];
}
/* Perform 4x4 matrix multiplication:
* - @dst@ = @a@ * @b@
* - @dst@ may be a pointer to @a@ andor @b@
*/
static void
color_matrix_multiply (MatrixData * dst, MatrixData * a, MatrixData * b)
{
MatrixData tmp;
gint i, j, k;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
gdouble x = 0;
for (k = 0; k < 4; k++) {
x += a->dm[i][k] * b->dm[k][j];
}
tmp.dm[i][j] = x;
}
}
color_matrix_copy (dst, &tmp);
}
static void
color_matrix_offset_components (MatrixData * m, gdouble a1, gdouble a2,
gdouble a3)
{
MatrixData a;
color_matrix_set_identity (&a);
a.dm[0][3] = a1;
a.dm[1][3] = a2;
a.dm[2][3] = a3;
color_matrix_multiply (m, &a, m);
}
static void
color_matrix_scale_components (MatrixData * m, gdouble a1, gdouble a2,
gdouble a3)
{
MatrixData a;
color_matrix_set_identity (&a);
a.dm[0][0] = a1;
a.dm[1][1] = a2;
a.dm[2][2] = a3;
color_matrix_multiply (m, &a, m);
}
static void
color_matrix_debug (const MatrixData * s)
{
GST_DEBUG ("[%f %f %f %f]", s->dm[0][0], s->dm[0][1], s->dm[0][2],
s->dm[0][3]);
GST_DEBUG ("[%f %f %f %f]", s->dm[1][0], s->dm[1][1], s->dm[1][2],
s->dm[1][3]);
GST_DEBUG ("[%f %f %f %f]", s->dm[2][0], s->dm[2][1], s->dm[2][2],
s->dm[2][3]);
GST_DEBUG ("[%f %f %f %f]", s->dm[3][0], s->dm[3][1], s->dm[3][2],
s->dm[3][3]);
}
static void
color_matrix_YCbCr_to_RGB (MatrixData * m, gdouble Kr, gdouble Kb)
{
gdouble Kg = 1.0 - Kr - Kb;
MatrixData k = {
{
{1., 0., 2 * (1 - Kr), 0.},
{1., -2 * Kb * (1 - Kb) / Kg, -2 * Kr * (1 - Kr) / Kg, 0.},
{1., 2 * (1 - Kb), 0., 0.},
{0., 0., 0., 1.},
}
};
color_matrix_multiply (m, &k, m);
}
static void
color_matrix_RGB_to_YCbCr (MatrixData * m, gdouble Kr, gdouble Kb)
{
gdouble Kg = 1.0 - Kr - Kb;
MatrixData k;
gdouble x;
k.dm[0][0] = Kr;
k.dm[0][1] = Kg;
k.dm[0][2] = Kb;
k.dm[0][3] = 0;
x = 1 / (2 * (1 - Kb));
k.dm[1][0] = -x * Kr;
k.dm[1][1] = -x * Kg;
k.dm[1][2] = x * (1 - Kb);
k.dm[1][3] = 0;
x = 1 / (2 * (1 - Kr));
k.dm[2][0] = x * (1 - Kr);
k.dm[2][1] = -x * Kg;
k.dm[2][2] = -x * Kb;
k.dm[2][3] = 0;
k.dm[3][0] = 0;
k.dm[3][1] = 0;
k.dm[3][2] = 0;
k.dm[3][3] = 1;
color_matrix_multiply (m, &k, m);
}
static void
compute_matrix_to_RGB (GstCudaConverter * convert, MatrixData * data,
GstVideoInfo * info)
{
gdouble Kr = 0, Kb = 0;
gint offset[4], scale[4];
/* bring color components to [0..1.0] range */
gst_video_color_range_offsets (info->colorimetry.range, info->finfo, offset,
scale);
color_matrix_offset_components (data, -offset[0], -offset[1], -offset[2]);
color_matrix_scale_components (data, 1 / ((float) scale[0]),
1 / ((float) scale[1]), 1 / ((float) scale[2]));
if (!GST_VIDEO_INFO_IS_RGB (info)) {
/* bring components to R'G'B' space */
if (gst_video_color_matrix_get_Kr_Kb (info->colorimetry.matrix, &Kr, &Kb))
color_matrix_YCbCr_to_RGB (data, Kr, Kb);
}
color_matrix_debug (data);
}
static void
compute_matrix_to_YUV (GstCudaConverter * convert, MatrixData * data,
GstVideoInfo * info)
{
gdouble Kr = 0, Kb = 0;
gint offset[4], scale[4];
if (!GST_VIDEO_INFO_IS_RGB (info)) {
