// This example demonstrates how to draw an overlay on a video stream using // cairo and the overlay composition element. // Additionally, this example uses functionality of the pango library, which handles // text layouting. The pangocairo crate is a nice wrapper combining both libraries // into a nice interface. // {videotestsrc} - {overlaycomposition} - {capsfilter} - {videoconvert} - {autovideosink} // The capsfilter element allows us to dictate the video resolution we want for the // videotestsrc and the overlaycomposition element. use std::{ ops, sync::{Arc, Mutex}, }; use anyhow::Error; use derive_more::{Display, Error}; use gst::prelude::*; use pango::prelude::*; #[path = "../examples-common.rs"] mod examples_common; #[derive(Debug, Display, Error)] #[display(fmt = "Received error from {src}: {error} (debug: {debug:?})")] struct ErrorMessage { src: glib::GString, error: glib::Error, debug: Option, } struct DrawingContext { layout: LayoutWrapper, info: Option, } #[derive(Debug)] struct LayoutWrapper(pango::Layout); impl ops::Deref for LayoutWrapper { type Target = pango::Layout; fn deref(&self) -> &pango::Layout { assert_eq!(self.0.ref_count(), 1); &self.0 } } // SAFETY: We ensure that there are never multiple references to the layout. unsafe impl Send for LayoutWrapper {} fn create_pipeline() -> Result { gst::init()?; let pipeline = gst::Pipeline::default(); // The videotestsrc supports multiple test patterns. In this example, we will use the // pattern with a white ball moving around the video's center point. let src = gst::ElementFactory::make("videotestsrc") .property_from_str("pattern", "ball") .build()?; let overlay = gst::ElementFactory::make("overlaycomposition").build()?; // Plug in a capsfilter element that will force the videotestsrc and the overlay to work // with images of the size 800x800, and framerate of 15 fps, since my laptop struggles // rendering it at the default 30 fps let caps = gst_video::VideoCapsBuilder::new() .width(800) .height(800) .framerate((15, 1).into()) .build(); let capsfilter = gst::ElementFactory::make("capsfilter") .property("caps", &caps) .build()?; let videoconvert = gst::ElementFactory::make("videoconvert").build()?; let sink = gst::ElementFactory::make("autovideosink").build()?; pipeline.add_many(&[&src, &overlay, &capsfilter, &videoconvert, &sink])?; gst::Element::link_many(&[&src, &overlay, &capsfilter, &videoconvert, &sink])?; // The PangoFontMap represents the set of fonts available for a particular rendering system. let fontmap = pangocairo::FontMap::new(); // Create a new pango layouting context for the fontmap. let context = fontmap.create_context(); // Create a pango layout object. This object is a string of text we want to layout. // It is wrapped in a LayoutWrapper (defined above) to be able to send it across threads. let layout = LayoutWrapper(pango::Layout::new(&context)); // Select the text content and the font we want to use for the piece of text. let font_desc = pango::FontDescription::from_string("Sans Bold 26"); layout.set_font_description(Some(&font_desc)); layout.set_text("GStreamer"); // The following is a context struct (containing the pango layout and the configured video info). // We have to wrap it in an Arc (or Rc) to get reference counting, that is: to be able to have // shared ownership of it in multiple different places (the two signal handlers here). // We have to wrap it in a Mutex because Rust's type-system can't know that both signals are // only ever called from a single thread (the streaming thread). It would be enough to have // something that is Send in theory but that's not how signal handlers are generated unfortunately. // The Mutex (or otherwise if we didn't need the Sync bound we could use a RefCell) is to implement // interior mutability (see Rust docs). Via this we can get a mutable reference to the contained // data which is checked at runtime for uniqueness (blocking in case of mutex, panic in case // of refcell) instead of compile-time (like with normal references). let drawer = Arc::new(Mutex::new(DrawingContext { layout, info: None })); // Connect to the overlaycomposition element's "draw" signal, which is emitted for // each videoframe piped through the element. The signal handler needs to // return a gst_video::VideoOverlayComposition to be drawn on the frame // // Signals connected with the connect(, ...) API get their arguments // passed as array of glib::Value. For a documentation about the actual arguments // it is always a good idea to check the element's signals using either // gst-inspect, or the online documentation. // // In this case, the signal passes the gst::Element and a gst::Sample with // the current buffer overlay.connect_closure( "draw", false, glib::closure!