/* bring components to YCbCr space */
if (gst_video_color_matrix_get_Kr_Kb (info->colorimetry.matrix, &Kr, &Kb))
color_matrix_RGB_to_YCbCr (data, Kr, Kb);
}
/* bring color components to nominal range */
gst_video_color_range_offsets (info->colorimetry.range, info->finfo, offset,
scale);
color_matrix_scale_components (data, (float) scale[0], (float) scale[1],
(float) scale[2]);
color_matrix_offset_components (data, offset[0], offset[1], offset[2]);
color_matrix_debug (data);
}
static gboolean
cuda_converter_get_matrix (GstCudaConverter * convert, MatrixData * matrix,
GstVideoInfo * in_info, GstVideoInfo * out_info)
{
gboolean same_matrix, same_bits;
guint in_bits, out_bits;
in_bits = GST_VIDEO_INFO_COMP_DEPTH (in_info, 0);
out_bits = GST_VIDEO_INFO_COMP_DEPTH (out_info, 0);
same_bits = in_bits == out_bits;
same_matrix = in_info->colorimetry.matrix == out_info->colorimetry.matrix;
GST_DEBUG ("matrix %d -> %d (%d)", in_info->colorimetry.matrix,
out_info->colorimetry.matrix, same_matrix);
GST_DEBUG ("bits %d -> %d (%d)", in_bits, out_bits, same_bits);
color_matrix_set_identity (matrix);
if (same_bits && same_matrix) {
GST_DEBUG ("conversion matrix is not required");
return FALSE;
}
if (in_bits < out_bits) {
gint scale = 1 << (out_bits - in_bits);
color_matrix_scale_components (matrix,
1 / (float) scale, 1 / (float) scale, 1 / (float) scale);
}
GST_DEBUG ("to RGB matrix");
compute_matrix_to_RGB (convert, matrix, in_info);
GST_DEBUG ("current matrix");
color_matrix_debug (matrix);
GST_DEBUG ("to YUV matrix");
compute_matrix_to_YUV (convert, matrix, out_info);
GST_DEBUG ("current matrix");
color_matrix_debug (matrix);
if (in_bits > out_bits) {
gint scale = 1 << (in_bits - out_bits);
color_matrix_scale_components (matrix,
(float) scale, (float) scale, (float) scale);
}
GST_DEBUG ("final matrix");
color_matrix_debug (matrix);
return TRUE;
}
static gboolean
is_uv_swapped (GstVideoFormat format)
{
static GstVideoFormat swapped_formats[] = {
GST_VIDEO_FORMAT_YV12,
GST_VIDEO_FORMAT_NV21,
};
gint i;
for (i = 0; i < G_N_ELEMENTS (swapped_formats); i++) {
if (format == swapped_formats[i])
return TRUE;
}
return FALSE;
}
typedef struct
{
const gchar *read_chroma;
const gchar *write_chroma;
const gchar *unpack_function;
gfloat scale_h, scale_v;
gfloat chroma_scale_h, chroma_scale_v;
gint width, height;
gint chroma_width, chroma_height;
gint in_depth;
gint out_depth;
gint pstride, chroma_pstride;
gint in_shift, out_shift;
gint mask;
gint swap_uv;
/* RGBA specific variables */
gint max_in_val;
GstCudaRGBOrder rgb_order;
} GstCudaKernelTempl;
static gchar *
cuda_converter_generate_yuv_to_yuv_kernel_code (GstCudaConverter * convert,
GstCudaKernelTempl * templ)
{
gchar scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
g_ascii_formatd (scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_h);
g_ascii_formatd (scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_v);
g_ascii_formatd (chroma_scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_h);
g_ascii_formatd (chroma_scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_v);
return g_strdup_printf (templ_YUV_TO_YUV, scale_h_str, scale_v_str,
chroma_scale_h_str, chroma_scale_v_str, templ->width, templ->height,
templ->chroma_width, templ->chroma_height, templ->in_depth,
templ->out_depth, templ->pstride, templ->chroma_pstride, templ->in_shift,
templ->out_shift, templ->mask, templ->swap_uv, templ->read_chroma,
templ->write_chroma);
}
static gchar *
cuda_converter_generate_yuv_to_rgb_kernel_code (GstCudaConverter * convert,
GstCudaKernelTempl * templ, MatrixData * matrix)
{
gchar matrix_dm[4][4][G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
gint i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
g_ascii_formatd (matrix_dm[i][j], G_ASCII_DTOSTR_BUF_SIZE, "%f",
matrix->dm[i][j]);
}
}
g_ascii_formatd (scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_h);
g_ascii_formatd (scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_v);
g_ascii_formatd (chroma_scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_h);
g_ascii_formatd (chroma_scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_v);
return g_strdup_printf (templ_YUV_TO_RGB, matrix_dm[0][3], matrix_dm[1][3],
matrix_dm[2][3], matrix_dm[0][0], matrix_dm[0][1], matrix_dm[0][2],
matrix_dm[1][0], matrix_dm[1][1], matrix_dm[1][2], matrix_dm[2][0],
matrix_dm[2][1], matrix_dm[2][2], scale_h_str, scale_v_str,
chroma_scale_h_str, chroma_scale_v_str, templ->width, templ->height,
templ->chroma_width, templ->chroma_height, templ->in_depth,
templ->out_depth, templ->pstride, templ->chroma_pstride, templ->in_shift,
templ->out_shift, templ->mask, templ->swap_uv, templ->max_in_val,
templ->rgb_order.R, templ->rgb_order.G, templ->rgb_order.B,
templ->rgb_order.A, templ->rgb_order.X, templ->read_chroma);
}
static gchar *
cuda_converter_generate_rgb_to_yuv_kernel_code (GstCudaConverter * convert,
GstCudaKernelTempl * templ, MatrixData * matrix)
{
gchar matrix_dm[4][4][G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar chroma_scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
gint i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
g_ascii_formatd (matrix_dm[i][j], G_ASCII_DTOSTR_BUF_SIZE, "%f",
matrix->dm[i][j]);
}
}
g_ascii_formatd (scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_h);
g_ascii_formatd (scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_v);
g_ascii_formatd (chroma_scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_h);
g_ascii_formatd (chroma_scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f",
templ->chroma_scale_v);
return g_strdup_printf (templ_RGB_TO_YUV, matrix_dm[0][3], matrix_dm[1][3],
matrix_dm[2][3], matrix_dm[0][0], matrix_dm[0][1], matrix_dm[0][2],
matrix_dm[1][0], matrix_dm[1][1], matrix_dm[1][2], matrix_dm[2][0],
matrix_dm[2][1], matrix_dm[2][2], scale_h_str, scale_v_str,
chroma_scale_h_str, chroma_scale_v_str, templ->width, templ->height,