(@strong drawer => move |_overlay: &gst::Element, sample: &gst::Sample| { use std::f64::consts::PI; let drawer = drawer.lock().unwrap(); let buffer = sample.buffer().unwrap(); let timestamp = buffer.pts().unwrap(); let info = drawer.info.as_ref().unwrap(); let layout = &drawer.layout; let angle = 2.0 * PI * (timestamp % (10 * gst::ClockTime::SECOND)).nseconds() as f64 / (10.0 * gst::ClockTime::SECOND.nseconds() as f64); /* Create a Cairo image surface to draw into and the context around it. */ let surface = cairo::ImageSurface::create( cairo::Format::ARgb32, info.width() as i32, info.height() as i32, ) .unwrap(); let cr = cairo::Context::new(&surface).expect("Failed to create cairo context"); cr.save().expect("Failed to save state"); cr.set_operator(cairo::Operator::Clear); cr.paint().expect("Failed to clear background"); cr.restore().expect("Failed to restore state"); // The image we draw (the text) will be static, but we will change the // transformation on the drawing context, which rotates and shifts everything // that we draw afterwards. Like this, we have no complicated calulations // in the actual drawing below. // Calling multiple transformation methods after each other will apply the // new transformation on top. If you repeat the cr.rotate(angle) line below // this a second time, everything in the canvas will rotate twice as fast. cr.translate( f64::from(info.width()) / 2.0, f64::from(info.height()) / 2.0, ); cr.rotate(angle); // This loop will render 10 times the string "GStreamer" in a circle for i in 0..10 { // Cairo, like most rendering frameworks, is using a stack for transformations // with this, we push our current transformation onto this stack - allowing us // to make temporary changes / render something / and then returning to the // previous transformations. cr.save().expect("Failed to save state"); let angle = (360. * f64::from(i)) / 10.0; let red = (1.0 + f64::cos((angle - 60.0) * PI / 180.0)) / 2.0; cr.set_source_rgb(red, 0.0, 1.0 - red); cr.rotate(angle * PI / 180.0); // Update the text layout. This function is only updating pango's internal state. // So e.g. that after a 90 degree rotation it knows that what was previously going // to end up as a 200x100 rectangle would now be 100x200. pangocairo::functions::update_layout(&cr, layout); let (width, _height) = layout.size(); // Using width and height of the text, we can properly possition it within // our canvas. cr.move_to( -(f64::from(width) / f64::from(pango::SCALE)) / 2.0, -(f64::from(info.height())) / 2.0, ); // After telling the layout object where to draw itself, we actually tell // it to draw itself into our cairo context. pangocairo::functions::show_layout(&cr, layout); // Here we go one step up in our stack of transformations, removing any // changes we did to them since the last call to cr.save(); cr.restore().expect("Failed to restore state"); } /* Drop the Cairo context to release the additional reference to the data and * then take ownership of the data. This only works if we have the one and only * reference to the image surface */ drop(cr); let stride = surface.stride(); let data = surface.take_data().unwrap(); /* Create an RGBA buffer, and add a video meta that the videooverlaycomposition expects */ let mut buffer = gst::Buffer::from_mut_slice(data); gst_video::VideoMeta::add_full( buffer.get_mut().unwrap(), gst_video::VideoFrameFlags::empty(), gst_video::VideoFormat::Bgra, info.width(), info.height(), &[0], &[stride], ) .unwrap(); /* Turn the buffer into a VideoOverlayRectangle, then place * that into a VideoOverlayComposition and return it. * * A VideoOverlayComposition can take a Vec of such rectangles * spaced around the video frame, but we're just outputting 1 * here */ let rect = gst_video::VideoOverlayRectangle::new_raw( &buffer, 0, 0, info.width(), info.height(), gst_video::VideoOverlayFormatFlags::PREMULTIPLIED_ALPHA, ); gst_video::VideoOverlayComposition::new(Some(&rect)) .unwrap() }), ); // Add a signal handler to the overlay's "caps-changed" signal. This could e.g. // be called when the sink that we render to does not support resizing the image // itself - but the user just changed the window-size. The element after the overlay // will then change its caps and we use the notification about this change to // resize our canvas's size. // Another possibility for when this might happen is, when our video is a network // stream that dynamically changes resolution when enough bandwith is available. overlay.connect_closure( "caps-changed", false, glib::closure!(move |_overlay: &gst::Element, caps: &gst::Caps, _width: u32, _height: u32| { let mut drawer = drawer.lock().unwrap(); drawer.info = Some(gst_video::VideoInfo::from_caps(caps).unwrap()); }), ); Ok(pipeline) } fn main_loop(pipeline: gst::Pipeline) -> Result<(), Error> { pipeline.set_state(gst::State::Playing)?; let bus = pipeline .bus() .expect("Pipeline without bus. Shouldn't happen!"); for msg in bus.iter_timed(gst::ClockTime::NONE) { use gst::MessageView; match msg.view() { MessageView::Eos(..) => break, MessageView::Error(err) => { pipeline.set_state(gst::State::Null)?; return Err(ErrorMessage { src: msg .src() .map(|s| s.path_string()) .unwrap_or_else(|| glib::GString::from("UNKNOWN")), error: err.error(), debug: err.debug(), } .into()); } _ => (), } } pipeline.set_state(gst::State::Null)?; Ok(()) } fn example_main() { match create_pipeline().and_then(main_loop) { Ok(r) => r, Err(e) => eprintln!("Error! {e}"), } } fn main() { // tutorials_common::run is only required to set up the application environment on macOS // (but not necessary in normal Cocoa applications where this is set up automatically) examples_common::run(example_main); }