templ->chroma_width, templ->chroma_height, templ->in_depth,
templ->out_depth, templ->pstride, templ->chroma_pstride, templ->in_shift,
templ->out_shift, templ->mask, templ->swap_uv, templ->unpack_function,
templ->read_chroma, templ->write_chroma);
}
static gchar *
cuda_converter_generate_rgb_to_rgb_kernel_code (GstCudaConverter * convert,
GstCudaKernelTempl * templ)
{
gchar scale_h_str[G_ASCII_DTOSTR_BUF_SIZE];
gchar scale_v_str[G_ASCII_DTOSTR_BUF_SIZE];
g_ascii_formatd (scale_h_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_h);
g_ascii_formatd (scale_v_str, G_ASCII_DTOSTR_BUF_SIZE, "%f", templ->scale_v);
return g_strdup_printf (templ_RGB_to_RGB,
scale_h_str, scale_v_str,
templ->width, templ->height,
templ->in_depth, templ->out_depth, templ->pstride,
templ->rgb_order.R, templ->rgb_order.G,
templ->rgb_order.B, templ->rgb_order.A, templ->rgb_order.X,
templ->unpack_function);
}
#define SET_ORDER(o,r,g,b,a,x) G_STMT_START { \
(o)->R = (r); \
(o)->G = (g); \
(o)->B = (b); \
(o)->A = (a); \
(o)->X = (x); \
} G_STMT_END
static void
cuda_converter_get_rgb_order (GstVideoFormat format, GstCudaRGBOrder * order)
{
switch (format) {
case GST_VIDEO_FORMAT_RGBA:
SET_ORDER (order, 0, 1, 2, 3, -1);
break;
case GST_VIDEO_FORMAT_RGBx:
SET_ORDER (order, 0, 1, 2, -1, 3);
break;
case GST_VIDEO_FORMAT_BGRA:
SET_ORDER (order, 2, 1, 0, 3, -1);
break;
case GST_VIDEO_FORMAT_BGRx:
SET_ORDER (order, 2, 1, 0, -1, 3);
break;
case GST_VIDEO_FORMAT_ARGB:
SET_ORDER (order, 1, 2, 3, 0, -1);
break;
case GST_VIDEO_FORMAT_ABGR:
SET_ORDER (order, 3, 2, 1, 0, -1);
break;
case GST_VIDEO_FORMAT_RGB:
SET_ORDER (order, 0, 1, 2, -1, -1);
break;
case GST_VIDEO_FORMAT_BGR:
SET_ORDER (order, 2, 1, 0, -1, -1);
break;
case GST_VIDEO_FORMAT_BGR10A2_LE:
SET_ORDER (order, 1, 2, 3, 0, -1);
break;
case GST_VIDEO_FORMAT_RGB10A2_LE:
SET_ORDER (order, 3, 2, 1, 0, -1);
break;
default:
g_assert_not_reached ();
break;
}
}
static gboolean
cuda_converter_lookup_path (GstCudaConverter * convert)
{
GstVideoFormat in_format, out_format;
gboolean src_yuv, dst_yuv;
gboolean src_planar, dst_planar;
GstCudaKernelTempl templ = { 0, };
GstVideoInfo *in_info, *out_info;
gboolean ret = FALSE;
CUresult cuda_ret;
in_info = &convert->in_info;
out_info = &convert->out_info;
in_format = GST_VIDEO_INFO_FORMAT (in_info);
out_format = GST_VIDEO_INFO_FORMAT (out_info);
src_yuv = GST_VIDEO_INFO_IS_YUV (in_info);
dst_yuv = GST_VIDEO_INFO_IS_YUV (out_info);
src_planar = GST_VIDEO_INFO_N_PLANES (in_info) ==
GST_VIDEO_INFO_N_COMPONENTS (in_info);
dst_planar = GST_VIDEO_INFO_N_PLANES (out_info) ==
GST_VIDEO_INFO_N_COMPONENTS (out_info);
convert->keep_size = (GST_VIDEO_INFO_WIDTH (&convert->in_info) ==
GST_VIDEO_INFO_WIDTH (&convert->out_info) &&
GST_VIDEO_INFO_HEIGHT (&convert->in_info) ==
GST_VIDEO_INFO_HEIGHT (&convert->out_info));
templ.scale_h = (gfloat) GST_VIDEO_INFO_COMP_WIDTH (in_info, 0) /
(gfloat) GST_VIDEO_INFO_COMP_WIDTH (out_info, 0);
templ.scale_v = (gfloat) GST_VIDEO_INFO_COMP_HEIGHT (in_info, 0) /
(gfloat) GST_VIDEO_INFO_COMP_HEIGHT (out_info, 0);
templ.chroma_scale_h = (gfloat) GST_VIDEO_INFO_COMP_WIDTH (in_info, 1) /
(gfloat) GST_VIDEO_INFO_COMP_WIDTH (out_info, 1);
templ.chroma_scale_v = (gfloat) GST_VIDEO_INFO_COMP_HEIGHT (in_info, 1) /
(gfloat) GST_VIDEO_INFO_COMP_HEIGHT (out_info, 1);
templ.width = GST_VIDEO_INFO_COMP_WIDTH (out_info, 0);
templ.height = GST_VIDEO_INFO_COMP_HEIGHT (out_info, 0);
templ.chroma_width = GST_VIDEO_INFO_COMP_WIDTH (out_info, 1);
templ.chroma_height = GST_VIDEO_INFO_COMP_HEIGHT (out_info, 1);
templ.in_depth = GST_VIDEO_INFO_COMP_DEPTH (in_info, 0);
templ.out_depth = GST_VIDEO_INFO_COMP_DEPTH (out_info, 0);
templ.pstride = GST_VIDEO_INFO_COMP_PSTRIDE (out_info, 0);
templ.chroma_pstride = GST_VIDEO_INFO_COMP_PSTRIDE (out_info, 1);
templ.in_shift = in_info->finfo->shift[0];
templ.out_shift = out_info->finfo->shift[0];
templ.mask = ((1 << templ.out_depth) - 1) << templ.out_shift;
templ.swap_uv = (is_uv_swapped (in_format) != is_uv_swapped (out_format));
if (src_yuv && dst_yuv) {
convert->convert = convert_YUV_TO_YUV;
if (src_planar && dst_planar) {
templ.read_chroma = READ_CHROMA_FROM_PLANAR;
templ.write_chroma = WRITE_CHROMA_TO_PLANAR;
} else if (!src_planar && dst_planar) {
templ.read_chroma = READ_CHROMA_FROM_SEMI_PLANAR;
templ.write_chroma = WRITE_CHROMA_TO_PLANAR;
} else if (src_planar && !dst_planar) {
templ.read_chroma = READ_CHROMA_FROM_PLANAR;
templ.write_chroma = WRITE_CHROMA_TO_SEMI_PLANAR;
} else {
templ.read_chroma = READ_CHROMA_FROM_SEMI_PLANAR;
templ.write_chroma = WRITE_CHROMA_TO_SEMI_PLANAR;
}
convert->kernel_source =
cuda_converter_generate_yuv_to_yuv_kernel_code (convert, &templ);
convert->func_names[0] = GST_CUDA_KERNEL_FUNC;
ret = TRUE;
} else if (src_yuv && !dst_yuv) {
MatrixData matrix;
if (src_planar) {
templ.read_chroma = READ_CHROMA_FROM_PLANAR;
} else {
templ.read_chroma = READ_CHROMA_FROM_SEMI_PLANAR;
}
templ.max_in_val = (1 << templ.in_depth) - 1;
cuda_converter_get_rgb_order (out_format, &templ.rgb_order);
cuda_converter_get_matrix (convert, &matrix, in_info, out_info);
convert->kernel_source =
cuda_converter_generate_yuv_to_rgb_kernel_code (convert,
&templ, &matrix);
convert->func_names[0] = GST_CUDA_KERNEL_FUNC;
convert->convert = convert_YUV_TO_RGB;
ret = TRUE;
} else if (!src_yuv && dst_yuv) {
MatrixData matrix;
gsize element_size = 8;
GstVideoFormat unpack_format;
GstVideoFormat y444_format;
GstVideoInfo unpack_info;
GstVideoInfo y444_info;
gint i;
if (dst_planar) {
templ.write_chroma = WRITE_CHROMA_TO_PLANAR;
} else {
templ.write_chroma = WRITE_CHROMA_TO_SEMI_PLANAR;
}
templ.read_chroma = READ_CHROMA_FROM_PLANAR;
cuda_converter_get_rgb_order (in_format, &convert->in_rgb_order);
if (templ.in_depth > 8) {
/* FIXME: RGB10A2_LE and BGR10A2_LE only */
element_size = 16;
unpack_format = GST_VIDEO_FORMAT_ARGB64;
y444_format = GST_VIDEO_FORMAT_Y444_16LE;
templ.unpack_function = unpack_to_ARGB64;
} else {
unpack_format = GST_VIDEO_FORMAT_ARGB;
y444_format = GST_VIDEO_FORMAT_Y444;
templ.unpack_function = unpack_to_ARGB;
}
gst_video_info_set_format (&unpack_info,
unpack_format, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
gst_video_info_set_format (&y444_info,
y444_format, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
templ.in_depth = GST_VIDEO_INFO_COMP_DEPTH (&unpack_info, 0);
cuda_ret = CuMemAllocPitch (&convert->unpack_surface.device_ptr,
&convert->unpack_surface.cuda_stride,
GST_VIDEO_INFO_COMP_WIDTH (&unpack_info, 0) *
GST_VIDEO_INFO_COMP_PSTRIDE (&unpack_info, 0),
GST_VIDEO_INFO_HEIGHT (&unpack_info), element_size);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("couldn't alloc unpack surface");
return FALSE;
}
for (i = 0; i < 3; i++) {
cuda_ret = CuMemAllocPitch (&convert->y444_surface[i].device_ptr,
&convert->y444_surface[i].cuda_stride,
GST_VIDEO_INFO_COMP_WIDTH (&y444_info, i) *
GST_VIDEO_INFO_COMP_PSTRIDE (&y444_info, i),
GST_VIDEO_INFO_COMP_HEIGHT (&y444_info, i), element_size);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("couldn't alloc %dth y444 surface", i);
return FALSE;
}
}
cuda_converter_get_matrix (convert, &matrix, &unpack_info, &y444_info);
convert->kernel_source =
cuda_converter_generate_rgb_to_yuv_kernel_code (convert,
&templ, &matrix);
convert->func_names[0] = GST_CUDA_KERNEL_FUNC_TO_ARGB;
convert->func_names[1] = GST_CUDA_KERNEL_FUNC_TO_Y444;
convert->func_names[2] = GST_CUDA_KERNEL_FUNC_Y444_TO_YUV;
convert->convert = convert_RGB_TO_YUV;
ret = TRUE;
} else {
gsize element_size = 8;
GstVideoFormat unpack_format;
GstVideoInfo unpack_info;
cuda_converter_get_rgb_order (in_format, &convert->in_rgb_order);
cuda_converter_get_rgb_order (out_format, &templ.rgb_order);
if (templ.in_depth > 8) {
/* FIXME: RGB10A2_LE and BGR10A2_LE only */
element_size = 16;
unpack_format = GST_VIDEO_FORMAT_ARGB64;
templ.unpack_function = unpack_to_ARGB64;
} else {
unpack_format = GST_VIDEO_FORMAT_ARGB;
templ.unpack_function = unpack_to_ARGB;
}
gst_video_info_set_format (&unpack_info,
unpack_format, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
templ.in_depth = GST_VIDEO_INFO_COMP_DEPTH (&unpack_info, 0);
cuda_ret = CuMemAllocPitch (&convert->unpack_surface.device_ptr,
&convert->unpack_surface.cuda_stride,
GST_VIDEO_INFO_COMP_WIDTH (&unpack_info, 0) *
GST_VIDEO_INFO_COMP_PSTRIDE (&unpack_info, 0),
GST_VIDEO_INFO_HEIGHT (&unpack_info), element_size);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR ("couldn't alloc unpack surface");
return FALSE;
}
convert->kernel_source =
cuda_converter_generate_rgb_to_rgb_kernel_code (convert, &templ);
convert->func_names[0] = GST_CUDA_KERNEL_FUNC_TO_ARGB;
convert->func_names[1] = GST_CUDA_KERNEL_FUNC_SCALE_RGB;
convert->convert = convert_RGB_TO_RGB;
ret = TRUE;
}
if (!ret) {
GST_DEBUG ("no path found");
return FALSE;
}
GST_TRACE ("configured CUDA kernel source\n%s", convert->kernel_source);
return TRUE;
}